五大经典算法介绍

合集下载

10种常用典型算法

10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它通过依次比较相邻的两个元素,如果顺序不对则交换位置。

这样,每一趟排序都会将最大的元素移动到末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。

它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。

它通过将未排序的元素逐个插入到已排序部分的正确位置。

每次插入一个元素,已排序部分都是有序的。

通过多次重复这个过程,直到所有元素按照升序排列为止。

4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。

它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。

然后对这两部分递归地进行快速排序。

通过多次重复这个过程,直到所有元素按照升序排列为止。

5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。

它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。

通过多次重复这个过程,直到所有元素按照升序排列为止。

6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。

它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。

通过多次重复这个过程,直到所有元素按照升序排列为止。

7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。

它通过统计每个元素的个数来排序。

首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。

通过多次重复这个过程,直到所有元素按照升序排列为止。

8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。

它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。

程序设计五大算法

程序设计五大算法

程序设计五大算法算法是计算机程序设计中非常重要的概念,它是一系列解决问题的步骤和规则。

在程序设计中,有许多经典的算法被广泛应用于各种领域。

下面将介绍程序设计中的五大算法,包括贪心算法、分治算法、动态规划算法、回溯算法和图算法。

1. 贪心算法贪心算法是一种简单而高效的算法,它通过每一步都选择当前最优解来达到全局最优解。

贪心算法通常适用于那些具有最优子结构的问题,即问题的最优解可以通过子问题的最优解来推导。

例如,找零钱问题就可以使用贪心算法来解决,每次选择面额最大的硬币进行找零。

2. 分治算法分治算法将问题分解成更小的子问题,然后递归地求解这些子问题,最后将子问题的解合并起来得到原问题的解。

分治算法通常适用于那些可以被划分成多个相互独立且相同结构的子问题的问题。

例如,归并排序就是一种典型的分治算法,它将待排序的数组不断划分成两个子数组,然后分别对这两个子数组进行排序,最后将排序好的子数组合并成一个有序数组。

3. 动态规划算法动态规划算法通过将问题划分成多个重叠子问题,并保存子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法通常适用于那些具有最优子结构和重叠子问题的问题。

