牛顿—莱布尼茨公式
牛顿莱布尼公式

牛顿莱布尼公式牛顿 - 莱布尼茨公式学习资料。
一、公式内容。
1. 公式表达式。
- 如果函数f(x)在区间[a,b]上连续,并且F(x)是f(x)在区间[a,b]上的一个原函数,那么∫_a^bf(x)dx = F(b)-F(a)。
- 这里F(x)满足F^′(x)=f(x)。
例如,对于函数f(x) = 2x,其一个原函数F(x)=x^2,那么∫_1^22xdx=x^2big_1^2=2^2 - 1^2=3。
二、公式的意义。
1. 计算定积分的有力工具。
- 在牛顿 - 莱布尼茨公式出现之前,计算定积分是非常复杂的事情。
例如,对于∫_a^bx^2dx,如果按照定积分的定义(分割、近似、求和、取极限)来计算,过程十分繁琐。
而牛顿 - 莱布尼茨公式将定积分的计算转化为求原函数在区间端点的值的差,大大简化了定积分的计算过程。
2. 建立了导数与定积分之间的联系。
- 导数表示函数的变化率,定积分表示函数在区间上的累积效应。
牛顿 - 莱布尼茨公式表明这两种看似不同的概念实际上有着紧密的联系。
它是微积分基本定理的重要组成部分,体现了微分和积分这一对矛盾的相互转化关系。
三、公式的使用条件。
1. 函数的连续性。
- 函数f(x)在区间[a,b]上必须连续。
如果函数在区间内有间断点,那么直接使用牛顿 - 莱布尼茨公式可能会得到错误的结果。
例如,对于函数f(x)=(1)/(x)在区间[ - 1,1]上,x = 0是其间断点,不能直接用牛顿 - 莱布尼茨公式计算∫_-1^1(1)/(x)dx。
2. 原函数的存在性。
- 需要找到f(x)在区间[a,b]上的一个原函数F(x)。
有些函数的原函数不能用初等函数表示,如f(x)=e^-x^{2},虽然它在任何区间[a,b]上连续,但它的原函数不能用我们常见的初等函数表示,这就给使用牛顿 - 莱布尼茨公式带来了一定的困难。
我们可以用数值方法或者其他特殊的函数表示方法来处理这类问题。
四、公式的证明(简单理解)1. 从定积分的定义出发。
牛顿莱布尼兹公式

极限来判定有界函数的可积性来说,简单得多了。 常用定理9.3' 证明有界函数的可积性较方便。
7
三、 可积函数类 根据可积的准则,我们可以证明下面三种类型的函数必是可积的。 定理9.4 若f在[a, b]上连续,则f在[a, b]上必可积。 证 定理9.5 若f是区间[a, b]上只有有限个间断点的有界函数,则f在 [a, b]上必可积。 证 定理9.6 若f是区间[a, b]上的单调函数,,则f在[a, b]上必可积。 证
4
思路与方案: 1. 思路与方案 思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于 分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和 ξi T , 即用极限的双逼原理考查积分和有极限, 且与分法 及介点 无 关的条件 。 方案: 定义上和 S (T ) 和下和 s (T ) ,研究它们的性质和当 时有相同极限的充要条件 . 达布和: 2. 达布和
b
∫ f ( x)dx = F (b) F (a).
