扩散的工艺

合集下载

半导体不同扩散工艺的特点

半导体不同扩散工艺的特点

半导体不同扩散工艺的特点半导体扩散工艺是一种用于改变半导体材料中杂质浓度分布的方法。

通过控制杂质的浓度分布,可以改变半导体材料的电学特性,从而实现半导体器件的制备和调控。

根据不同的扩散工艺,可以分为几种常见的类型,包括固相扩散、液相扩散和气相扩散,每种工艺都有其特点和适用范围。

1. 固相扩散:固相扩散是最早被广泛应用的扩散工艺之一。

其特点是使用固态杂质源,如固态的金属盐或金属氧化物,通过热处理将杂质扩散到半导体材料中。

固相扩散的过程较为简单,易于控制,适用于大批量半导体器件的生产。

然而,固相扩散工艺的主要缺点是扩散速度较慢,需要较长的时间完成杂质的扩散,且扩散深度不易控制。

2. 液相扩散:液相扩散是使用液态杂质源将杂质扩散到半导体材料中的工艺。

液相扩散的特点是扩散速度较快,扩散深度和浓度也较容易控制。

液相扩散的主要优点是可以在相对较短的时间内完成扩散过程,并且可以实现较高的杂质浓度。

然而,液相扩散过程中,需要使用到液态杂质源,这可能会对半导体材料的结构和性能产生不利影响,需要注意杂质源的选择和处理,以避免对器件性能造成负面影响。

3. 气相扩散:气相扩散是使用气态杂质源将杂质扩散到半导体材料中的工艺。

与固相和液相扩散相比,气相扩散具有更高的扩散速率和更好的控制性能。

气相扩散工艺通常是在高温下进行,通过将气态杂质源分解生成活性的杂质气体,然后将其扩散到半导体材料中。

气相扩散的优点是可以实现较高的杂质浓度和较深的扩散深度,且扩散速度较快。

然而,气相扩散工艺需要较高的温度和气压条件,且对设备和工艺环境要求较高,因此工艺的成本较高,适用于对器件性能要求较高、生产规模较小的应用领域。

总之,不同的扩散工艺具有各自的特点和适用范围。

在选择和使用扩散工艺时,需要根据实际需求综合考虑工艺的控制性能、扩散速度、成本等因素,以及对半导体器件性能的影响。

对于不同类型的半导体器件,可能需要采用不同的扩散工艺来实现特定的杂质浓度分布和形状控制,以满足器件设计和制备的要求。

扩散的工艺流程

扩散的工艺流程

扩散的工艺流程扩散工艺是集成电路制造中的一项重要工艺,主要用于在半导体材料表面形成掺杂区域,以改变材料的电学性质。

下面将介绍一种典型的扩散工艺流程。

首先是准备工作,包括物料准备、设备检查和工艺参数设置。

物料准备包括半导体晶片、扩散材料和掩膜材料的选择与准备。

设备检查主要是确保扩散炉和扩散源的正常运行状态。

工艺参数设置根据掺杂要求和材料特性,确定扩散温度、时间和气氛等工艺参数。

其次是扩散源的制备,扩散源一般是通过在高温条件下将掺杂材料与半导体材料反应生成的。

按照所需的掺杂浓度和材料属性,可以选择不同的扩散源。

通常情况下,将掺杂材料和半导体材料混合,并加入任何必要的添加剂,形成均匀的混合物。

然后,将混合物放入扩散源槽或坩埚中,在高温条件下进行预热、热分解和扩散源的形成。

形成的扩散源粉末可以直接用于扩散过程,也可以制备成片状等形状。

接下来是掩模制备,掩模是指在扩散过程中所需的模板,用于限制掺杂区域的形成。

一般使用光刻技术将掩模图案转移到掩膜材料上,形成掩模。

然后,将掩模放置在待扩散的半导体晶片表面,并通过光刻和显影等步骤将掩模图案转移到晶片表面。

扩散工艺是在控制的温度条件下进行的,常用的扩散方式有氧化物扩散和固相扩散。

以氧化物扩散为例,首先将掺杂源和半导体片放置在扩散炉中,然后控制炉温使其达到扩散温度。

在扩散温度下,掺杂源释放出掺杂原子,这些原子通过热扩散作用在半导体片中形成掺杂区域。

扩散时间的长短决定了掺杂的深度和浓度。

固相扩散的工艺流程类似,只是没有氧化物参与,直接通过固态反应实现掺杂。

扩散完成后,进行清洗和后续处理。

清洗是为了去除掉表面的杂质和残留的化学物质,以及掩模材料。