例如,背包问题就可以使用动态规划算法来解决,通过保存每个子问题的最优解,可以避免重复计算,从而在较短的时间内得到最优解。

4. 回溯算法回溯算法是一种穷举法,它通过尝试所有可能的解,并回溯到上一个步骤来寻找更好的解。

回溯算法通常适用于那些具有多个决策路径和约束条件的问题。

例如,八皇后问题就可以使用回溯算法来解决,通过尝试每个皇后的位置,并检查是否满足约束条件,最终找到所有的解。

5. 图算法图算法是一类专门用于处理图结构的算法,它包括图的遍历、最短路径、最小生成树等问题的解决方法。

图算法通常适用于那些需要在图结构中搜索和操作的问题。

例如,深度优先搜索和广度优先搜索就是两种常用的图遍历算法,它们可以用于解决迷宫问题、图的连通性问题等。

计算机五大算法

计算机五大算法

计算机五大算法
计算机五大算法指的是分治算法、动态规划算法、贪心算法、回溯算法和分支定界算法。

这些算法在计算机科学中被广泛使用,可以解决各种问题,从排序和搜索到最优化和最大化问题。

分治算法是一种递归算法,它将问题分解成更小的子问题,然后将子问题的解组合成原问题的解。

它常用于排序算法,如归并排序和快速排序。

动态规划算法也是一种递归算法,但它通常用于解决最优化问题。

动态规划将问题分解成更小的子问题,并将子问题的最优解保存下来以便后续使用。

它通常用于计算最短路径、最长公共子序列等问题。

贪心算法是一种启发式算法,它基于贪心策略,在每个步骤中选择当前最优解,希望达到全局最优解。

贪心算法通常用于优化问题,如霍夫曼编码和最小生成树问题。

回溯算法是一种搜索算法,它尝试找到所有可能的解,并选择其中符合条件的解。

回溯算法通常用于解决组合问题,如八皇后和组合求和问题。

分支定界算法是一种搜索算法,它通过将搜索空间分解成更小的子集来减少搜索次数。

分支定界算法通常用于解决最大化问题,如背包问题和最大流问题。

这五种算法在不同的场景下都有其独特的优势和应用,它们共同构成了计算机科学中的基础算法之一。

- 1 -。

五大常用算法资料课件

五大常用算法资料课件
• Dijkstra算法的基本思想是从源节点开始,逐步向外扩展,每次找到距离源节点最近的节点,并更新其相邻节点的距离。 该算法适用于稀疏图和稠密图,时间复杂度为O((V+E)logV),其中V是节点数,E是边数。
• 适用场景:Dijkstra算法适用于解决单源最短路径问题,例如在地图导航、物流配送等领域有广泛应用。 • 注意事项:在使用Dijkstra算法时,需要注意处理负权重的边,因为Dijkstra算法只能处理非负权重的问题。
THANKS
要点一
总结词
二分查找是一种在有序数组中查找特定元素的搜索算法, 它将数组分成两半,比较中间元素与目标值,如果中间元 素等于目标值则查找成功,如果目标值小于中间元素则在 前半部分数组中继续查找,如果目标值大于中间元素则在 后半部分数组中继续查找。
要点二
详细描述
二分查找的主要思想是将数组分成两半,比较中间元素与 目标值,如果中间元素等于目标值则查找成功,如果目标 值小于中间元素则在前半部分数组中继续查找,如果目标 值大于中间元素则在后半部分数组中继续查找。这个过程 递归进行,直到找到目标值或搜索区间为空。二分查找的 时间复杂度为O(logn),是一种高效的搜索算法。
Floyd-Warshall算法
01
02
03
04
Floyd-Warshall算法是一种 用于解决所有节点对之间最
短路径问题的图算法。
Floyd-Warshall算法的基本 思想是通过动态规划的方式 逐步计算出所有节点对之间 的最短路径。该算法的时间 复杂度为O(V^3),其中V是
节点数。
适用场景:Floyd-Warshall 算法适用于解决所有节点对 之间最短路径问题,例如在 社交网络分析、交通网络规