a
称为牛顿 莱布尼茨公式,它常写成: f ( x)dx = F ( x) b = F (b) F (a ). a ∫
a
b
证
1
公式使用说明:
1、 在应用公式求∫ f ( x)dx 时,f ( x)的原函数必须是初等函数,否则使用
a b
公式求∫ f ( x)dx失效。即f ( x)的原函数F ( x)可由∫ f ( x)dx求出。
§8.2 牛顿—莱布尼兹公式 若用定积分定义求
b a
∫ f ( x ) dx
a
b
,一般来说是比较困难的。是否有
较简便的方法求 ∫ f ( x ) dx ?下面介绍的牛顿—莱布尼兹公式不仅 为定积分计算提供了一个有效的方法,而且在理论上把定积分与 不定积分联系了起来。
牛顿-莱布尼茨公式

• 牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也 被称为微积分基本定理,揭示了定积分与被积函数的原函 数或者不定积分之间的联系。[1] • 牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增 量。牛顿在1666年写的《流数简论》中利用运动学描述了 这一公式,[2] 1677年,莱布尼茨在一篇手稿中正式提出了 这一公式。[1] 因为二者最早发现了这一公式,于是命名 为牛顿-莱布尼茨公式。
原函数存在定理
• 原函数是指已知函数f(x)是一个定义在某区间的函 数,如果存在可导函数F(x),使得在该区间内的 任一点都 举例dF(x)=f(x)dx。 则在该区间内就称函数F(x)为函数f(x)的原函数。
原函数的定义
• 已知函数f(x)是一个定义在某区间的函数,如果存 在可导函数F(x),使得在该区间内的任一点都有 • 若F'(x)=f(x),dF(x)=f(x)dx,则在该区间内就称函 数F(x)为函数f(x)的原函数。 • 例:sinx是cosx的原函数。
公式应用
• 牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可 以计算曲线的弧长,平面曲线围成的面积以及空间曲面围 成的立体体积,这在实际问题中有广泛的应用,例如计算 坝体的填筑方量。[1] • 牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运 动物体的路程,计算变力沿直线所做的功以及物体之间的 万有引力。[1] • 牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式 在微分方程,傅里叶变换,概率论,复变函数等数学分支 中都有体现。
不等式证明
• 积分不等式是指不等式中含有两个以上积分的不等式,当 积分区间相同时,先合并同一积分区间上的不同积分,根据 被积函数所满足的条件,灵灵活运用积分中值定理,以达到 证明不等式成立的目的。 • 在证明定积分不等式时, 常常考虑运用积分中值定理, 以便 去掉积分符号, 如果被积函数是两个函数之积时, 可考虑用 积分第一或者第二中值定理。对于某些不等式的证明, 运 用原积分中值定理只能得到“≥”的结论, 或者不等式根本 不能得到证明。而运用改进了的积分中值定理之后, 则可 以得到“>”的结论, 或者成功的算中, 如果 含有定积分式, 常常可以运用 定积分的相关知识, 比如积分 中值定理等, 把积分
牛顿-莱布尼茨公式与应用

牛顿-莱布尼茨公式与应用牛顿-莱布尼茨公式,也被称为积分基本定理,是微积分的基石之一。
该公式使我们能够计算定积分,并在物理、经济学、工程学等领域中广泛应用。
公式表述如下:设函数f(x)在区间[a,b]上连续,则函数F(x)在[a,b]上可导,且有:∫[a,b]f(x)dx = F(b) - F(a)牛顿-莱布尼茨公式表明,一个函数的原函数在给定区间上的定积分等于该函数在该区间上的两个端点处的函数值的差。
这个公式的证明相对复杂,牵涉到微积分中的基本概念和原理。
在此我们将重点关注它的应用。
1. 面积计算:牛顿-莱布尼茨公式可以帮助我们计算曲线下的面积。
设函数f(x)在区间[a,b]上连续且非负,函数的图像与x轴之间的面积可以表示为该区间上的定积分。
例如,当我们想要计算x轴和函数y = x^2之间的面积时,可以将该问题转化为计算定积分∫[a,b]x^2 dx。
根据牛顿-莱布尼茨公式,我们可以找到函数F(x)的原函数,并计算出差值F(b)-F(a)。
2. 物理学中的应用:牛顿-莱布尼茨公式在物理学中有广泛应用。
例如,在运动学中,我们可以使用该公式来计算弹簧振子的总能量,或者计算物体在力场中受力移动的功。
3. 经济学中的应用:牛顿-莱布尼茨公式在经济学中也有一定的应用。
经济学家可以使用该公式来计算市场需求曲线下的总消费量,或者计算企业成本曲线下的总成本。
这有助于经济学家更好地理解市场活动和经济指标。
4. 工程学中的应用:在工程学中,牛顿-莱布尼茨公式可以帮助我们计算流体力学等领域中复杂的问题。
例如,工程师可以使用该公式来计算管道中液体的流量,或者计算建筑物中承重梁的受力分布。