清洗可以使用不同的溶液和超声波等方法。

后续处理包括表面加工、封装和测试等步骤,以完成集成电路的制造。

总的来说,扩散工艺是集成电路制造中的一项关键工艺,通过控制温度、时间和掺杂原料,将掺杂原子引入半导体材料中,实现电学性质的改变。

扩散工艺及控制要点

扩散工艺及控制要点

扩散工艺及控制要点1.由于硅太阳能电池实际生产中均采用P型硅片,因此需要形成N型层才能得到PN结,这通常是通过在高温条件下利用磷源扩散来实现的。

这种扩散工艺包括两个过程:首先是硅片表面含磷薄膜层的沉积,然后是在含磷薄膜中的磷在高温条件下往P型硅里的扩散。

2.在高温扩散炉里,汽相的POCL3(phosphorus oxychloride)或PB r3(phosphorus tribromide)首先在表面形成P2O5(phosphorus pentoxide);然后,其中的磷在高温作用下往硅片里扩散。

3.扩散过程结束后,通常利用“四探针法”对其方块电阻进行测量以确定扩散到硅片里的磷的总量,对于丝网印刷太阳电池来说,方块电阻一般控制在40-50欧姆。

4.发射结扩散通常被认为是太阳电池制作的关键的工艺步骤。

扩散太浓,会导致短路电流降低(特别是短波长光谱效应很差,当扩散过深时,该效应还会加剧);扩散不足,会导致横向传输电阻过大,同样还会引起金属化时硅材料与丝网印刷电结之间的欧姆接触效果。

5.导致少数载流子寿命低的原因还包括扩散源的纯度、扩散炉的清洁程度、进炉之前硅片的清洁程度甚至是在热扩散过程中硅片的应力等。

6.扩散结的质量同样依赖于扩散工艺参数,如扩散的最高温度、处于最高温度的时间、升降温的快慢(直接影响硅片上的温度梯度所导致的应力和缺陷)。

当然,大量的研究表明,对于具有600mv左右开路电压的丝网印刷太阳电池,这种应力不会造成负面影响,实际上有利于多晶情况时的吸杂过程。

7.发射结扩散的质量对太阳能电池电学性能的影响反映在串联电阻从而在填充因子上:(1)光生载流子在扩散形成的N-型发射区是多数载流子,在这些电子被金属电极收集之前需要经过横向传输,传输过程中的损失依赖于N-型发射区的横向电阻;(2)正面丝网印刷金属电极与N-型发射区的电接触,为了避免形成SCHOTTKY势垒或其它接触电阻效应而得到良好的欧姆接触,要求N-型发射区的搀杂浓度要高。

扩散工艺知识

扩散工艺知识

第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散.这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻.除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。

第一节 扩散原理扩散是一种普通的自然现象,有浓度梯度就有扩散。

扩散运动是微观粒子原子或分子热运动的统计结果.在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。

其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位".这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。

硼(B )、磷(P )、砷(As )等属此种扩散。

2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进.这种扩散称间隙式扩散.金、铜、银等属此种扩散。

三. 扩散方程扩散运动总是从浓度高处向浓度低处移动。

运动的快慢与温度、浓度梯度等有关。

其运动规律可用扩散方程表示,具体数学表达式为:N D tN 2∇=∂∂ (3—1) 在一维情况下,即为: 22xN D t N ∂∂=∂∂ (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。

