混沌理论概述

合集下载

混沌理论概述

混沌理论概述

第一章混沌理论概述引言混沌是指确定动力系统长期行为的初始状态,或系统参数异常敏感, 却又不发散, 而且无法精确重复的现象, 它是非线性系统普遍具有的一种复杂的动力学行为。

混沌变量看似杂乱的变化过程, 其实却含有内在的规律性。

利用混沌变量的随机性、遍历性和规律性可以进行优化搜索, 其基本思想是把混沌变量线性映射到优化变量的取值区间, 然后利用混沌变量进行搜索。

但是, 该算法在大空间、多变量的优化搜索上, 却存在着计算时间长、不能搜索到最优解的问题。

因此, 可利用一类在有限区域内折叠次数无限的混沌自映射来产生混沌变量,并选取优化变量的搜索空间, 不断提高搜索精度等方法来解决此类难题。

混沌是非线性科学的一个重要分支, 它是非线性动力系统的一种奇异稳态演化行为, 它表征了自然界和人类社会中普遍存在的一种复杂现象的本质特征。

因此, 混沌科学倡导者Shlesinger和著名物理学家Ford 等一大批混沌学者认为混沌是20 世纪物理学第三次最大的革命, 前两次是量子力学和相对论, 混沌优化是混沌学科面对工程应用领域的一个重要的研究方向。

它的应用特点在于利用混沌运动的特性, 克服传统优化方法的缺陷, 从而使优化结果达到更优。

1.混沌的特征从现象上看,混沌运动貌似随机过程,而实际上混沌运动与随机过程有着本质的区别。

混沌运动是由确定性的物理规律这个内在特性引起的,是源于内在特性的外在表现,因此又称确定性混沌,而随机过程则是由外部特性的噪声引起的。

混沌有着如下的特性:(1)内在随机性混沌的定常状态不是通常概念下确定运动的三种状态:静止、周期运动和准周期运动,而是一种始终局限于有限区域且轨道永不重复的,形势复杂的运动。

第一,混沌是固有的,系统所表现出来的复杂性是系统自身的,内在因素决定的,并不是在外界干扰下产生的,是系统的内在随机性的表现。

第二,混沌的随机性是具有确定性的。

混沌的确定性分为两个方面,首先,混沌系统是确定的系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响是确定出现的,而不是像随机系统那样随意出现,混沌系统的状态是可以完全重现的,这和随机系统不同。

混沌理论

混沌理论

一、混沌理论简介:混沌理论源于对混沌现象的研究和揭示。

混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生了始料未及的后果,也就是混沌状态。

混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间是相互牵引的,因此,混沌现象尤为多见,如教育的复杂过程。

定义:混沌理论是一种兼具质性思考与量化分析的方法,用以探讨动态系统中无法用单一的数据关系,而必须用整体,连续的数据关系才能加以解释及预测之行为。

混沌理论创始人之一的诺曼·帕卡德用三个名称概括了混沌的特征和含义:蝴蝶效应、对初值的敏感依赖以及信息繁殖。

具体而言,混沌理论具有随机性、敏感性、分维性、普适性和标度律等特性。

二、混沌理论与高校学生管理工作高校的学生管理工作的管理对象十分特殊,即在校大学生,他们是社会中最活跃、最具个性的人群。

同时,由于教育的过程基本上依循一定的准则,并历经长期的互动,因此,相当符合混沌理论的架构。

对于混沌系统而言,初值的差异很小,但是经过长时间的复杂变化,系统的结果就会出现显著的差异。

而蝴蝶效应则是指由于现实所能提供的有限精确度引起的差异因混沌运动对初始条件的敏感而使运动出现不确定性。

在学生管理工作中,教育者的每一次谈话、每一次激励、每一次批评,都会对学生的认知、情绪、信念、心理、行为产生重要的影响,一点细节上的偏差,经过每个环节逐步的放大之后都有可能导致学生整个人生的失败。