总结:牛顿-莱布尼茨公式是微积分中的重要定理,它在各个学科领域中都有广泛应用。
通过该公式,我们可以更好地理解和解决数学问题,并将其应用于实际生活和工作中。
无论是计算面积,还是分析物理、经济学、工程学等问题,牛顿-莱布尼茨公式都发挥着至关重要的作用。
牛顿布莱尼公式推导

1牛顿布莱尼茨公式牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.2牛顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)3牛顿布莱尼茨公式意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。
牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
牛顿莱布尼茨公式求导

牛顿莱布尼茨公式求导牛顿-莱布尼茨公式(Fundamental Theorem of Calculus)是微积分中十分重要的定理,它可用于求导和不定积分之间的关系。
公式的完整形式如下:设函数 f(x) 在闭区间 [a, b] 上连续,且在 (a, b) 内可导。
令 F(x) 为函数 f(x) 在区间 [a, x] 上的不定积分,则有:∫[a, b] f(x)dx = F(b) - F(a)牛顿-莱布尼茨公式提供了一种通过不定积分的计算来求解定积分的方法。
在该公式中,F(x) 是 f(x) 的原函数,即 F'(x) =f(x)。
换句话说,F(x) 的导数等于函数 f(x)。
通过计算函数 f(x) 的原函数F(x),我们可以使用牛顿-莱布尼茨公式来求函数f(x) 在给定区间 [a, b] 上的定积分。
公式要求函数在闭区间 [a, b] 上连续,这是为了保证函数 f(x)在该区间上有定义。
同时,函数 f(x) 在开区间 (a, b) 内可导,则可以保证在区间内的每个点上都存在导数,从而满足原函数的存在性。
牛顿-莱布尼茨公式的应用十分广泛,许多微积分的问题都可以通过该公式解决。
例如,可以利用该公式计算函数在给定区间上的平均值、最大值和最小值,以及计算弧长、面积和体积等。
此外,该公式还可以用于解决微分方程和偏微分方程等数学问题。
下面以一个具体的例子来解释牛顿-莱布尼茨公式的应用。
考虑函数 f(x) = x²,在区间 [1, 2] 上求定积分∫[1, 2] x² dx。
我们可以首先求 f(x) 的原函数 F(x),由于 F(x) 的导函数为 f(x),所以 F(x) = (1/3)x³。
然后,将 F(2) 和 F(1) 代入计算公式:F(2) -F(1) = (1/3)(2³) - (1/3)(1³) = 8/3 - 1/3 = 7/3,即定积分的结果为7/3。
牛顿奈布尼兹公式
牛顿奈布尼兹公式牛顿-莱布尼茨公式是微积分中的一个重要公式,它将导数和积分联系在一起,为计算复杂函数的导数提供了一种便捷的方法。
这个公式是由牛顿和莱布尼茨分别独立发现的,被认为是微积分的基石之一。
牛顿-莱布尼茨公式可以用以下形式表达:∫(a到b) f(x) dx = F(b) - F(a)其中,f(x)是函数f的原函数,F(x)是f(x)的一个不定积分。
公式的右边表示函数在区间[a, b]上的定积分,也可以理解为函数在a和b 处的原函数值之差。
牛顿-莱布尼茨公式的证明相对复杂,需要借助于一些数学分析的工具和概念。
简单来说,这个公式的核心思想是将函数的变化率和积分联系在一起。
导数可以理解为函数在某一点的瞬时变化率,积分则表示函数在一段区间上的累积变化量。
牛顿-莱布尼茨公式通过将这两个概念联系在一起,使得我们可以通过积分来计算导数。
利用牛顿-莱布尼茨公式,我们可以更方便地计算一些复杂函数的导数。
以一个简单的例子来说明,假设我们要计算函数f(x) = x^2的导数。
根据牛顿-莱布尼茨公式,我们可以先找到函数f(x)的一个原函数F(x),然后计算F(x)在某一点的导数即可。
对于f(x) = x^2来说,F(x) = (1/3)x^3就是它的一个原函数。
那么根据牛顿-莱布尼茨公式,f(x)的导数就是F(x)的导数,即f'(x) = d/dx((1/3)x^3) = x^2。
牛顿-莱布尼茨公式在实际应用中有着广泛的用途。
它不仅仅用于计算导数,还可以用于计算一些其他与导数相关的量,比如曲线的斜率、函数的平均值等。
通过将函数的积分和导数联系在一起,牛顿-莱布尼茨公式为我们提供了一种更加便捷和直观的方法来处理微积分问题。
总结一下,牛顿-莱布尼茨公式是微积分中的重要工具,它将导数和积分联系在一起,为我们提供了一种更加便捷和直观的方法来计算函数的导数。
这个公式的应用范围广泛,可以用于解决各种微积分相关的问题。
牛顿莱布尼茨公式课件
则
a
f (x)dx 2
a
f (x)dx
a
0
2若f (x)为奇函数, 则 a f (x)dx 0. a
定理2 设函数f (x)为周期为T的连续函数,
则
aT
T
a f (x)dx 0 f (x)dx.