四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关.为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。

扩散工艺

扩散工艺

扩散工艺培训一、扩散目的在P型衬底上扩散N型杂质形成PN结。

达到合适的掺杂浓度ρ/方块电阻R□。

即获得适合太阳能电池PN结需要的结深和扩散层方块电阻。

R□的定义:一个均匀导体的立方体电阻 ,长L,宽W,厚dR= ρ L / d W =(ρ/d) (L/W)此薄层的电阻与(L / W)成正比,比例系数为(ρ /d)。

这个比例系数叫做方块电阻,用R□表示:R□ = ρ / dR = R□(L / W)L= W时R= R□,这时R□表示一个正方形薄层的电阻,与正方形边长大小无关。

单位Ω/□,方块电阻也称为薄层电阻Rs在太阳电池扩散工艺中,扩散层薄层电阻是反映扩散层质量是否符合设计要求的重要工艺指标之一。

制造一个PN结并不是把两块不同类型(P型和N型)的半导体接触在一起就能形成的。

必须使一块完整的半导体晶体的一部分是P型区域,另一部分是N型区域。

也就是晶体内部形成P型和N型半导体接触。

目前绝大部分的电池片的基本成分是硅,在拉棒铸锭时均匀的掺入了B(硼),B原子最外层有三个电子,掺B的硅含有大量空穴,所以太阳能电池基片中的多数载流子是空穴,少数载流子是电子,是P型半导体.在扩散时扩入大量的P(磷),P原子最外层有五个电子,掺入大量P的基片由P型半导体变为N型导电体,多数载流子为电子,少数载流子为空穴。

在P型区域和N型区域的交接区域,多数载流子相互吸引,漂移中和,最终在交接区域形成一个空间电荷区,内建电场区。

在内建电场区电场方向是由N区指向P区。

当入射光照射到电池片时,能量大于硅禁带宽度的光子穿过减反射膜进入硅中,在N区、耗尽区、P区激发出光生电子空穴对。

光生电子空穴对在耗尽区中产生后,立即被内建电场分离,光生电子被进入N区,光生空穴则被推进P区。

光生电子空穴对在N区产生以后,光生空穴便向PN结边界扩散,一旦到达PN结边界,便立即受到内建电场作用,被电场力牵引做漂移运动,越过耗尽区进入P区,光生电子(多子)则被留在N区。

半导体不同扩散工艺的特点

半导体不同扩散工艺的特点

半导体不同扩散工艺的特点
半导体的扩散技术是将特定种类的杂质原子在半导体晶体中扩散,并改变半导体材料的导电性质。

半导体扩散工艺主要分为以下几种:
1. 扩散氧化法:将硅片加热至高温,使气体中的氧气(O2)分解,产生的氧分子与硅片表面反应,生成二氧化硅(SiO2),从而控制扩散层的深度和宽度。

该工艺的特点是扩散面积大,扩散层深度均匀,但是扩散速度较慢,适用于生产较高质量要求的器件。

2. 氧化掩蔽扩散法(LOCOS):利用化学气相沉积或物理气相沉积在硅片表面沉积一层硅氧化物光刻膜(LOCOS法)或硅酸盐膜(LOCAT法),通过扩散杂质(如磷、硼等)和高温处理,使膜下方的硅衬底发生晶格变形和氧化,形成带孔的氧化硅层,从而形成了扩散区域。