十大数学算法

十大数学算法

十大数学算法数学算法是应用数学的重要组成部分,它们是解决数学问题的有效工具。

在计算机科学中,数学算法被广泛应用于图像处理、数据分析、机器学习等领域。

下面将介绍十大经典数学算法,它们涵盖了数值计算、图论、概率统计等多个数学领域的核心算法。

一、牛顿法牛顿法是一种用于求解方程的迭代数值方法。

它通过不断逼近函数的根,实现方程的求解。

牛顿法的核心思想是利用函数的局部线性近似来逼近根的位置,通过迭代求解函数的根。

牛顿法在优化问题中有广泛应用,如求解最优化问题和非线性方程组。

二、高斯消元法高斯消元法是一种用于求解线性方程组的经典方法。

通过不断进行行变换,将线性方程组转化为上三角矩阵,进而直接求解出线性方程组的解。

高斯消元法在线性代数和计算机图形学中有广泛的应用。

三、快速傅里叶变换快速傅里叶变换(FFT)是一种高效的离散傅里叶变换计算方法。

它通过分治法将离散傅里叶变换的计算复杂度降低到O(n log n)的时间复杂度。

FFT在信号处理、图像处理等领域有广泛应用。

四、Prim算法Prim算法是一种用于求解最小生成树的贪心算法。

通过不断选取与当前最小生成树连接的最小权重边,逐步构建最小生成树。

Prim算法在图论和网络优化中有重要应用。

五、Dijkstra算法Dijkstra算法是一种用于求解单源最短路径问题的贪心算法。

通过使用优先队列来存储节点,不断选择当前最短路径长度的节点,逐步求解最短路径。

Dijkstra算法在路由器和网络优化中有广泛应用。

六、最小二乘法最小二乘法是一种用于求解参数估计问题的优化方法。

通过最小化观测值与估计值之间的差异平方和,得到参数的最优估计。

最小二乘法在回归分析和数据拟合中广泛应用。

七、蒙特卡洛方法蒙特卡洛方法是一种通过随机抽样和统计模拟,来解决复杂问题的数值方法。

它通过随机抽样来估计问题的概率或者数值解,适用于各种复杂的概率和统计计算问题。

八、梯度下降法梯度下降法是一种常用的优化算法,主要用于求解无约束最优化问题。

十大数学算法

十大数学算法

十大数学算法数学算法是解决数学问题的方法和步骤的集合。

在数学领域中,有许多重要且被广泛使用的算法。

这些算法不仅能够解决各种数学问题,还在计算机科学、工程和其他领域中得到了广泛应用。

在本文中,我们将介绍十大数学算法,它们分别是欧几里得算法、牛顿法、二分法、高斯消元法、快速傅里叶变换、动态规划、贝叶斯定理、蒙特卡洛方法、线性规划和迭代法。

1. 欧几里得算法欧几里得算法是解决最大公约数问题的一种常见方法。

该算法的核心思想是,通过不断用较小数去除较大数,直到余数为零,最后一个非零余数即为最大公约数。

欧几里得算法在密码学、数据压缩等领域得到了广泛应用。

2. 牛顿法牛顿法是一种用来求解方程近似解的迭代方法。

它基于函数的泰勒级数展开,通过不断迭代逼近函数的零点。

牛顿法在优化问题、图像处理和物理模拟等领域中广泛使用。

3. 二分法二分法又称折半查找法,是一种高效的查找算法。

它通过将查找区间一分为二,判断目标元素在哪一侧,并重复此过程,直到找到目标元素或确认不存在。

二分法在查找有序列表和解决优化问题时被广泛应用。

4. 高斯消元法高斯消元法是一种求解线性方程组的常用方法。

它通过对方程组进行一系列的行变换,将方程组化为简化的阶梯形式,从而求得方程组的解。

高斯消元法在计算机图形学、物理学和工程学等领域中得到广泛应用。

5. 快速傅里叶变换快速傅里叶变换是一种计算离散傅里叶变换的高效算法。

通过将离散信号转换为频域信号,可以在数字信号处理、图像处理和通信系统中实现快速算法和压缩方法。

6. 动态规划动态规划是一种解决具有重叠子问题和最优子结构性质的问题的算法。

通过将问题分解为子问题,并保存子问题的解,动态规划可以高效地求解一些复杂的优化问题,如最短路径、背包问题和序列比对等。

7. 贝叶斯定理贝叶斯定理是一种用来计算条件概率的方法。

它通过已知先验概率和观测数据来更新事件的后验概率。

贝叶斯定理在机器学习、人工智能和统计推断等领域中具有重要的应用。

五大常用算法 模拟退火算法

五大常用算法 模拟退火算法

五大常用算法模拟退火算法
模拟退火算法是一种常用的求解优化问题的算法,它可以用于解决各种实际问题。

本文将介绍模拟退火算法及其应用,同时还会介绍其他四种常用的算法。

一、模拟退火算法
模拟退火算法是一种启发式算法,适用于求解复杂的优化问题。

它源于固体物理学中的退火过程,通过模拟退火过程来寻求最优解。

模拟退火算法通过随机跳出局部最优解的过程,寻找全局最优解。

二、其他四种常用算法
1.遗传算法
遗传算法是一种模拟自然进化过程的优化方法。

它通过对可行解进行适应度评价、选择、交叉和变异等操作,将优秀的个体遗传给下一代,从而不断优化解的质量。

2.蚁群算法
蚁群算法是一种模拟蚂蚁寻找食物的行为而发展出来的算法。

它通过模拟蚂蚁在搜索过程中的信息素沉积和信息素挥发,不断优化搜索路径,从而找到最优解。

3.粒子群算法
粒子群算法是一种模拟粒子在空间中移动的算法。

它通过模拟粒子在搜索空间中的移动和互相协作,不断优化搜索路径,从而找到最优解。

4.人工神经网络
人工神经网络是一种模拟人脑神经元工作原理的算法。

它通过构建神经元之间的连接和权重来实现对输入信息的处理和输出结果的预测,可以用于分类、回归等问题的求解。

三、总结
以上介绍了五种常用的算法,它们都可以用于解决不同类型的优化问题。

在实际应用中,需要根据具体问题的特点选择合适的算法。

模拟退火算法是其中一种常用算法,具有较为广泛的应用。

五大算法总结

五大算法总结

五大算法总结之前的几篇文章里,为大家介绍了几种常用的算法思想,其中贪心、分治、动态规划、回溯、分支限界这五种算法思想并称为五大算法。

它们各举各的特点、优点,很常用。

同样的,枚举以简单易懂、不会错过任何解等等一些独特的优势,经常在写“暴力”的时候,也是很好用的算法,于是在这里,我把它也放入了基本算法思想里。

如果对这些内容还很陌生,不妨来来回顾一下,枚举贪心分治动态规划回溯分支限界在这里再简单的总结一下,0)枚举法枚举法简单暴力,没有什么问题是搞不定的,只要你肯花时间。

