2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《椭圆及其标准方程》(云南姚艳萍)

合集下载

全国高中数学 青年教师展评课 椭圆的简单几何性质教学设计

全国高中数学 青年教师展评课 椭圆的简单几何性质教学设计

诚西郊市崇武区沿街学校2.2.2椭圆的简单几何性质设计一.教学内容解析:椭圆是生活中常见的曲线,研究它的几何性质,对于后续学习圆锥曲线有重要的指导作用,也为研究双曲线和抛物线奠定了根底。

研究曲线的性质,可以从整体上把握曲线的形状,大小和位置。

利用方程研究椭圆的简单几何性质之前,先引导学生想一想我们应该关注椭圆哪些方面性质。

研究椭圆的详细性质之前,先让学生观察图形直观得到性质,而后利用方程去研究。

根据曲线的条件求出曲线的方程,假设说是解析几何的手段,那么根据曲线的方程研究它的几何性质那么可以说是解析几何的一个手段。

方程研究曲线性质,即代数方法解决几何问题,将复杂的几何关系的研究转化为对曲线方程特点的分析,代数方法可以程序化地进展运算,代数法研究曲线的性质有较强的规律性,这是当年Descartes 创立解析几何的直接目的。

二.教学目的设置: (一)知识与技能:1.给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;2.在图形中,能指出椭圆中e c b a ,,,的几何意义及其互相关系;3.知道离心率大小对椭圆扁平程度的影响; (二)过程与方法:1.通过画图并观察得到椭圆的一些性质,培养学生观察分析意识;2.方程研究椭圆性质,让学生感受到解析几何的目的——代数法研究几何问题;3.让学生注意“顶点〞“椭圆中心〞的概念,体会到特殊与一般的区别;4.通过设置填表和例2〔2〕,让学生体会类比法和分类讨论的重要性。

(三)情感态度与价值观:讨论打破难点,培养学生意识;通过对椭圆对称性及离心率对椭圆形状影响的研究,让学生感受到数学美;方程研究曲线的性质,可以程序化运算,感悟数学家创立解析几何的目的;结合之前的学习,学生发现曲线与方程的互相结合,体会出事物的辩证统一,互相转化的唯物主义。

三.学生学情分析:本班学生数学根底参差不齐,学习程度开展不平衡;学生已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的才能;学生接触过由函数解析式研究函数图像的性质,由方程求过直线和圆的一些特殊点;离心率概念比较抽象,直接引入比较突兀,给学生明确的问题,结适宜当的点拨与演示,是非常必要的。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数y=Asin(ωx+φ)的图象》