该工艺特点是可制造出复杂的器件结构,但是对于大尺寸芯片来说,芯片表面会过度弯曲,造成拉应力,最终导致母片变形,影响器件性能和可靠性。

3. 氧化铝扩散法:在扩散前利用化学气相沉积在硅片表面沉积一层氧化铝膜,再在这层氧化铝膜上打一个小口(缺口),通过缺口在晶体下面扩散,形成扩散区。

该工艺特点是可保护芯片表面,避免造成晶片变形,但是扩散层较浅,仅适用于制造器件的浅扩散层。

4. 离子注入法:利用离子加速器将杂质离子注入到硅晶体中,形成扩散区。


种方法的特点是扩散速度快,扩散深度大,适用于生产器件的深扩散层,但是也存在与晶片表面反应的问题,同时也会导致结果分布不均匀的问题。

总之,选择适当的扩散工艺需要根据所需器件的性质和质量要求来确定。

扩散工艺的化学原理

扩散工艺的化学原理

扩散工艺的化学原理扩散工艺是一种将固体材料中的原子或分子在另一固体材料中扩散的方式。

它是一种重要的材料加工技术,被广泛应用于半导体行业、材料科学、电子设备制造等领域。

1.气相扩散:气相扩散是一种将气体原子或分子从高浓度区域扩散到低浓度区域的过程。

它广泛应用于半导体制造中。

在气相扩散过程中,气体原子或分子通过与被处理材料的表面发生化学反应来扩散。

这种化学反应的速率由固体表面与气体界面之间的反应速率决定。

例如,氮化硅薄膜的制备常采用氨气(NH3)与硅表面上的硅原子发生反应,形成氮化硅层。

氨气的浓度差异使其向硅表面扩散,反应的速率主要取决于氨气与硅表面反应的速率。

2.液相扩散:液相扩散是指液体中原子或分子通过扩散来实现的过程,这种扩散通常发生在固体表面和液体之间。

液相扩散常用于金属合金的制备。

在液相扩散过程中,金属原子在固相间扩散,并在固体和液体相界面处重新结晶。

液体中的浓度差异是驱动液相扩散的主要原因。

例如,当固体镍和固体铬在液体中混合时,镍原子和铬原子会相互扩散使合金形成均匀的镍铬分布。

这种液相扩散过程中,镍原子和铬原子之间的化学反应被加速,形成新的镍铬化合物。

3.固相扩散:固相扩散是指固体材料中的原子或分子通过固体晶界、点缺陷、空位等的移动来实现的扩散过程。

固相扩散通常发生在材料的固态结构中,是一种非常缓慢的过程。

固相扩散的速率取决于晶体中原子或分子的浓度差异以及晶界和缺陷的性质。

例如,金属在高温下会发生固相扩散。

当金属中的原子在晶界或点缺陷处移动时,它们会在固态结构中扩散,从而改变金属的组织结构和性能。

这种固相扩散对于合金的制备和材料的加工具有重要意义。

总之,扩散工艺是通过利用浓度差异从而使固体材料中的原子或分子在其它材料中扩散的一种技术。

气相扩散、液相扩散和固相扩散是扩散工艺的常见形式,它们的化学原理基于热运动和化学反应,其中浓度差异是驱动扩散的主要力量。

这些扩散过程对于材料的合成、改性和加工具有重要作用,广泛应用于各个领域。

扩散工艺知识

扩散工艺知识

扩散工艺知识咱先来说说啥是扩散工艺哈。

就拿生活里常见的事儿打个比方,您要是在房间里喷了香水,那香味是不是会慢慢扩散到整个房间?这其实就有点像扩散工艺的原理。

扩散工艺呢,简单来讲,就是让一种物质从高浓度的地方向低浓度的地方移动,从而实现均匀分布。

这在很多领域都有应用,比如说在半导体制造中,那可是至关重要的一步。

我记得有一次,我去参观一家半导体工厂。

那时候,我就亲眼看到了扩散工艺的神奇之处。

工厂里的工人们穿着那种一尘不染的白色工作服,戴着帽子和口罩,只露出一双眼睛。

他们在一个巨大的车间里忙碌着,里面摆满了各种高科技的设备。

我走到一台正在进行扩散工艺的设备前,隔着玻璃仔细观察。

只见一片片小小的硅片被小心地放进一个像烤箱一样的设备里,然后设备开始运作,里面的温度和压力都被精确地控制着。

我就好奇地问旁边的工作人员:“这到底是咋回事呀?”工作人员特别耐心地给我解释说:“这就好比是在给这些硅片‘注入灵魂’,通过扩散工艺,把一些特殊的杂质均匀地‘撒’进硅片里,这样才能让硅片具备特定的电学性能,成为有用的半导体器件。

