(李光永)微灌工程技术技术要点
微灌技术

特 点
节水节能
小管出流灌溉仅湿润渗水沟和两侧作物根系活动层的部分土壤, 属于局部灌溉,节水效益显著;并且由于流道相对较大,过滤 器及灌水器的局部水头损失小,运行过程中所需的工作压力较 低
适应性强
对各地形、土壤的果树和宽行蔬菜及大田作物均可应用
涌泉灌 (小管出流灌 )
小管出流田间灌水系统包括干管、支管、 毛管、小管灌水器及渗水沟
当系统无漏水现象当系统无漏水现象并且正常工作并且正常工作时时方可填埋壕沟方可填埋壕沟脉冲灌溉脉冲式微灌系统的调试是通过调整频率脉冲式微灌系统的调试是通过调整频率控制器来改变系统的喷水脉冲间隔以控制器来改变系统的喷水脉冲间隔以及通过调整调压阀来改变系统的运行压及通过调整调压阀来改变系统的运行压力而完成的力而完成的脉冲频率高喷水间隔短运行压力大脉冲频率高喷水间隔短运行压力大则系统灌水量大喷洒半径大则系统灌水量大喷洒半径大反之则系统灌水量小喷水器的喷洒半反之则系统灌水量小喷水器的喷洒半系统管道多处漏水系统管道多处漏水致使系统所需工作压力无法致使系统所需工作压力无法实现实现脉冲系统不能运行脉冲系统不能运行脉冲发生器总成中的调压阀脉冲发生器总成中的调压阀脉冲阀或频率控制脉冲阀或频率控制器出现故障器出现故障监测管未接好监测管未接好导致系统不能运行导致系统不能运行供水水压过低供水水压过低某行毛管的喷水器不工作某行毛管的喷水器不工作常见的原因常见的原因毛管末端未封闭
小管出流灌溉不再采用微灌灌水器流道的截面尺寸(直
径一般为0.6~1.2mm),而采用超大流道,以Φ3、Φ4 和Φ6的PE塑料小管替代滴头,并辅以田间渗水沟,具 有较强的抗堵塞能力
涌泉灌 (小管出流灌 )
不易堵塞
小管灌水器的流道直径比滴灌灌水器的流道或孔口的直径大得 多,采用大口径、大流量的灌水器解决了滴灌系统灌水器容易 堵塞的难题
第四章 微灌技术3

一、小管出流田间潜水系统的组成
小管出流田间灌水系统包括支、毛管道及渗 水沟。如图7—15所示。渗水沟可以绕树修筑,也 可以顺树行开挖。前者多用于高大的成龄果树, 并称之为绕树环沟,沟的直径约为树冠直径的 2/ 3;后者则用于密植果树,或葡萄园、蔬菜等,一 般每隔 2—3m 用土埂隔开,故又称划顺行格沟。 渗水沟的作用是把灌水器流出的水均匀分散入渗 到果树周围的土壤中。 目前干、支、毛管和小管采用 PE塑料管,为 了减缓老化,延长使用寿命,并方便果园田间管 理,均埋于地表以下,小管灌水器在入渗沟内露 出10—15cm。
4、缝隙式微喷头
缝隙式微喷头如图 6—11所示。水流经 过缝隙喷出,在空气 阻力作用下,裂散成 水滴的微喷头,一般 由两部分组成,下部 是底座,上部是带有 缝隙的盖。
5.3 雾喷灌溉
人造雾系统、自然雾系统的原理基于自然现象,例如水 蒸气、云和雾。雾就是触及地面的云。人造雾系统、自然雾 系统可以让你随时随地地生成这样的环境。人造雾系统采用 国际高精尖科技设备,将普通的水经过过滤系统的处理,确 保整个系统在最佳条件下顺利运转,经过高压机组加压后 (压力可达30-220kg),完成系统传输,经由喷头,使水形 成1-15mm左右的自然颗粒,雾化至整个空间,这些微小的人 造雾颗粒能长时间漂浮、悬浮在空气中,单一喷头产生的雾 长可达3-5米。水雾在空气中吸收热量,从液态变成气态, 使空间湿度得到增大,并达到降低空气温度的目的,整个过 程为等焓过程。
式中: L 为 φ 4 小管长度, m ; Hf 为灌水器进口 工作水头,m;q为灌水器流量,L/h。
二、小管潜水器
2、 小管灌水器的结构