教育者对学生的误解会为学生的管理工作带来严重的后果。

这是高校学生管理管理工作中,混沌现象的典型。

二、混沌理论对高校学生管理工作的意义(一)体育教育研究应视体育教育为混沌现象,必须符合混沌规律。

高校学生管理工作作为复杂的现象,既不是决定性现象,也不是随机性现象,而是一种混沌现象。

管理对象大学生,作为健康人的生理、心理活动显然呈混沌形态。

因此,在管理工作中的管理方法也必然受混沌规律的制约,在实际工作中不能“一刀切”,应注重因人而异。

混沌理论

混沌理论

智能控制基础混沌理论概念及应用学院:电气工程与信息工程学院专业:控制工程学号:102430111008姓名:孙洪涛混沌理论概念及应用混沌理论的基本概念简单来说,混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。

在现代科学的定义中,现代科学所讲的混沌,其基本含义可以概括为:聚散有法,周行而不殆,回复而不闭。

意思是说混沌轨道的运动完全受规律支配,但相空间中轨道运动不会中止,在有限空间中永远运动着,不相交也不闭合。

浑沌运动表观上是无序的,产生了类随机性,也称内在随机性。

而在非线性科学中,混沌也有着和本意相近但不全一致的含义,在非线性科学中,非线性科学中的混沌现象指的是一种确定的但不可预测的运动状态。

它的外在表现和纯粹的随机运动很相似,即都不可预测。

但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。

混沌系统具有三个关键要素:一是对初始条件的敏感依赖性;二是临界水平,这里是非线性事件的发生点;三是分形维,它表明有序和无序的统一。

混沌系统经常是自反馈系统,出来的东西会回去经过变换再出来,循环往复,没完没了,任何初始值的微小差别都会按指数放大,因此导致系统内在地不可长期预测。

!!!(资料出自百度百科“混沌”)。

混沌现象有一个很著名的表述,那就是蝴蝶效应。

我们现在所熟知的“混沌之父”Edward Lorenz在1963年的一篇文章中最早的提到了这一理论。

而之前他对于这项问题的发现,却是基于他的计算机在处理气象工作时被他发现的万分之一的误差,这种看似极微小的一种误差就相当于多了一阵轻柔的微风,一结果很快就使天气预报变成一片混乱。