以上两个定理可以作为性质用.
例9
计算
1
2x2 x cos x dx.
1 1 1 x2
解
原式
3.微积分基本公式
b
a
f
(
x)dx
F
(b)
F
(a)
牛顿-莱布尼茨公式沟通了微分学与积分学 之间的关系.
三、定积分计算方法
(一)Newton Leibniz公式
b a
f
(x)dx
F(b)
F (a)
F ( x)
b a
(1)求原函数(即不定积分);
(2)计算F(b) F(a).
例1.计算 1 1 x2 dx.(参照第一节例26) 0
y
( x)
oa
x x x b x
定理1 设函数在区间[a , b]上连续 , 则
(x) x f (t)dt在区间[a , b]上可导,且 a x (x) (a f (t)dt) f (x).
定理2 设函数f (x)在区间[a , b]上连续 ,
则
x
(b]上的一个原函数.
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
x2 1
x2
dx
1
牛顿-莱布尼茨公式.
i 1
n
n
F '(i )xi f (i )xi
i 1 i 1
n
(2)
首页
×
因为f在[a,b]上连续, 从而一致连续, 所以对上述
0, 存在 0, 当 x' 、 x''∈[a,b]且 x' x'' 时,有
i
i 1 i
i 1,2,
,n ). 所以 J 0
1
1 dx ln(1 x ) ln 2. 1 x 0
当然, 也可把J看作 f ( x )
J
2 1
1 同样有 x 在[1,2]上定积分,
3 dx dx 2 x1 x
ln 2.
首页
×
是要把所求的极限转化为 注 这类问题的解题思想, 然后利用 某个函数f(x)在某一区间[a,b]上的积分和的极限, 牛顿—菜布尼茨公式计算 J
n
2)
b b a e dx e e e . a a
b x x
3)
b
a
dx 1b 1 1 . 2 x xa a b
首页
×
4) (这是图9-6所示正弦曲线 一拱下的面积,其余各题也可作
此联想.)
,
0
sin xdx cos x
0
2.
5) 先用不定积分法求出 f ( x ) x 4 x 2 的任一原函数, 然后完成定积分计算:
1 ) J . 2n
解 把此极限式化为某个积分和的极限式, 并转化为计 算定积分. 为此作如下变形:
定积分牛顿莱布尼茨公式
定积分牛顿莱布尼茨公式牛顿-莱布尼茨公式(也称为牛莱公式)是微积分学中的一个重要定理,它连接了定积分和原函数之间的关系。
该公式在微积分起源和发展中起到了关键的作用,它的发现极大地推动了微积分学的发展。
首先,我们需要明确定积分的定义。
定积分是求一个函数在一个区间上的“积累量”,它可以看作是无穷多个微小的面积的总和。
设函数f(x)在[a,b]上连续,它的一个原函数为F(x)。
根据牛顿-莱布尼茨公式,定积分的值可以通过求函数的原函数在两个端点的值之差来计算。
具体而言,公式可以表达为:∫[a,b] f(x)dx = F(b) - F(a)这个公式的含义是,函数f(x)在区间[a,b]上的定积分等于它的一个原函数F(x)在b和a处的取值之差。
这个公式可用于求解定积分,而无需使用极限定义来进行计算。
牛顿-莱布尼茨公式可以通过微积分基本定理来证明。
微积分基本定理表明,如果一个函数在一个区间上连续,那么它必然有一个原函数。
这个定理的证明涉及到反函数的构造和连续函数的一些性质,它超出了本文的讨论范围。
牛顿-莱布尼茨公式的证明主要涉及到导数和微分的基本概念。
设a 和b为两个实数,函数F(x)在[a,b]上连续且可微。
根据导数的定义,我们有:F'(x) = lim(h->0) [F(x+h) - F(x)]/h我们可以根据这个式子来近似计算定积分的值。
我们可以将区间[a,b]等分为n个小区间,每个小区间的宽度为h=(b-a)/n。
记第i个小区间为[x_i-1,x_i]。
我们将每个小区间上的函数值F(x_i)与F(x_i-1)相减后再乘以区间宽度h,得到一个近似的定积分值。
如果我们取n趋近于无穷大,这个近似值将趋近于定积分的真正的值。
具体而言,我们可以写出这个近似值为:Σ {i=1 to n} [F(x_i) - F(x_i-1)] * h这个近似值可以表示为区间[a,b]上的一个数列的和。
当n趋近于无穷大时,这个数列的和将趋近于定积分的真正值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|
x
|,
1 1
x
2
dx x
ln | x | 12 ln1 ln 2 ln 2.