小管灌水器有两种结构。一种是 φ 4PE 塑料 与φ 4塑料接头连接插进毛管而成;另一种是用 1 个稳流器与 φ 4 塑料小管连接插入毛管而成。第 一种的价格比第二种便宜,但水力计算较麻烦。 为了满足设计均匀度,必须计算出沿毛管每根小 管的长度。第二种小管长度可以不必计算,只要 满足安装的需要即可。其缺点是目前使用的补偿 器流量偏小,只有 40 L / h 。对于大果树每株树 可以插两个灌水器。
第4章 微灌技术 第5节 微灌系统规划与设计

t m滴
式中: t
m滴
Se S l q滴
Se Sl
q滴
—次灌水延续时间(h); —设计灌水定额(mm); —滴头间距(m); —毛管间距(m); —滴头流量(l/h)
轮灌区数目的确定:对于固定式滴灌系统,轮 灌区数目可按下式计算:
N 24 KT / t
式中:N — K — t — T — 轮灌区数目(个) 水泵每天开启时间比例,通常选0.5~0.8 每条或每组开启的时间(h) 灌水周期(d)
对于移动式微灌系统可按下式计算:
N 24 KT / n移t
式中: m 滴 ——设计灌水定额
a
max
H
——允许消耗的水量占田间持水量的比例(﹪)
a =20﹪~40﹪ 对于耐旱作物或控水生生育阶段 a =30﹪~40﹪
对于需水敏感性植物; ——土壤田间(体积百分率持水量,﹪)
min
P
——凋萎含水量(体积百分率持水量,﹪)
——计划湿润层深度(m),一般蔬菜0.20~0.30m;果 ——土壤湿润比,70%~90%
当管道有多个出水口时,管道的沿程阻力应考 虑多口出流对沿程阻力的折减问题,多口出流 折减系数k如下表所示,对应计算公式为
hf 0.948 10 kLQ
5
1.77
/D
4.77
折减系数
勃拉休斯公式:
1.75 Q 4 h f 8.4 × 10 × L 4.75 D
式中:
hf-沿程水头损,m Q-流量,m3/h D-管道内径,mm L-管道长度,m
微灌技术

第一章微灌技术第一节概述微灌的定义微灌即是按照作物生长所需的水和养分,利用专门设备或自然水头加压,再通过低压管道系统末级毛管上的孔口或灌水器,将有压水流变成细小的水流或水滴,直接送到作物根区附近,均匀、适量地施于作物根层所在部分土壤的灌水方法。
微灌包括滴灌、微喷灌、涌泉灌等。
微灌是当今世界上用水最省、灌水质量最好的现代灌溉技术。
20世纪70年代初,微灌成为一种完整的灌溉技术,得到了普遍的重视和应用,至1991年全世界微灌面积约18万hm2。
1992年我国微灌面积达3.4万hm2。
微灌主要用于果树、保护地蔬菜、花卉和其他经济作物的灌溉。
我国的微灌设备是在引进、吸收国外先进技术的基础上,结合本国的国情研究、发展起来的。
近年来,国产微灌设备的质量有了明显提高。
随着节水型农业的发展,我国的微灌技术将得到更快的发展。
二、微灌的特点、组成与分类(一)微灌的特点(1)局部湿润土壤。
这是与传统地面灌水方法(沟、畦灌等)和喷灌的最大区别。
微灌不是对整个灌水地段实施全面积灌溉,而是通过管道系统将水直接送到作物根部附近,只湿润主根层所在的耕层土壤,不破坏土壤结构,湿润区土壤水、热、气、养分状况良好,减少土壤表面蒸发。
所以微灌又称为“局部灌水方法”。
(2)灌水量小,灌水周期短,属微量精细灌溉范畴。
微灌条件下的作物基本上没有棵间蒸发,作物需水量比较小。
同时,微灌设备可以按照需要准确控制灌水量,既不存在深层渗漏,亦无喷灌条件下的飘移蒸发损失。
在现有的灌水方法中,微灌所需的灌水量最小。
另外,微灌不仅具有以补充降雨不足为目的的灌水功能,同时还特别适合给作物输送液态化肥、除草剂等化学药剂,并便于实现自动控制。
不过灌溉系统的运行管理、规划设计和安装调试以及对水质的要求都较为精细。
一般滴头的流量为1.5—12L/h,微喷头的流量为50—200L/h。
微灌的灌水时间间隔:蔬菜为l一3d;果树为7一15d。
(3)灌水质量较高。
只要选用质量合格的灌水器,合理进行工程规划设计,使灌水器出水均匀,就能获得较高的灌水质量。