也就是:即使很细微的影响也会使天气发生急剧的改变。

这就是“蝴蝶效应”。

混沌理论的应用实例混沌的发现揭示了我们对规律与由此产生的行为之间——即原因与结果之间——关系的一个基本性的错误认识。

混沌理论详解

混沌理论详解

混沌理论详解一、什么是混沌理论混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。

混沌理论在许多科学学科中得到广泛应用,包括:数学、生物学、信息技术、经济学、工程学、金融学、哲学、物理学、政治学、人口学、心理学和机器人学。

二、混沌理论的发展背景混沌理论是对不规则而又无法预测的现象及其过程的分析。

一个混沌过程是一个确定性过程,但它看起来是无序的、随机的。

像许多其他知识一样,混沌和混沌行为的研究产生于数学和纯科学领域,之后被经济学和金融学引用。

在这些领域里,由于人们想知道在某些自然现象背后是否存在着尚未被认识的规律,因而激发了人们对于混沌的研究。

科学家已经注意到了某些现象,例如行星运动,是有稳定规律的,但其他的,比如像天气之类,则是反复无常的。

因此,关键问题在于天气现象是否是随机的。

曾经一度被认为是随机的后来又被证实是混沌的,这个问题激发了人们探索真理的热情。

如果一个变量或一个过程的演进、或时间路径看似随机的,而事实上是确定的,那么这个变量或时间路径就表现出混沌行为。

这个时间路径是由一个确定的非线性方程生成的。

在此,我们有必要介绍一下混沌理论的发展史。

人们对于混沌动态学的最初认识应当归功于Weis(1991),而Weis又是从几百年前从事天体力学的法国数学家HenryPoincare那里得到的启示。

Poincare 提出,由运动的非线性方程所支配的动态系统是非线性的。

然而,由于那个时代数学工具的不足,他未能正式探究这个设想。

Poincare之后的很长一段时间,对于这个论题的研究趋于涅灭。

然而,在20世纪60-70年代间,数学家和科学家们又重新开始了对这个论题的研究。

一个名叫StephenSmale的数学家用差分拓扑学发展了一系列的理论模型。

气象学家EdwardLorenz设计了一个简单的方程组用来模拟气候,这个气候对于初始条件当中的变化极其敏感。

混沌理论

混沌理论

基于混沌理论企业研发项目管理的三个转变1. 混沌释义混沌( chaos) 的本意为混乱无序, 但又包含了从混乱中再生秩序, 在进化中重现混乱的多重含义。

混沌不等于杂乱无章, 而是远比混乱深刻复杂得多的有序行为[ 1] 。

在复杂系统理论中, 混沌是指确定的宏观的非线性系统在一定条件下所呈现的不确定或不可预测的随机现象。

其不可确定性或无序随机性不是来源于外部干扰, 而是来源于内部的非线性系统与环境及系统内部子系统之间的非线性相互作用。

正是由于这种非线性相互作用, 非线性系统在一定的临界性条件下才表现出混沌现象, 才导致其对初值的敏感性以及内在的不稳定性的综合效果[ 2] 。

混沌实际上是确定性和随机性的统一, 是有序与无序的统一, 是简单性与复杂性的统一。

2. 混沌理论混沌理论是以20 世纪60 年代美国麻省理工学院教授劳伦兹( Edward Lorenz) 的有关气象预测研究的发现为发展源头, 直至1970 年由美国的物理学家费根鲍姆(Mitchell Feigenbaum) 正式提出。