例5
求
3
2 x dx
1
2
3
解 原式= 2 x dx 2 x dx
1
2
2
3
(2 x)dx ( x 2)dx
1
2
[2 9
x
1
1 2
x2 ]21
[1 2
x2
2 x]32
5
22
8
小结
1.积分上限函数
2.
1 1
1
e
x
e
x
dx
;
4. 2 sin x dx . 0
10
练习题解答
1.
2(x2
1
1 x2
)dx
2 x2dx
1
21 1 x2dx
[1 3
x3 ]12
[
1 x
]12
25 6
2.
1 1
1
e
x
e
x
dx
1 d (1 e x ) 1 1 e x
[ln(1 e x )]11
1
1
5.2.1 积分上限函数
1. 积分上限函数的概念
设函数 f ( x) 在区间[a,b] 上连续,并且设x
为[a,b]上的一点, 考察定积分
x
a
f
( x)dx
x
a
f
(t )dt
如果上限x 在区间[a, b]上任意变动,则对于
每一个取定的x 值,定积分有一个对应值,所以
它在[a, b]上定义了一个函数,
数( x)
x
a
f
(t)dt 就是
f
( x) 在[a,b]上的一个
原函数.
3
定理的重要意义: (1)肯定了连续函数的原函数是存在的. (2)初步揭示了积分学中的定积分与原函数之 间的联系.
例1 设( x) x tet2dt,求( x) 0
解 利用定理1得 ( x) xe x2
4
5.2.2 牛顿—莱布尼茨公式 定理3(微积分基本公式)
12
记
( x)
x
a
f
(t )dt .
积分上限函数
2
2.积分上限函数的性质
定理1 如果 f ( x)在[a, b]上连续,则积分上限的函
数( x)
x
a
f
(t)dt 在[a, b]上具有导数,且它的导
数是
(
x)
d dx
x
a
f (t)dt
f (x)
(a x b)
定理2(原函数存在定理)
如果 f ( x)在[a, b]上连续,则积分上限的函
注意
当a
b
时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
6
例2 求 1 x2dx 0
解
原式
1 3
x
3
1 0
1 3例3ຫໍສະໝຸດ 求1 11
1 x
2
dx
解 原式 [arctan x]11
arctan1 arctan(1)
2
7
例4 解
求
1 1 dx.
当
x
2
x 0时,
1
的一个原函数是ln
x
( x) a f (t)dt
2.积分上限函数的导数 ( x) f ( x)
3.微积分基本公式
b
a
f
( x)dx
F(b)
F (a)
牛顿-莱布尼茨公式沟通了微分学与积
分学之间的关系.
9
课堂练习:
计算下列各定积分:
1.
2(x2
1
1 x2
)dx
;
3. 0 3x 4 3x 2 1 dx;
1 x 2 1
如果F ( x)是连续函数 f ( x)在区间[a, b]上
的一个原函数,则
b
a
f
(
x)dx
F
(b)
F
(a).
牛顿—莱布尼茨公式:
b
a
f
(
x)dx
F
(b)
F
(a)
F
(
x)ba
5
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.因
此 求定积分问题转化为求原函数的问题.
11
0 3x4 3x3 1
3. 1
x2 1
dx
0 (3x2
1
1 x2
)dx 1
3
0 x2dx
1
01
1
x2
dx 1
[ x3 ]01
[arctan x]01
1
4
2
2
4.0 sin x dx 0 sin x dx sin x dx
2
0 sin xdx sin xdx
[ cos x]0 [ cos x]2 4
5.2 微积分的基本公式
根据定积分定义计算定积分即按分割-求近似值累加-取极限的方法计算定积分不是一件容易的事 。事实上,除了一些特殊情形外,这种方法往往无 法计算。为此必须寻求简单的计算方法。从不定积 分和定积分的定义发现,不定积分是作为微分的逆 运算定义的,定积分是作为积分和定义的,从表面 上看,它们是毫不相干的,那么它们实质上之间是 否就没有联系?人们在经过长期探索,最终了揭示 他们之间的内在联系,即积分计算的有力工具即著 名的微分基本定理—牛顿-莱布尼茨公式。