数学-中考模拟检测试卷及答案02(洛阳二外2练真题2013.4.26)

合集下载

【最新】河南省洛阳市中考数学模拟试卷(及答案解析)

【最新】河南省洛阳市中考数学模拟试卷(及答案解析)

河南省洛阳市中考数学模拟试卷(含答案)(考试时间:120分钟分数:120分)一、选择题(每小题3分,共30分)1.﹣5的相反数是()A.B.5 C.﹣D.﹣52.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8 3.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100πcm2D.200πcm2 4.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10 C.6,5.5, D.5,5,5.下列二次根式中,与是同类二次根式的是()A.B.C.D.6.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k 的值为()A.﹣4 B.4 C.﹣2 D.27.若关于x的一元一次不等式组的解集是x<5,则m 的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 8.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D 点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.计算的结果是.12.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是.13.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.14.如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.15.如图,在R△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.三.解答题(共8小题,满分75分)16.先化简,再求值:(x﹣2+)÷,其中x=﹣.17.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.18.为了解学生最喜爱的球类运动,某初中在全校2000名学生中抽取部分学生进行调查,要求学生只能从“A(篮球)、B(羽毛球)、C(足球)、D(乒乓球)”中选择一种.(1)小明直接在八年级学生中随机调查了一些同学.他的抽样是否合理?请说明理由.(2)小王从各年级随机抽取了部分同学进行调查,整理数据,绘制出下列两幅不完整的统计图.请根据图中所提供的信息,回答下列问题:①请将条形统计图补充完整;②估计该初中最喜爱乒乓球的学生人数约为人.19.如图,∠MON =25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .当AC =3时,AD 长是多少?(sin25°≈0.4226,结果精确到0.01)20.如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠OCD =90°,点D 在第一象限,OC =6,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.21.工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件) 所用总时间(分钟) 10 1035030 20 850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.22.已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.答案一、选择题(每小题3分,共30分)1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故选:D.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.4.【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.【解答】解:由5,7,x,3,4,6.已知他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,故选:D.【点评】本题考查了方差,利用方差的公式计算是解题关键.5.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;故选:B.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.6.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.7.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a >0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n,则m+n=﹣=﹣+,∵a>0,∴>0,∴m+n>0.故选:C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.9.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.【点评】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P 在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.二、填空题(每小题3分,共15分)11.【分析】首先化简,然后根据实数的运算法则计算.【解答】解:=2﹣=.故答案为:.【点评】本题主要考查算术平方根的开方及平方根的运算,属于基础题.12.【分析】求出∠ABD,根据两直线平行,内错角相等可得∠BAE=∠ABD,然后根据∠CAE=∠BAC+∠BAE代入数据计算即可得解.【解答】解:∵∠DBC=20°,∴∠ABD=60°﹣∠DBC=60°﹣20°=40°,∵BD∥AE,∴∠BAE=∠ABD=40°,∴∠CAE=∠BAC+∠BAE=30°+40°=70°.故答案为:70°.【点评】本题考查了平行线的性质,三角板的知识,熟记性质以及三角板的度数是解题的关键.13.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=,故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:【点评】本题考查了折叠问题、扇形的面积.解决本题的关键是把阴影部分的面积转化为△OBC的面积.15.【分析】取BC、AB的中点H、G,理解MH、HG、MG.