大棚滴灌技术

中国可控环境农业科技网温室大棚微灌技术(来自都市农夫网,中国农业大学节水农业工程技术研究中心 李光永博士)一、微灌的种类微灌是利用微灌设备组装成微灌系统,将有压水输送分配到田间,通过灌水器以微小的流量湿润作物根部附近土壤的一种局部灌水技术。
用于温室大棚的微灌系统主要有滴灌和微喷灌两种。
1、滴灌滴灌是利用安装在末级管道(称为毛管)上的滴头,或与毛管制成一体的滴灌带(管)将压力水以水滴状湿润土壤的一种灌水技术。
通常将毛管和灌水器放在地面,也可以把毛管和灌水器埋入地面以下30~40cm。
前者称为地表滴灌,后者称为地下滴灌。
每个灌水器的流量一般为2~12L/h。
2、微喷灌微喷灌是利用直接安装在毛管上或通过φ4mm塑料管与毛管连接的微喷头将压力水以喷洒状湿润土壤的一种灌水技术。
微喷头有折射式和旋转式两种,前者喷射范围小,水滴小,是一种雾化微喷灌;后者喷射范围较大,水滴也大。
微喷头的流量通常一般为20~250L/h。
二、微灌的优缺点温室大棚采用微灌与传统地面灌溉(畦灌)相比,具有以下优点。
1. 可降低室内空气湿度。
由于位灌除了作物根部湿润外,其他地方始终保持干燥,因而大大减小了地面蒸发,一般情况下室内空气相对湿度下降20%左右。
2. 灌水均匀。
微灌系统能够做到有效地控制每个灌水器的出水流量,因而灌水均匀度高,一般可达80%-90%。
3. 节省劳力。
微灌是管网供水,操作方便,而且便于自动控制,因而可明显节省劳力。
同时微灌是局部灌溉,大部分地表保持干燥,减少了杂草的生长,也就减少了用于除草的劳力。
4. 地温降幅很小。
微灌的运行方式是采用浅灌勤灌的方式,每次灌水量很小,因而几乎不会引起地温下降。
5. 微灌可以结合施肥,适时适量地将水和营养成分直接送到作物根部,提高了水和肥料利用率。
6. 可减少病虫害的发生。
微灌可以降低室内的空气湿度,使与湿度有关的病虫害得以大幅度下降,同时降低了防止病虫害的农药使用量,减少蔬菜农药残留量,提高了蔬菜品质。
第4章 微灌技术 第3节 微灌灌溉技术参数确定

3.1.1滴头流量的影响
3.2.2微喷灌与滴灌湿润体的区别
3.2.1 定义: 微灌时被土壤湿润的土体占计划湿润层深度土体 的百分比
3.2.2 土壤湿润比与毛管、滴头布置
3.2.3 影响湿润比的因素: 毛管的布置方式,灌水器的类型和布置方式,灌 水器的流量和大小,土壤的种类和结构
果树
湿 润 区
3米
1米
3.3.1 计算公式
q
1
N
i
q
Cv 1
式中:Cv-均匀系数 -灌水器平均流量 qi-灌水器流量 确定 灌水均匀度高,灌水质量好,水利用率高,但投 资和运行费高,应根据作物、经济价值、水源、地形、 和气候等综合确定 一般建议: 取Cv=0.90-0.98; 或qv=10%-30%
3.2.4湿润比大小对微灌系统的影响 湿润比过小-投资和运行费用小,不能满足 作 物水量需求; 湿润比过大-易满足作物需求但投资和运行费用 高 一般,对于果树,北方干旱和半干旱地区,设计 土壤湿润比可取20%-30%,南方,可取25%-35 %。 对于蔬菜和大田密植作物可取70%-90%
3.2.5 湿润比计算举例 果树株行距为3×3米,采用内嵌式 滴灌管灌溉,滴灌管滴头间距为1 米,滴头流量2.3升/时,土壤为砂 滴 头 壤土,试计算滴灌湿润比。 一般,当滴头为2升/时,在砂壤土 中的湿润直径为0.8~1米 湿润比=每棵果树的湿润面积/每棵 果树的占地面积:1.0×3/(3×3)=33%
I=max ( ETwci )
12 i 1
灌溉水利用系数
一般取:0.9~0.95
已知来水量时,确定灌溉面积
Q(m / h) t (小时) A= 0.667 I(m m/ d)
微灌工程技术规范