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数y=Asin(ωx+φ)的图象》

函数()0,0)sin(>>+=ωϕωA x A y的图象教学设计教学目标1.知识与技能(1)结合物理中的简谐振动,了解()0,0)sin(>>+=ωϕωA x A y 的实际意义;(2)用“五点法”作出()0,0)sin(>>+=ωϕωA x A y 的图象, 并借助图形计算器动态演示三角函数图象,研究参数ϕω,,A 对函数图象变化的影响,让学生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、ϕ、ω对()0,0)sin(>>+=ωϕωA x A y 图象影响的过程中认识到函数x y sin =与()0,0)sin(>>+=ωϕωA x A y 的联系.2.过程与方法(1)经历x y sin =到()0,0)sin(>>+=ωϕωA x A y 图象变换探究的过程,培养学生的数学发现能力和概括总结能力.(2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系,提高学生的推理能力、分析问题和解决问题的能力.(3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归思想,渗透数形结合的思想.3.情感、态度、价值观(1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学态度.(2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神.教学重点与难点教学重点:函数()0,0)sin(>>+=ωϕωA x A y 的图象以及参数ϕω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ωϕωA x A y 的图象之间的变换关系.教学难点:函数()0,0)sin(>>+=ωϕωA x A y 的图象与函数x y sin =的图象与之间的变换关系.教学方法与技术支持问题教学法、合作学习法,多媒体课件,卡西欧图形计算器. 教学过程: 课前准备:用“五点法”在同一坐标系用不同颜色的线画出下列几组函数的图象(要求有列表过程):(1)x y sin =,y=2sin x ,y=21sin x(2)x y sin =,y=sin(x +3π),y=sin(x -4π)(3)x y sin =,y=sin2x ,y=sin21x[设计意图]通过作三组不同函数的图象,进一步体会“五点法”作函数图象的基本方法,同时为本节课的图象变换做好准备. 一.创设情境,引出问题 1.借助PPT 演示物理实例:简谐振动中,位移与时间的关系()0,0)sin(>>+=ωϕωA x A y 2.介绍其中几个量的物理意义A 是物体振动时离开平衡位置的最大距离,称为振动的振幅;ωπ=2T 是往复振动一次所需的时间,称为振动的周期;πω==2T1f 是单位时间内往复振动的次数,称为振动的频率;ϕω+x 称为相位,x =0的相位ϕ称为初相.问题: 函数xysin =就是()0,0)sin(>>+=ωϕωA x A y 在A=1,0,1==ϕω时的特殊情况,在0,1,1≠≠≠ϕωA 时函数()0,0)s i n (>>+=ωϕωA x A y 的图象与xy s i n =的图象有何关系?[设计意图]结合生活中简谐振动创设问题情境,加强数学与物理学科的联系,让学生体会到数学的应用价值.xy sin =为()0,0)sin(>>+=ωϕωA x A y 的特殊情况引起学生的探究兴趣,通过设置问题,引起认知冲突,激发求知欲望.二.互助探究,感受规律(分组讨论,寻求一般规律,每组选派代表汇报“研究成果”)问题1 A 对图象的影响: 寻找函数x y sin =,xy sin 2=,xysin 21=三者图象之间的联系.学生活动(1)组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)借助图形计算器的动态演示图象的功能,让学生感受x A y sin =)0(>A 的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)1,0(sin ≠>=A A x A y 的图象,可以看做是将函数x y sin =图象上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍(横坐标不变)而得到的.易知,函数函数x A y sin =的值域为],[A A -. 问题2:ϕ对图象的影响寻找函数x y sin =,⎪⎭⎫⎝⎛+=3sin πx y ,⎪⎭⎫ ⎝⎛-=4sin πx y ,三者图象之间的联系. 学生活动(1) 组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)引导学生借助图象上的对应变化点横坐标之间的对应关系理解图象平移变换的实质(3)借助图形计算器的动态演示图象的功能,让学生感受)sin(ϕ+=x y 的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)sin(ϕ+=x y 的图象,可以看做是将函数x y sin =图象上所有点向左(0>ϕ)或向右(0<ϕ)平移ϕ个单位而得到的. 问题3 ω对图象的影响:寻找函数三者x y sin =,y=sin2x ,y=sin 21x 图象之间的联系.学生活动(1) 组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)引导学生借助图象上对应变化点的坐标之间对应关系,理解图象周期变换的实质:(3)借助图形计算器的动态演示图象的功能,让学生感受x y ωsin =的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)10(sin ≠>=ωωω且x y 的图象,可以看做是将函数x y sin =图象上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)而得到的.[设计意图]将ϕω,,A 对图象变换的影响进行分解,问题提出后,教师不急于讲解,而是有学生合作解决,教师适当引导.在探究过程中注重借助图形计算器辅助思维,并通过前后坐标的变化理解图象变换的实质. 问题4(难点突破)(1)函数x y 2sin =通过怎样变换可以得到函数)32sin(π+=x y 的图象?(2) 将函数y=sin(2x +3π)的图象向右平移3π个单位,所得到的图象的函数解析式为(3)一般地,函数()0,0)s i n (≠>+=ϕωϕωx y 的图象,可以看做是将函数x y ωsin =图象上所有点 (0>ϕ)或 (0<ϕ)平移 个单位而得到的.(4)函数)3sin(π+=x y 的图象通过怎样的变换可以得到函数)32sin(π+=x y 的图象?[设计意图]周期变换和相位变换的不同顺序对图象的影响是本课的难点. 不能广而告之, 鼓励学生在提出猜想的基础上,充分经历图象变换过程,共同发现规律,总结一般性结论,自然流畅,易于接受理解,从而突破难点. 三.典例分析,形成能力 例 若函数)32sin(3π-=x y ,x ∈R 表示一个振动量:(1)求这个振动的振幅,周期,初相;(2)不用计算机和图形计算器,画出该函数的图象. 解:(1) 函数)32sin(3π-=x y 的振幅为3,初相为3π-,周期为π.(2)方法一“五点法”周期T=π,令X=2x -3π则x =6223ππ+=+x X列表方法二(先周期后相位)作出正弦曲线,并将曲线上每一点的横坐标变为原来的21倍(纵坐标不变),得到函数x y 2sin =的图象;再将函数x y 2sin =的图象向右平移6π个单位长度,得到函数)32sin(π-=x y 的图象;再将函数)32sin(π-=x y 的图象上每一点的纵坐标变为原来的3倍(横坐标不变),即可得到函数)32sin(3π-=x y 的图象.)32sin(3)32sin(2sin sin ππ-=→-=→=→=x y x y x y x y方法三(先相位后周期) 作出正弦曲线,并将其向右平移3π个单位长度,得到函数)3sin(π-=x y 的图象;再将函数)3sin(π-=x y 图象上每一点的横坐标变为原来的21倍(纵坐标不变),得到函数)32sin(π-=x y 的图象;再将函数)32sin(π-=x y 图象上每一点的纵坐标变为原来的3倍(横坐标不变),即可得到函数)32sin(3π-=x y 的图象.)32sin(3)32sin()3sin(sin πππ-=→-=→-=→=x y x y x y x y[设计意图]互动探究部分将ϕω,,A 三元素对图象变换的影响进行分解,本环节通过例题让学生体会三者结合对图象变化的作用,并着重分析先周期后相位与先相位后周期在图象变换过程中的注意点. 四.回顾反思,拓展深化 1. “五点法”作图 2.图形变换过程 两种方法殊途同归-总结参数A ,ω,φ函数y =A sin(ωx +φ)的影响.(1)振幅变化,由A 的变化引起; (2)周期变化,由ω的变化引起; (3)相位变化,由ωϕ或ϕ的变化引起.[设计意图]引导学生从知识和方法两个方面进行小结.培养学生及时总结,概括提升的能力,为在课后能继续独立探究思考埋下伏笔. 五.课后研究,突出重点(1)阅读书后链接内容并通过网络了解三角函数知识在简谐运动,波的传播,交流电中的应用;(2)书后习题4,5,6.课后思考:(1)函数x y s i n =的图象通过怎样的变换可以得到函数x x y 3sin 3cos -=的图象?(2)函数)(x f y =的图象经过怎样的变换可以得到)32(+=x f y 的图象?[设计意图]通过阅读让学生了解数学学科与人类社会发展间的相互关系,体会数学的科学价值和应用价值;通过思考题使知识更加完整,落实知识的掌握与思想方法的理解.。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》第一篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》2010年第五届全国高中数学青年教师观摩与评比活动精品教案“曲线与方程”教学设计一、教学内容:人教版选修2—1第二章第一节:曲线与方程二、教材分析曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,曲线的方程是曲线几何的一种代数表示,方程的曲线则是代数的一种几何表示。