”咱再回到扩散工艺的知识上哈。

在化学领域,扩散工艺也常常被用到。

比如说,把一种溶液滴到另一种溶液里,如果不搅拌,它们也会慢慢地混合均匀,这也是扩散在起作用。

还有在生物领域,细胞之间物质的交换,也离不开扩散。

想象一下,细胞就像一个个小小的房子,它们之间的“门窗”就是用来进行物质扩散的通道。

扩散工艺的影响可大了去了。

就拿我们用的手机来说吧,里面的芯片能这么厉害,少不了扩散工艺的功劳。

要是没有精确的扩散控制,芯片的性能可就没法保证啦,您的手机可能就会变得又慢又卡。

在工业生产中,为了让扩散工艺更高效、更精准,科学家和工程师们可是费了不少心思。

他们不断地改进设备,优化工艺参数,就为了能让扩散的效果更好。

比如说,他们会研究怎么控制温度,因为温度高一点或者低一点,扩散的速度和效果都会不一样。

还有扩散的时间,多一秒少一秒,都可能影响最终的产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

----主要设备、热氧化、扩散、合金扩散部 2002年7月前言:扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。

扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。

本文主要介绍热氧化、扩散及合金工艺。

目录第一章:扩散区域设备简介……………………………………第二章:氧化工艺第三章:扩散工艺第四章:合金工艺第一章:扩散部扩散区域工艺设备简介炉管设备外观:扩散区域的工艺、设备主要可以分为:炉管:负责高温作业,可分为以下几个部分:组成部分功能控制柜→对设备的运行进行统一控制;装舟台:→园片放置的区域,由控制柜控制运行炉体:→对园片进行高温作业的区域,由控制柜控制升降温源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。

FSI:负责炉前清洗。

第二章:热氧化工艺热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。

热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。

硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。

2. 1氧化层的作用2.1.1用于杂质选择扩散的掩蔽膜常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。

利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。

1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。

同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。

作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。

2.1. 2缓冲介质层其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。

2.1.3电容的介质材料电容的计算公式:C=ε0*εr *S/dε0:真空介质常数 εr :相对介电常数S :电容区面积 D :介质层厚度P-Well SiO 2 Si 3N 4用材料。

在电容的制作过程中,电容的面积和光刻、腐蚀有较大的关系,而厚度则由二氧化硅的厚度决定。

2.1.4 集成电路的隔离介质二氧化硅的隔离效果比PN结的隔离效果好,漏电流小,耐击穿能力强,隔离区和衬底之间的寄生电容小,不受外界偏压的影响,使器件有较高的开关速度。

如工艺中常用的场氧化就是生长较厚的二氧化硅膜,达到器件隔离的目的。

2.1.5 MOS场效应晶体管的绝缘栅材料二氧化硅的厚度和质量直接决定着MOS场效应晶体管的多个电参数,因此在栅氧化的工艺控制中,要求特别严格。

2.2 热氧化方法介绍2.2.1 干氧氧化干氧氧化化学反应式:Si+O2 == SiO2氧分子以扩散的方式通过氧化层到达二氧化硅-硅表面,与硅发生反应,生成一定厚度的二氧化硅层。

干氧化制作的SiO2结构致密,均匀性、重复性好,掩蔽能力强,对光刻胶的粘附性较好,但生长速率较慢;一般用于高质量的氧化,如栅氧等;厚层氧化时用作起始和终止氧化;薄层缓冲氧化也使用此法。