微灌工程技术规范一、微灌工程规划1、一般规定。
微灌工程的规划应收集水源、气象、地形、土壤、作物、灌溉试验、能源与设备、社会经济状况与发展规划等方面的基本资料,进行可行性论证;规划应符合当地农业区划和农田水利规划的要求,并与农村发展规划相协调,应包括水源工程、首部枢纽和管网规划布置,规划布置成果应绘制在不小于1/5000的地形图上,并提出工程概算;平原区灌溉面积大于100公顷山丘区灌溉面积大于50 公顷的微灌工程,应分为规划、设计两个阶段进行,面积小的可合为一个阶段进行;灌水方式应因地制宜地,可选择滴灌、微喷灌、涌泉灌等灌水方式。
2、水源分析与用水计算。
微灌工程规划必须对水源的水量、水位和水质进行分析,利用现有水源工程供水的微灌系统,应根据工程原设计和运用情况,确定设计水文年的供水状况,新建水源工程,供水状况应根据来水条件通过计算确定。
微灌工程以小河。
山溪、塘坝为水源时,应根据调查资料并参考地区性水文手册或图集,分析计算设计水文年的径流量和年内分配过程线;以井、泉为水源时,应根据已有资料分析确定可供水量,无资料时,应对水井作抽水试验,对泉水进行调查、实测出流量来确定可供水量。
微灌水质除必须符合GB5084《农田灌溉水质标准》的规定外,还应满足:⑴进入微灌管网的水应经过净化处理,不应含有泥沙、杂草、鱼卵、藻类等物质。
⑵微灌水质的PH值一般应在5.5~8.0范围内。
⑶微灌水的总含盐量不应大于2000PPm。
⑷微灌水的含铁量不应大于0.4PPm。
⑸微灌水总硫化物含量不应大于0.2PPm.3、管网布置原则。
⑴符合微灌工程总体要求;⑵使管道总长度短,少穿越其他障碍物;⑶满足各用水单位需要,能迅速分配水流,管理维护方便;⑷输配水管道沿地势较高位置布置,支管垂直于作物种植行布置,毛管顺作物种植行布置;⑸管道的纵剖面应力求平顺。
二、设备选择与工程设施1、设备选择。
灌水器的选择应考虑土壤、作物、气象因素和灌水器的水力特性,制造偏差系数不宜大于0.07。
微灌技术

(3) 移动式微灌系统,是在灌水期间,毛管和灌水器由
一个位置灌完后移向另一个位置的微灌系统。按移动毛
管的方式又可分为人工移动和机械移动两种。
(4) 间歇式微灌系统,又称脉冲式微灌系统,其工作方
式是每隔一定时间喷水1次,喷水流量大。
(二)滴 灌
主要适用于果树、蔬菜、花卉、温室等经济 作物 水源极缺的地区、高扬程抽水灌区 地形起伏较大地区的灌溉 在透水性强的砂质土壤上和咸水地区有一定 的发展前景
膜下滴灌的优点:
(1)节省灌溉用水,提高水效益。比喷灌节能60%, 用水仅为地面灌的1/4—1/5。 (2)节省肥料,提高肥料的利用率;提高肥效15%。 (3)节省土地,提高土地利用率; (4)减少病虫害传播途径; ( 5 )提高作物产量和品质。粮食增产 30% ,水果增 50%-100%,蔬菜100%-200%。 (6).可利用多种水源。 (7)操作方便,易于实行自动化控制。 (8)防止土壤次生盐渍化。 (9)保温、增温,提墒效果明显。
有单向和双向、束射和散射等形式。
折射式微喷头
折射式微喷头
射流旋转式微喷头
其一般工作水头为10~15m,有效 湿润半径为1.5~3.0m。适用于果 园、温室、苗圃和城市园林绿化 灌溉,特别适用于全园喷洒灌溉 密植作物,以及砂土和粘土。
微喷灌
离 心 式 微 喷 头
工作原理:压力水流从切线方向进入离心室, 绕垂直轴旋转,通过离心室中心的喷嘴射出的 水膜同时具有离心速度和圆周速度,在空气阻 力的作用下,被粉碎成水滴。 离心式微喷头具有结构简单、体积小、工作压 力低、喷水流量小、射程远、雾化程度高、工 作可靠、检修方便等特点,具有广泛的适用性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际滴灌灌溉制度:具体年份采用的灌溉制