在直角坐标系中,点可由它的坐标来表示,而曲线是点的轨迹,所以曲线可用含x、y的方程来表示。

“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础,对解析几何教学有着深远的影响,曲线与方程的相互转化,是数学方法论上的一次飞跃。

由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径。

求曲线与方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一。

本节中提出的曲线与方程的概念,它既是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的深化,又是学习圆锥曲线的理论基础,它贯穿于研究圆锥曲线的全过程,根据曲线与方程的对应关系,通过研究方程来研究曲线的几何性质,是几何的研究实现了代数化。

数与形的有机结合,在本章中得到了充分体现。

●教学目标:1.通过感受曲线的方程和方程的曲线这一概念的生成过程,初步理解曲线的方程和方程的曲线的概念。

2.理解曲线的方程与方程的曲线的概念和集合相等的关系、渗透转化与化归的思想与数形结合的思想。

3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神。

●教学重点理解曲线的方程和方程的曲线的概念。

2010年第五届全国高中数学青年教师观摩与评比活动-《椭圆及其标准方程(第一课时)》说课(甘肃雒淑英)

2010年第五届全国高中数学青年教师观摩与评比活动-《椭圆及其标准方程(第一课时)》说课(甘肃雒淑英)

椭圆及其标准方程(第一课时)教学设计甘肃省张掖市实验中学雒淑英一、教材及学情分析本节课是《全日制普通高级中学教科书(必修)·数学》(人民教育出版社中学数学室编著)第二册(上)第八章第一节《椭圆及其标准方程》第一课时。

用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。

圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。

17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。

在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。

解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。

在第七章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。

由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。

本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。

因此,教学时应重视体现数学的思想方法及价值。

根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用动态作图优势为学生的数学探究与数学思维提供支持。

二、教学目标分析按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:1.知识与技能目标:①理解椭圆的定义。