混沌理论所探讨的是非线性系统所表现的内在随机行为, 简单地说, 也就是探讨复杂系统宏观有序但微观无序的现象。

混沌理论的几个主要概念是:( 1) 初值敏感性。

初值敏感性即蝴蝶效应。

蝴蝶效应是指非常小的初始条件变化, 能够对系统未来引起非常强烈的影响。

巴西蝴蝶翅膀的扇动, 会导致佛罗里达发生飓风就是一个经典的案例。

蝴蝶效应是典型的非线性性状, 它颠覆了叠加原理、简单因果律和还原论, 表明整体特性不是个体特性的单之和, 复杂结果可能源于简单的原因。

( 2) 内在随机性。

随机性是指在一定条件下, 系统的某个状态既可能出现也可能不出现。

内在随机性是指对一个完全确定的系统, 在一定的系统条件下, 能自发地产生随机特性[ 3] 。

内在随机性的产生根源于个体间的非线性随机作用。

混沌系统中的内在随机性表现为局部的极度不稳定, 对初始条件的强烈依赖。

复杂系统中的混沌理论

复杂系统中的混沌理论

复杂系统中的混沌理论随着科技的发展和人们对自然现象的深入研究,有些自然现象被发现是具有一定规律性的,但又有不可预测的性质,这就是混沌现象。

混沌现象在许多自然现象中都会出现,如天气、流体力学、生态系统、股市等,今天我们就来深入研究一下复杂系统中的混沌理论。

一、什么是混沌理论?混沌理论,又称为混沌动力学,是一种研究非线性系统的数学理论。

非线性系统是指系统的输出不随着输入的线性变化而发生的系统,也就是说,非线性系统具有输入输出之间的非线性关系。

而混沌现象就是非线性系统中的一种行为。

混沌现象表现为一种看似无规律但又具有一定规律性和重复性的现象。

混沌理论在20世纪60年代末和70年代初才被发现和研究。

研究混沌现象需要使用复杂的数学方法,如微积分、微分方程、拓扑学等。

但它的突破性发现是由美国的三位著名学者洛伦兹、费根鲍姆和曼德勃洛特在研究大气气象方面的问题时引起的。

二、为什么产生混沌现象?产生混沌现象的原因是因为非线性系统中处于初值极其微小的两个相似系统,在演化中会发生巨大的差别,这种微小差异会被系统倍增放大。

这使得系统的行为变得难以预测,因为小的初值误差会在一定时间内呈现指数增长的趋势。

以上是混沌现象的数学解释,但从实际角度来看,混沌现象在很多系统中都出现了,如生态系统、股市、人口增长等等。

这些系统之所以出现混沌现象是因为它们都是非线性系统,从而使得输出变得更加复杂、不可预测。

三、混沌现象的特征?混沌现象的特征是对初始条件极其敏感、指数级敏感度和同时具有理论可再现性。

对初始条件极其敏感,是指在初始条件微小的偏差情况下,后续状态会完全不同。

这意味着对于混沌系统,重复试验可以得到完全不同的结果。

这是非线性系统行为的关键特征之一。

指数级敏感度是混沌现象的第二个特征,即当微小初始条件的偏差受到系统倍增放大时,它的敏感度呈指数级增长。

这也意味着,随着时间的推移,原来微小的初始值差异会变得越来越大。

同时具有理论可再现性,是指混沌现象是可以通过一组数学公式来模拟和复现的。

宇宙起源混沌主要内容

宇宙起源混沌主要内容

宇宙起源混沌主要内容宇宙起源混沌主要内容宇宙起源的混沌理论揭示了宇宙在诞生之初的复杂性和不确定性。

这一理论融合了大爆炸理论、量子涨落、混沌效应等多个方面,为我们理解宇宙的起源和演化提供了全新的视角。

宇宙起源的混沌理论概述宇宙起源的混沌理论主要基于大爆炸理论,认为宇宙起源于一个极端密集、炽热的状态,即“奇点”。

在这个初始阶段,宇宙的演化过程极为复杂,难以用简单的物理法则来描述。

混沌理论强调宇宙初期的复杂性和不确定性,尤其是在量子涨落、基本力分离和宇宙结构形成过程中。

在大爆炸之后,宇宙经历了快速的膨胀和冷却过程。

在这个过程中,宇宙的基本粒子和力逐渐形成并分化。

混沌理论认为,这一过程中的微小扰动可能会被放大,导致宇宙在不同区域呈现出不同的物理特性。

这种不确定性和复杂性使得宇宙的演化路径充满了多样性和不可预测性。

混沌效应在宇宙起源中的作用量子涨落与混沌效应在宇宙初期,微小的量子涨落是不可避免的。

这些量子涨落会随着宇宙的膨胀被放大,并在更大尺度上影响到星系、星体乃至整个宇宙的结构。

混沌理论的“蝴蝶效应”指出,初始条件的微小变化可能会导致系统的演化路径发生显著不同。