度,与作物实时耗水、实时降雨量、土壤等
有关;
34
17
四、工程管网建设模式
35
全地表系统
36
18
厚壁支管+滴灌带模式
37
薄壁支管+滴灌带模式
38
19
39
40
20
出地管63-75mm 间距30-50m
41
薄壁支管+辅管+滴灌带模式
42
21
43
44
22
支管轮灌与辅管轮灌
52
26
53
五、滴灌带间距与种植模式
滴灌灌水的特点 适应滴灌的种植模式 灌溉技术的变化? 农业革命?
54
27
55
56
28
滴灌带田间布置与作物种植、土壤相互协调
种植密度 土壤 湿润比
棉花:12000-14000-17000
57
滴管带布置与种植模式
棉花 地膜 湿润锋
滴灌管
58
A = ηQstd
10I a
Q = 10 AIa
ηt
25
水泵流量(m3/h)
当面积A=20hm2;I=6mm时
200
150
167 133
100 50
111 95 83 74 67 61
0 8 10 12 14 16 18 20 22 24
日运行时间(h)
26
13
6、滴灌设计灌溉制度
滴灌最大灌水定额
窄行距 宽行距 株距
种植密度(株/ 种植密度
(cm) (cm) (cm) 公顷)
(株/亩
覆膜情 况
CK1 CK2
T30-70-30
40
80
25
畦灌(畦宽3米,行距0.5,株距 0.3m)
30
70
30
66667(66750) 66667(66750)
66667(66750)
T40-60-30
40
60
30
356
594
528
475
891
792
713
7.4
ห้องสมุดไป่ตู้6.6
5.9
6.0
99 149 198 248 297 396 594 5.0
7
由调蓄容积确定微灌面积
∑ A = η 0 KV
10
I iT i
K—复蓄系数,取1.0~1.4;
η 0—蓄水利用系数,取0.6~0.7
V—蓄水工程容积,m3;
Ii—灌溉季节各月的毛供水强度,mm/d;
6400株。
74
37
75
76
38
77
78
39
79
内蒙古乌兰察布甜菜密植试验
天镇
80
40
甜瓜膜下滴灌适宜的种植模式和植株密度
(中国农业大学 甘肃石羊河) 补充程静的
81
(a)CK小区甜瓜种植方式和滴灌带、地膜布置 (b)其它小区甜瓜种植方式和滴灌带、地膜布置 82
滴灌工程技术要点
李光永 中国农业大学水利系教授 教育部农业节水与水资源工程中心主任
1
内容
一、滴灌系统的组成 二、水量平衡计算 三、主要设计参数 四、工程模式 五、滴灌带间距与种植模式 六、管网水力学计算 七、设备选择 八、系统试运行测定参数与验收指标 九、小麦滴灌 十、其他问题
2
1
微灌系统组成示意图
Q = 10 AI a
ηt
可根据轮灌组划分的具体情况确定 通过水量平衡,确定灌溉面积或蓄水池容积,或调
整种植比例,减少灌溉面积或增辟水源
5
1100
1000
900
I=3.5mm
800
I=4.0mm
A(亩)
700
I=4.5mm
600
I=5.0mm
500
I=6.0mm
400
300
200
100
0 20 30 40 50 60 70 80 90 100 110 120
70
25 80000(80250) 5333(5350) 黑白
25
地膜
10
T40-60- 40
60
25 80000(80250) 5333(5350) 黑白
25
地膜
11
T30-90- 30
90
20 83333(83325) 5556(5555) 黑白
20
地膜
12
T40-80- 40
80
20 83333(83325) 5556(5555) 黑白
29
滴管带布置与种植模式
59
60
30
玉米滴灌种植模式