同时对于小数据量,枚举法是很优秀的算法。

枚举法简单,人人都能会,能解决问题,但它最大的缺点就是耗时。

1)贪心算法贪心算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪心策略的选择。

特点就是简单,能获取到局部最优解,再通过局部最优解找到全局最优解。

不同的贪心策略会导致得到差异非常大的结果。

2)分治算法分治算法的逻辑更简单了,就是一个词,分而治之。

分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到问题的规模足够小时,通过子问题的解决,一步步向上,最终解决最初的大问题。

分治算法是递归的典型应用。

3)动态规划算法当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。

动态规划算法的核心就是提供了一个记忆来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。

动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决,也就是递推式的推导过程。

4)回溯算法回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个分岔路,再选择一条路走,一直这样递归下去,直到遍历完所有的路径。

简单的来说,能进则进,不进则退。

5)分支限界算法和回溯法是一对兄弟,回溯是深度优先,那么分支限界法就是广度优先的一个经典的例子。

回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1分治法1.1基本概念在计算机科学中,分治法是一种很重要的算法。

字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。

问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

例如,对于n个元素的排序问题,当n=1时,不需任何计算。

n=2时,只要作一次比较即可排好序。

n=3时只要作3次比较即可,…。

而当n较大时,问题就不那么容易处理了。

要想直接解决一个规模较大的问题,有时是相当困难的。

1.2基本思想及策略分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

1.3分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3) 利用该问题分解出的子问题的解可以合并为该问题的解;4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

1.4分治法的基本步骤分治法在每一层递归上都有三个步骤:step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较小的子问题P1 ,P2 ,...,Pk4. for i←1 to k5. do yi ←Divide-and-Conquer(Pi) △递归解决Pi6. T ←MERGE(y1,y2,...,yk) △合并子问题7. return(T)其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。

ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。

因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。

算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。

1.5分治法的复杂性分析一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。

设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。

再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。

用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:T(n)= k T(n/m)+f(n)通过迭代法求得方程的解:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。

通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

1.6可使用分治法求解的一些经典问题(1)二分搜索(2)大整数乘法(3)Strassen矩阵乘法(4)棋盘覆盖(5)合并排序(6)快速排序(7)线性时间选择(8)最接近点对问题(9)循环赛日程表(10)汉诺塔1.7依据分治法设计程序时的思维过程实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

1、一定是先找到最小问题规模时的求解方法2、然后考虑随着问题规模增大时的求解方法3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

2动态规划2.1基本概念动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。

一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

2.2基本思想与策略基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。

在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。

依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

2.3适用的情况能采用动态规划求解的问题的一般要具有3个性质:(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。

也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。

(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)2.4求解的基本步骤动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。

这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。

如图所示。

动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态→│决策1│→│决策2│→…→│决策n│→结束状态图1 动态规划决策过程示意图(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。

在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。

当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。

所以如果确定了决策,状态转移方程也就可写出。

但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。

(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。

实际应用中可以按以下几个简化的步骤进行设计:(1)分析最优解的性质,并刻画其结构特征。

(2)递归的定义最优解。

(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值(4)根据计算最优值时得到的信息,构造问题的最优解2.5算法实现的说明动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。

使用动态规划求解问题,最重要的就是确定动态规划三要素:(1)问题的阶段(2)每个阶段的状态(3)从前一个阶段转化到后一个阶段之间的递推关系。

递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。

确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}2.6动态规划算法基本框架代码1for(j=1; j<=m; j=j+1) // 第一个阶段2 xn[j] = 初始值;34for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段5for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式6 xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};89t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案1011print(x1[j1]);1213for(i=2; i<=n-1; i=i+1)15{17 t = t-xi-1[ji];1819for(j=1; j>=f(i); j=j+1)21if(t=xi[ji])23break;25}3贪心算法3.1基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。

相关文档
最新文档