在宇宙起源的背景下,这意味着量子涨落可能通过混沌效应对宇宙的大尺度结构产生深远影响。

量子涨落是指在量子力学框架下,真空中能量的短暂变化。

这种变化虽然微小,但在宇宙膨胀的过程中被极大地放大,成为宇宙结构形成的种子。

混沌效应在这里起到了关键作用,使得这些微小的量子涨落能够影响到宇宙的整体结构和演化。

暴胀时期与基本力分离在宇宙诞生后的极短时间内(约10^-32秒),宇宙经历了一次称为“暴胀”的加速膨胀过程。

在这一时期,四种已知的基本力(重力、电磁力、强核力和弱核力)逐渐分离开来。

暴胀时期和基本力分离过程都表现出混沌的特征,因为它们涉及到复杂的非线性相互作用。

这些相互作用可能导致宇宙在不同区域演化出截然不同的物理状态。

暴胀时期的快速膨胀使得宇宙的大小在极短时间内增加了数十个数量级。

混沌名词解释

混沌名词解释

混沌名词解释混沌名词解释一、概述混沌是一个用于描述非线性系统中的无序、不可预测行为的数学概念。

它源自于希腊神话中的混沌之神,意味着无序、杂乱和无规律。

二、混沌理论1. 定义混沌是指非线性动力系统中的一种状态,其特征是系统在长时间演化过程中表现出极其敏感的依赖初始条件和微小扰动的特性。

简单来说,就是微小的变化会导致系统演化出完全不同的结果。

2. 混沌吸引子混沌吸引子是描述混沌系统演化过程中所呈现出来的吸引态。

它具有分形结构,即在不同尺度上都具有相似的形态。

混沌吸引子可以帮助我们理解和描述复杂系统中的无序行为。

三、混沌现象1. 灵敏依赖初始条件混沌系统对初始条件极其敏感,微小差异会导致系统演化出完全不同的结果。

这种现象被称为“蝴蝶效应”,即蝴蝶在某个地方轻微拍动翅膀,可能会引起在另一个地方的龙卷风。

2. 随机性和确定性混沌系统表现出随机性和确定性的结合。

尽管系统的演化是确定的,但由于初始条件的微小差异,结果变得无法预测,呈现出随机性。

3. 分岔现象分岔是混沌系统中常见的现象。

当控制参数逐渐变化时,系统可能会从一个稳定状态突然跳跃到另一个稳定状态或周期状态,这种突变称为分岔。

四、应用领域1. 自然科学混沌理论在自然科学领域有广泛应用。

在气象学中,混沌理论可以帮助我们理解气候系统中的不可预测性;在天体物理学中,混沌理论可以解释行星轨道的复杂运动等。

2. 工程与技术混沌理论在工程与技术领域也有重要应用。

在通信领域中,利用混沌信号可以实现加密通信;在控制系统中,利用混沌控制方法可以实现对非线性系统的稳定控制等。

3. 社会科学混沌理论在社会科学领域也有一定的应用。

在经济学中,混沌理论可以帮助我们理解金融市场的波动和非线性行为;在社会学中,混沌理论可以用于研究人类行为和社会系统的复杂性等。

五、总结混沌是描述非线性系统中无序、不可预测行为的概念。

它具有灵敏依赖初始条件、随机性和确定性的特点,以及分岔现象。

混沌理论在自然科学、工程与技术以及社会科学等领域都有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章混沌理论概述
引言
混沌是指确定动力系统长期行为的初始状态,或系统参数异常敏感, 却又不发散, 而且无法精确重复的现象, 它是非线性系统普遍具有的一种复杂的动力学行为。

混沌变量看似杂乱的变化过程, 其实却含有内在的规律性。

利用混沌变量的随机性、遍历性和规律性可以进行优化搜索, 其基本思想是把混沌变量线性映射到优化变量的取值区间, 然后利用混沌变量进行搜索。

但是, 该算法在大空间、多变量的优化搜索上, 却存在着计算时间长、不能搜索到最优解的问题。

因此, 可利用一类在有限区域内折叠次数无限的混沌自映射来产生混沌变量,并选取优化变量的搜索空间, 不断提高搜索精度等方法来解决此类难题。

混沌是非线性科学的一个重要分支, 它是非线性动力系统的一种奇异稳态演化行为, 它表征了自然界和人类社会中普遍存在的一种复杂现象的本质特征。

因此, 混沌科学倡导者Shlesinger和著名物理学家Ford 等一大批混沌学者认为混沌是20 世纪物理学第三次最大的革命, 前两次是量子力学和相对论, 混沌优化是混沌学科面对工程应用领域的一个重要的研究方向。