②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。

2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的概念》说明(重庆贺祠亮)

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的概念》说明(重庆贺祠亮)

《函数的概念》教学设计说明一、函数概念的本质、地位、作用分析函数是中学数学最重要的基本概念之一,其核心内涵为非空数集到非空数集的一个对应;函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.二、教学目标分析本堂课的教学目标是有梯度的,由浅入深:首先要通过丰富实例让学生了解函数是非空数集到非空数集的一个对应,了解构成函数的三要素;然后让学生理解函数概念的本质,抽象的函数符号的意义,(为常数)与的区别与联系,会求一些简单函数的定义域和函数值;并且让学生经历函数概念的形成过程,函数概念的辨析过程,函数定义域的求解过程以及求函数值的过程,渗透归纳推理、发展学生的抽象思维能力;通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和的简洁美.通过例题的讲解,培养和提高学生观察问题、分析问题、解决问题的能力.三、教学问题诊断从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过集合的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.在学习的过程中学生主要存在以下困惑、困难:1.对“为什么要重新定义函数”存在困惑.学生在预习之前可能一直都有疑问:我们已经定义过函数了,为什么又要重新定义函数?学生可能认为自己学得很好了,再学习函数的定义有重复之嫌.2.学生由实例抽象概括出函数的概念时存在困难.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.在通过“观察、分析、比较、归纳、概括”得出函数的概念时,学生在其中的任意一个环节出了问题都可能得不出函数的概念.3.对抽象符号的理解存在困难.四、本节课的教法特点以及预期效果分析本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.本节课对几个重要环节的处理方法是:为激发起学生学习的兴趣,引入三个问题:举出初中学过的一些函数、回忆初中函数的定义、利用初中函数的定义解决问题“”是否为函数.通过学生分组讨论后发现由于受认知能力的影响,利用初中所学函数知识很难回答这个问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望.为了让学生抽象概括出函数的概念,通过对三个实际问题的分析、自学,让学生认识到生活中充满着变量间的依赖关系,由于实际背景的建立,为学生理解函数概念打下了感性基础.在学习实例一时,我设计了三个递进的问题来引导学生用集合与对应的语言来刻画函数关系.对后两个实例采取让学生先自学,老师再提问的方式来引导学生思考;通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征,进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力.教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力.本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.为了使学生正确理解函数的概念,首先让学生勾画出概念中的关键词,使学生加深理解函数的本质及构成函数的基本要素.对抽象的函数符号的理解也是本堂课的难点之一,应充分发挥学生的积极性,让学生发表意见,然后用一个生活化的例子来巩固对符号的理解:好比是“原料”,好比是“机器”,就好比是“成品”,向机器input(输入)一个原料,就output (输出)一个成品.这样学生理解起来就很容易了,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.在本节课的教学中,以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。

全国高中青年数学教师优质课课 2.2.1椭圆及其标准方程(教学设计) 精品

全国高中青年数学教师优质课课 2.2.1椭圆及其标准方程(教学设计)    精品

普通高中课程标准实验教科书人教A版数学选修2-1第二章圆锥曲线与方程 2.2节§2.2.1 椭圆及其标准方程(第一课时)教学设计山东省青岛市第十六中学孟媛一、教学内容解析:本节课是《普通高中课程标准实验教科书·数学》选修2-1第二章第二节第一课时,主要学习椭圆的定义和标准方程.在必修2学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.这一节课是在学完圆及其标准方程的基础上,将研究曲线的方法拓展到椭圆,是继续学习椭圆的几何性质的基础;椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础.因此这节课有承前启后的作用.另外本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、类比思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值. 基于以上分析确定了本节课的教学重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;教学难点:椭圆标准方程的推导与化简.二、教学目标设置:1.借助动手实验让学生画出圆、椭圆、线段,找到它们三者之间的联系,为后面研究椭圆做准备。

2.通过播放圆的研究过程的微课,让学生回忆起研究圆的基本流程,从而让学生学会类比圆的研究过程研究椭圆。

3. 通过类比圆的标准方程的推导,小组合作给出椭圆标准方程的推导过程,巩固用坐标化的方法求动点的轨迹方程,同时体会含有两个根式的化简思路。

4. 通过经历椭圆标准方程的推导, 对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识,同时增强学生战胜困难的意志品质,并体会数学的简洁美、对称美。