2.2.2 水汽氧化水汽氧化化学反应式:2H2O+Si == SiO2+2H2-WellSiO22司不采用此方法。

2.2.3 湿氧氧化湿氧氧化反应气体中包括O2 和H2O ,实际上是两种氧化的结合使用。

湿氧氧化化学反应式:H2+O2==H2OH2O+Si == SiO2+2H2Si+O2 == SiO2湿氧氧化的生长速率介于干氧氧化和水汽氧化之间;在今天的工艺中H2O的形成通常是由H2和O2的反应得到;因此通过H2和O2的流量比例来调节O2和H2O的分压比例,从而调节氧化速率,但为了安全,H 2/O2比例不可超过1.88。

湿氧氧化的氧化层对杂质掩蔽能力以及均匀性均能满足工艺要求,并且氧化速率比干氧氧化有明显提高,因此在厚层氧化中得到了较为广泛的应用,如场氧化等。

2.2.4 掺氯氧化氧化气体中掺入HCL或DCE(C2H2Cl2)后,氧化速率及氧化层质量都有提高。

人们从两个方面来解释速率变化的原因,其一:掺氯氧化时反应产物有H2O,加速氧化;其二:氯积累在Si-SiO2界面附近,氯与硅反应生成氯硅化物,氯硅化物稳定性差,在有氧的情况下易转变成SiO2,因此,氯起了氧与硅反应的催化剂的作用。

并且氧化层的质量也大有改善,同时能消除钠离子的沾污,提高器件的电性能和可靠性。

热氧化过程中掺入氯会使氧化层中含有一定量的氯原子,从而可以减少钠离子沾污,钝化SiO2中钠离子的活性,抑制或消除热氧化缺陷,改善击穿特性,提高半导体器件的可靠性和稳定性。

我们公司大多数干氧氧化都含有掺氯氧化。

2. 3热氧化过程中的硅片表面位置的变化如果热生长的二氧化硅厚度是X0(um),所消耗的硅厚度为X1,则:a=X1/X=0.46即生长1um的SiO2,要消耗掉0.46um的Si。

但不同热氧化生长的SiO2的密度不同,a值会略有差异。

2.4 影响氧化速率的因素2.4.1 热氧化模型简介硅片的热氧化过程是氧化剂穿透二氧化硅层向二氧化硅和硅界面运动并与硅进行反应。

Deal-Grove方程具体描述了这种热氧化过程。

Deal-Grove膜厚方程式:X2+AX=B(t+τ)式中:A=2D0*(1/KS+1/h)B=2D*N*/nτ=(XI 2+A*XI)/BD:氧化剂在二氧化硅中的有效扩散系数; h:气相输运常数KS:界面反应速率常数;N*:氧化剂在氧化层中的平衡浓度XI:初始氧化层厚度; n:形成单位体积二氧化硅所需的氧分子数极限情况1:短时间氧化时X=(B/A)*t B/A:线性氧化速率常数极限情况2:长时间氧化时X2=Bt B:抛物线速率常数这两个速率常数都与工艺方法、氧化温度、氧化剂的分压、晶向有关系。

2.4.2 氧化温度的影响温度越高,氧化速率越快。

2.4.4 硅片晶向的影响线性速率常数与晶向有较大的关系,各种晶向的园片其氧化速率为:(110)>POLY>(111)>(100)2.4.5 掺杂杂质浓度的影响当掺杂杂质的浓度相当高时,会产生增强氧化,使氧化速率发生较大变化。

如 LVMG 产品N+退火氧化:在未掺杂区的氧化厚度:670A在N+掺杂区氧化厚度:1700A2.4.7 氧化剂分压的影响在前面介绍的湿氧氧化中,如果改变H2或O2的流量,就会使水汽和氧气的分压比降低,使氧化速率变化。

2.4 CSMC-HJ扩散课的工艺状况2.4.1 氧化质量控制2.4.1.1 拉恒温区控制温度定期拉恒温区以得到好的温度控制2.4.1.2 DCE(C2H2Cl2)吹扫炉管2.4.1.3 BT 测量BT项目可以检测到可动离子数目,使我们及时掌握炉管的沾污情况,防止炉管受到可动电荷粘污,使大批园片受损。