61
密度4000珠左右,行距60cm
赤峰玉米膜下滴灌种植模式
62
31
吉林
63
黑龙江玉米滴灌
4000珠, 株行距没有 变化
64
32
中国农业大学 翁牛特旗膜下滴灌试验
65
玉米膜下滴灌试验处理表(翁牛特旗)
序号 1 2 3 4 5 6 7
实验处理
12
6
不
壤土
同
滴
深度
头
流量:4L/h
流
流量:2L/h
量
在
沙土
不
同
土
壤
中
深度
的 湿
流量:4L/h
润
体
流量:2L/h
13
2、微灌设计湿润比与滴头流量选择
应根据自然条件、植物种类、种植方式及微灌的形 式,并结合当地试验资料确定。在无实测资料时可 按表选取。
微灌设计土壤湿润比参考值(%)
作物
滴灌、涌泉灌 微喷灌 作 物
微喷灌 5~8
粮、棉、油等植物 4~7 ―― 冷季型草 ―― 5~8
蔬菜(保护地) 2~4 ―― 暖季型草 ―― 3~5
注:1 干旱地区宜取上限值; 2 对于在灌溉季节敞开棚膜的保护地,应按露地选取设计
耗水强度值
20
10
4、灌水器设计允许流量偏差
灌水小区均匀度的控制
21
4、灌水器设计允许流量偏差
qv
Q(吨/时) 6
t=22h, η=0.9
3
水泵流量Q (吨/ 时)
3.5
20
170
30
255
40
339
50
424
60
509
80
679
120
1018
1
8.5
t=22h, η=0.9
设计耗水强度(mm)
4.0
4.5
5.0
149
132
119
223
198
178
297
264
238
371
330
297
446
396
T
T ≤ max
30
15
设计灌水定额
md = T ⋅ Ia
m' = md
η
md —设计净灌水定额,mm;
m'—设计毛灌水定额,mm。
31
一次灌水延续时间
t = m'SeSl qd
t —一次灌水延续时间,h;
S— e
灌水器间距,m;
S —毛管间距,m; l
32
16
在滴灌条件下,高灌水频率,土壤湿度接近田间持水量。
毛管有效间距
滴头流量(L/h)
推荐的滴头间距(m)
表中数据,是在灌水定额为40mm的湿润比
16
8
40
80
40
滴灌带 120
50 100
17
Q=2L/h P=0.8/1.2=67%
低压运行(1-4m)的结果
小流量(0.5-1L/h)
宽度不够 灌水时间加长
18
9
3、设计耗水强度与供水强度
-
16~22 -
26~32
4~6
22~30 5~9
32~42
4~9
22~28 6~12
30~36
6~10
22~28 8~15
30~35
6~13
22~28 9~18
32~42
15
28~32 20
40~45
12~17 25~35 17~24 35~45
30~35
40~50
29
设计灌水周期
Tmax
=
mmax Ia
mmax = 0.001γzp (θ max − θ min ) 而不是: m = 0.001γzp(θmax −θmin )
mmax−最大净灌水深度,mm; γ−土壤容重kg/cm3; z−计划湿润层深度,cm; p−设计土壤湿润比,%; θmax、θmin−适宜土壤含水率上下限(重量的百分比),%;
支管轮灌
直径与长度
副管轮灌
45
46
23
47
8-12m
出地管32mm
48
24
出地管32mm
49
50
25
内蒙古赤峰2010年工程模式
干管地埋,每亩1.7米PVC干管(D80软带) 涂塑软带分干管63薄壁支管+32辅管+边缝式滴管带 亩投资
51
内蒙古赤峰2011年工程模式
干管、分干管地埋(支管轮灌、辅管轮灌) 亩均7-9米地埋管 滴灌带:全新材料边缝式滴灌带 亩投资: 实际采用辅管轮灌 亩均?米地埋管 亩投资:
20
地膜
67
68
34
补充照片
不覆膜与覆膜滴灌 69