以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.三、学生学情分析:本节课是在学生已学习了圆的定义及其标准方程和掌握“曲线的方程”与“方程的曲线”的概念之后,学习椭圆定义及其标准方程,符合学生的认知规律,学生有能力学好本节内容; 但在推导椭圆的标准方程时,学生需要自己建立坐标系,再研究推导出方程仍是一个难点。

“卡西欧杯”第五届全国高中青年数学教师优秀课观摩与评比活动 优秀课一等奖和优秀组织奖评比结果的通

陆 明 明 宋 秀云
贺祠 亮 邓 礼 咸 赵 志 明
四川绵 阳中学 四川成都市第十八中学校
贵 州 龙 里 中学
詹 爽 姿
石 小 丽


浙江桐乡第一中学
安徽蚌埠第一中学
安徽 淮 南 市第 二 中学 福建 泉 州 市培 元 中学 福 建 师 范大 学 附 属 中学
黄 修 禹 胡 跃 源
优 秀课 一等奖名 单
( 6 共 5名 ,排 名 不 分 先后 )
北 京 师 范 大 学 第 二 附 属 中 学
北 京 市 第 十 二 中学 程 敏 山西 大 同市 第 一 中学 校 山西 太 原 市 育 英 中学




高 李
宇 翥
北 京 市 第 五 中学 天津 市 汉 沽 区 第 一 中 学
N 2 O 0 O1 2 1
J u n lo h n s te t s E u ain o r a f C i ee Mah mai d c t c o
21 0 0年
第 1 2期
“ 西 欧 杯 ”第 五 届 全 国 高 中青 年 数 学 教 师 优 秀课 观 摩 与 评 比活 动 卡
21 0 0年 1 0月 1 日 9
本 次 活 动 共 评 比产 生 优 秀课 一 等奖 6 名 ( 单 附后 ) 5 名 ,4个
本 项 活动 始 终 坚持 “ 在 参 与 ,重 在 过 程 ,重 在 交 流 , 重 会 员 单 位 被 评 为 优 秀 组 织 奖 ( 单 附后 ) 重 名 .




贵州省实验 中学
云 南 大学 附 属 中 学 云 南玉 溪 第 一 中 学

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》

《独立性检验的基本思想及其初步应用》教学设计一、教学内容与内容解析1.内容:独立性检验的基本思想及实施步骤2.内容解析:本节课是人教A版(选修)2—3第三章第二单元第二课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。

本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。

在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。

在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。

独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。

因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。

学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。

这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。

教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:①知识与技能目标通过生活中新闻案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。

②过程与方法目标通过探究“玩电脑游戏与注意力集中是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。

利用上节课所学已经由数据直观判断出玩电脑游戏与注意力集中可能有关系。

这一直觉来自于观测数据,即样本。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《简单的线性规划问题》(天津市刘勇)

《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3节)授课教师:刘勇天津市滨海新区汉沽一中指导教师:沈婕天津市中小学教育教学研究室张志坤天津市汉沽教育中心王瑞雪天津市滨海新区汉沽一中2010年10月《简单的线性规划问题》(第一课时)教学设计天津市滨海新区汉沽第一中学刘勇一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析1. 了解线性规划模型的特征:一组决策变量(,)x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一)创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x)与每行(y)的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y+ (即: 列数+行数)第二次:分值=2- (即: 行数-列数×2)y x师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法x y 0 1 2 3 4 5 1 2 4 3 y 0 1 2 3 4 5 x 1 2 4 3图1 图2 x1 45 2 3 7 9 10 11 8 12O 图3引导学生由特殊到一般分析目标函数的函数值.问题1:当6b=时,求x,y的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x=-+,教师引导学生观察6b=所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x,y的值即求不定方程的解.数形结合,将求变量x,y转化成求点的坐标(,)x y.观察6b=时三个盒子所在点的位置关系及直线的方程,使学生体会b值就是直线的纵截距.问题2.在图3中,求2b x y=+的最大值.师生活动:学生在教师的引导下分组讨论,求b的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y=+转化成2y x b=-+,x,y在取得每个可行解时,b的取值就是直线2y x b=-+过(,)x y这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b取最大值时x、y的取值一定在直线26y x=-+的右上方的位置,为此就依次在这些位置上画平行于26y x=-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x=-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路.(三)变式思考,深化探究思路1.将目标函数变成34b x y=+,求b的最大值.师生活动:通过学生将34b x y=+化成344by x=-+的形式,做直线34y x=-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?解:设甲播放x 次,乙播放y 次,收视观众z 万人次则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值:(1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max 200z =.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何 线性目标函数6020z x y =+直线320z y x =-+ 线性目标函数的函数值 直线的纵截距线性约束条件(二元一次不等式(组)的解集)可行域 线性目标函数的最值直线的纵截距的最值 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 转化 图4师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩二元一次不等式组所表示的平面区域(图5),即可行域.考虑2821z x y =+,将它变形为4321z y x =-+. 这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五)归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标检测题1.在线性约束条件5315153x yy xx y+≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y=+的最大值和最小值;②目标函数310z x y=-的最大值和最小值;2.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《几何概型》(福建孙舒萌)