2.4.1.4 片内均匀性保证硅片中每个芯片的重复性良好2.4.1.5 片间均匀性保证每个硅片的重复性良好2.4.1.6定期清洗炉管清洗炉管,可以减少重金属离子、碱金属离子的沾污同时也能减少颗粒,保证氧化层质量。

2.4.1.7 定期检测系统颗粒2.5.常见问题及处理I 膜厚异常,但均匀性良好对策:首先,检查测量结果是否准确、仪器工作状态是否正常,然后1 检查气体流量、工艺温度是否正常;2 检查炉管的气体接口是否正常;3 如使用控制片,检查控制片是否用对;4 和动力部门确认,工艺时气体供应有无出现异常;5 对于外点火的炉管,请检查点火装置的各处连接正常,然后进行TORCH点火实验。

Ⅱ部分园片或部分测试点膜厚正常,但整体均匀性差对策:1 如使用控制片,检查控制片;2 检查排风正常第三章 扩散工艺扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN 结。

在集成电路发展初期是半导体器件生产的主要技术之一。

但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。

3.1 扩散机构3.1.1 替位式扩散机构这种杂质原子或离子大小与Si 原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。

硼、磷、砷等是此种方式。

3.1.2 填隙式扩散机构这种杂质原子大小与Si 原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。

镍、铁等重金属元素等是此种方式。

3.2 扩散方程∂N / ∂t = D*2N / ∂x2N=N (x ,t )杂质的浓度分布函数,单位是cm -3 D :扩散系数,单位是cm 2/s加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。

3.2.1 恒定表面浓度扩散整个扩散过程中,硅片表面浓度N S保持不变N (x ,t )=N S erfc (x/(2*(Dt )1/2))式中erfc 称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。

N(x,t)=(Q/( Dt)1/2)*exp(-X2/4Dt)exp(-X2/4Dt)是高斯函数,因此限定源扩散时的杂质分布是高斯函数分布。

由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大3.2.3 扩散系数扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。

D大,扩散速率快。

D与扩散、扩散气氛、衬底晶向、缺陷等因素有关。

温度T、杂质浓度N、衬底浓度NBD=Dexp(-E/kT)T:绝对温度;K:波尔兹曼常数;E:扩散激活能:频率因子D3.2.4 杂质在硅中的固溶度杂质扩散进入硅中后,与硅形成固溶体。

在一定的温度下,杂质在硅中有一个最大的溶解度,其对应的杂质浓度,称该温度下杂质在硅中的固溶度。

固溶度在一定程度上决定了硅片的表面浓度。

3.3 CSMC-HJ扩散课的扩散工艺状况扩散工艺按照作用可以分为推阱、退火、磷掺杂,不同工艺的作业炉管在配置上稍有不同。

3.3.1推阱由于CMOS是由PMOS和NMOS组成,因此需要在一种衬底上制造出另一种型号的衬底,才可以在一种型号的硅片上同时制造出N管、P管,在选择注入后的推阱工艺就可以在硅片上制出P阱、N阱;由于推阱一般需要有一定的结深,而杂质在高温下的扩散速率较大,因此推阱工艺往往需要在较高的温度(1150C)下进行,以缩短工艺时间,提高硅片的产出率。

3.3.1.1推阱工艺主要参数3.3.1.1.1结深比较关键,必须保证正确的温度和时间;3.3.1.1.2膜厚主要为光刻对位提供方便,同时会改变园片表面的杂质浓度,过厚或过薄均会影响N管或P管的开启电压;3.3.1.1.3表面浓度注入能量和剂量一定后,表面浓度主要受制于推阱程序的工艺过程,如高温的温度、工艺的时间、3.3.1.2影响推阱的工艺参数3.3.1.2.1 温度易变因素,决定了扩散系数的大小,对工艺的影响最大。

相关文档
最新文档