它的应用特点在于利用混沌运动的特性, 克服传统优化方法的缺陷, 从而使优化结果达到更优。

1.混沌的特征从现象上看,混沌运动貌似随机过程,而实际上混沌运动与随机过程有着本质的区别。

混沌运动是由确定性的物理规律这个内在特性引起的,是源于内在特性的外在表现,因此又称确定性混沌,而随机过程则是由外部特性的噪声引起的。

混沌有着如下的特性:
(1)内在随机性
混沌的定常状态不是通常概念下确定运动的三种状态:静止、周期运动和准周期运动,而是一种始终局限于有限区域且轨道永不重复的,形势复杂的运动。

第一,混沌是固有的,系统所表现出来的复杂性是系统自身的,内在因素决定的,并不是在外界干扰下产生的,是系统的内在随机性的表现。

第二,混沌的随机性是具有确定性的。

混沌的确定性分为两个方面,首先,混沌系统是确定的系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响是确定出现的,而不是像随机系统那样随意出现,混沌系统的
状态是可以完全重现的,这和随机系统不同。

第三,混沌系统的表现具有复杂性。

混沌系统的表现是貌似随机的,它不是周期运动,也不是准周期运动,而是具有良好的自相关性和低频宽带的特点。

(2)长期不可预测性
由于初始条件仅限于某个有限精度,而初始条件的微小差异可能对以后的时间演化产生巨大的影响,因此不可长期预测将来某一时刻之外的动力学特性。

即混沌系统的长期演化行为是不可预测的。

在此以经典的logistic映射为例:
x(n+1)=μx(n)(1-x(n))
n=0,1,2,3… 0<x0<1
0<μ≤4 (1-1)
对于初值为 0.6,在参数μ取值由2.6开始,间隔3e-4 到 4 结束,迭代 200 次的结果实验仿真如图1-1 所示,发现随着参数μ的增加,迭代序列经历了 2 周期、4 周期、8 周期、…无穷周期的过程,,从仿真的结果验证了系统状态长期的不可预测性。

图1-1
附Matlab仿真程序:
mu=2.6:3e-4:4; k=length(mu); x=linspace(0.6,0,k); for n=1:k
x(n+1)=mu(n)*x(n)*(1-x(n)); plot(mu,x(1,:),'k.'); xlabel('\mu'); ylabel('x(n)'); end
(3)对初值的敏感依赖性
随着时间的推移,任意靠近的各个初始条件将表现出各自独立的时间演化,即对初始条件的敏感依赖性。

及时初始数据又很小的偏差,在迭代几次后其差距会很大。

(4)普适性
当系统趋于混沌时,所表现出的特性具有普适性,其系统不因具体系统的不同和系统运动方程的差异而改变,即使是不同的混沌映射,其混沌状态从外表上是类似的。

(5)分形性
分形(Fractal)这个词是由曼德布罗特((B.B.Mandelbrot)在 70年代创立分形几何学时所使用的一个新词。

所谓分形是指 n维空间一个点集的一种几何性质,它们具有无限精细的结构,在任何尺度下都有自相似部分和整体相似性质,具有小于所在空间维数 n 的非整数维数,这种点集叫分形体。

分维就是用非整数维—分数维来定量的描述分形的基本特性。

(6) 遍历性
遍历性也称为混杂性。

由于混沌是一种始终局限于有限区域且轨道永不重复、性态复杂的运动。

所以,随着时间的推移,混沌运动的轨迹决不逗留于某一状态而是遍历区域空间中的每一点,即只要时间充分长,混沌会不重复的能走过每一点。

(7)有界性
它的运动轨线始终局限于一个确定的区域内,这个区域称为混沌吸引域。

因此总体上讲混沌系统是稳定的。

(8)分维性
混沌系统的运行状态具有多叶、多层结构,且叶层越分越细,表现为无限层次的自相似结构。

(9)统计特性
对于混沌系统而一言,正的Lyapunov指数表明轨线在每个局部都是不稳定的,相邻轨道按指数分离。

但是由于吸引子的有界性,轨道只能在一个局限区域内反复折叠,但又永远不相交,形成了混沌吸引子的特殊结构。

相关文档
最新文档