几何概型高中数学必修3第三章第3节第一课时福建师大附中孙舒萌一、教材分析教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。

《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。

教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。

难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

通过数学建模解决实际问题。

[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。

教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。

二、教学目标[知识与技能目标](1)体会几何概型的意义。

(2)了解几何概型的概率计算公式[过程与方法目标]通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。

通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。

[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。

三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。

四、学法指导通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题。

教学环节教学内容设计意图以境激情,形成概念[情境一]情境一:飞镖游戏:如图所示,规定射中红色区域表示中奖问题:各个圆盘的中奖概率各是多少?(1)(2)(3)对课本通过等分猜想引入几何概型的改造,通过学生猜想依次得到概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年第五届全国高中青年数学教师优秀课观摩与评选活动交流材料
人教版全日制普通高级中学教科书(必修)第二册椭圆及其标准方程教学设计
云南省玉溪市第一中学姚艳萍
椭圆及其标准方程
一、教学目标
1.知识目标:掌握椭圆的定义,能正确推导椭圆的标准方程.
2.能力目标:通过引导学生亲自动手尝试画椭圆,让学生发现椭圆的形成过程进而归纳出椭圆的定义 , 培养学生的动手能力、合作学习能力以及运用所学知识解决实际问题的能力.
3.情感目标
(1)通过椭圆定义的获得培养学生探索数学的兴趣.
(2)通过椭圆标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”.
(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.
二、重点、难点
重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想.
难点:椭圆标准方程的推导与化简.
三.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.
四.教具准备:多媒体课件和自制教具:呼啦圈,绘图板、图钉、细绳.
五、教学过程
(一)创设情境,认识椭圆.
材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.
材料2:“嫦娥一号”模拟轨道图.
2007年10月24日,我国第一颗探月卫星“嫦娥一号”发射成功, 开始了举世瞩目的太空之旅,流传了几千年的飞天神话,变成了现实,这标志着我国航天事业又上了一个新台阶,这是中国人的骄傲.请问:“嫦娥一号”绕地球飞行的运行轨道是什么?(课件演示轨道图)
引入课题:椭圆及其标准方程.
(设计意图:利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆:通过“嫦娥一号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想.)
(二)动手实验,亲身体会.
1.教师演示,引出研究思路.
教师将一圆形的呼啦圈朝一方向用力压或拉,变成一椭圆形状的呼啦圈,以说明圆和椭圆的密切关系,点明可以像学习圆一样来学习椭圆.
思考:在上一章圆的学习中我们知道:平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?
(设计意图:对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆.)
2.学生分组试验.
(1)取一条细绳;
(2)把细绳的两端用图钉固定在板上的两点1F 、2F ;
(3)用铅笔尖(M )把细绳拉紧,在板上慢慢移动观察画出的图形是什么? (教师巡视指导,展示学生成果)
3.分析实验,得出规律.
(1)在画出一个椭圆的过程中,细绳的两端的位置是固定的还是运动的?
(2)在画椭圆的过程中,绳子的长度变了没有?说明了什么?
(3)在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?
(4)改变绳子长度与两定点距离的大小,轨迹又是什么?
学生总结规律:1212||||||MF MF F F +> 轨迹为椭圆;
1212
||||||M F M F F F +=轨迹为线段 ; 1212||||||MF MF F F +<轨迹不存在.
(设计意图:在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一来是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.)
(想一想:下面怎样化简?)
(1)教师为突破难点,进行引导设问:
我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方
好呢?化简,得 )()(22222222c a a y a x c a -=+-.
y。

相关文档
最新文档