分三种情形:①如图1中,当点C′落在MH上时;②如图2中,当点C′落在GH上时;③如图3中,当点C′落在直线GM上时,分别求解即可解决问题;【解答】解:取BC、AB的中点H、G,理解MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=2,MH=,HC′=,HN=﹣x,在Rt△HNC中,∵HN2=HC′2+NC′2,∴(﹣x)2=x2+()2,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=,MC=MC′=2,∴GC′=,∵△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =2.此时点C′在中位线GM的延长线上,不符合题意舍弃.综上所述,满足条件的线段CN的长为或.故答案为为或.【点评】本题考查轴对称、三角形的中位线、勾股定理、相似三角形的判定和性质、正方形的判定和性质等知识,解题的关键是学会用分类讨论的扇形思考问题,属于中考常考题型.三.解答题(共8小题,满分75分)16.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.18.【分析】(1)根据抽样调查的可靠性解答可得;(2)①先根据A种类人数及其所占百分比求得总人数,再用总人数乘以C的百分比求得其人数,用总人数减去其他种类人数求得D的人数即可补全图形;②用总人数乘以样本中D种类人数所占比例可得.【解答】解:(1)不合理.全校每个同学被抽到的机会不相同,抽样缺乏代表性;(2)①∵被调查的学生人数为24÷15%=160,∴C种类人数为160×30%=48人,D种类人数为160﹣(24+72+48)=16,补全图形如下:②估计该初中最喜爱乒乓球的学生人数约为2000×=200人,故答案为:200.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】延长AC交ON于点E,即根据等角的余角相等发现∠ACD=∠O=25°,再运用解直角三角形的知识求解.【解答】解:延长AC交ON于点E,∵AC⊥ON,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,又∵∠OCE=∠ACB,∴∠BAC=∠O=25°,在Rt△ABC中,AC=3,∴BC=AC•sin25°≈1.27,∴AD≈1.27.【点评】解决此题的关键是要能够发现∠ACD=∠O,然后正确理解锐角三角函数的定义.20.【分析】(1)先求出点A的坐标,再利用待定系数法求解可得;(2)先求出点B的坐标,再利用待定系数法求解可得.【解答】解:(1)∵∠OCD=90°,点D在第一象限,OC=6,DC=4,∴D(6,4),∵OD的中点为点A,∴A(3,2);设反比例函数解析式为y=,那么k=3×2=6,∴该反比例函数的解析式为y=;(2)在y=中,当x=6时,y=1,则点B(6,1),设直线AB解析式为y=mx+n,则,解得,∴直线AB解析式为y=﹣x+3.【点评】本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求一次函数和反比例函数解析式及中点坐标公式.21.【分析】(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,根据所用总时间为等式得出方程组求出即可;(2)①根据(1)中生产一件甲种产品和每生产一件乙种产品分别需要的时间,得出生产甲种产品a件需要的时间,进而得出生产乙种产品的件数;②根据每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,小王四月份的工资不少于1500元得出不等式求出即可.【解答】解:(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:;答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,∴一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8﹣)=;②依题意:,1680﹣0.6a≥1500,解得:a≤300.【点评】此题主要考查了二元一次方程组以及不等式的应用,通过表格当中的信息,利用列方程组来求出生产甲、乙两种产品的时间是解题关键.22.【分析】(1)利用线段的垂直平分线的性质证明AB=AC,再利用等腰三角形的性质即可解决问题;(2)如图2中,连接EC.首先证明△EBC是等边三角形,推出∠BED=30°,再由∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°解决问题;(3)如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.首先证明∠AFE=∠BFE=60°,在Rt△EFM中,∠FEM=90°﹣60°=30°,推出EF=2FM,设FM=m,则EF=2m,推出FG=EG﹣EF=6﹣2m,FN=EF=m,CF=2FG=12﹣4m,再证明Rt△EMB≌Rt△ENC(HL),推出BM=CN,由此构建方程即可解决问题;【解答】(1)证明:如图1中,∵BD=CD,AD⊥BC,∴AB=AC,∴∠BAD=∠CAD.(2)解:如图2中,连接EC.∵BD⊥BC,BD=CD,∴EB=EC,又∵EB=BC,∴BE=EC=BC,∴△BCE是等边三角形,∴∠BEC=60°,∴∠BED=30°,由翻折的性质可知:∠ABE=∠A′BE=∠ABF,∴∠ABF=2∠ABE,由(1)可知∠FAB=2∠BAE,∴∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°.(3)解:如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.∵∠BAD=∠CAD,∠ABE=∠A′BE,∴EH=EN=EM,∴∠AFE=∠EFB,∵∠BFC=60°,∴∠AFE=∠BFE=60°,在Rt△EFM中,∵∠FEM=90°﹣60°=30°,∴EF=2FM,设FM=m,则EF=2m,∴FG=EG﹣EF=6﹣2m,易知:FN=EF=m,CF=2FG=12﹣4m,∵∠EMB=∠ENC=90°,EB=EC,EM=EN,∴Rt△EMB≌Rt△ENC(HL),∴BM=CN,∴BF﹣FM=CF+FN,∴10﹣m=12﹣4m+m,∴m=1,∴CF=12﹣4=8.【点评】本题属于几何变换综合题,考查了等腰三角形的判定和性质,线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,角平分线的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2, ∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣, ∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6), 设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

外国语学校初三数学二模试卷

外国语学校初三数学二模试卷

2013年初中数学中考模拟试卷㈡(考试时间120分钟 满分120分)一、填空题(本大题共有12小题,每小题2分,共24分.不需写出解答过程,请把答案直接写在答题纸相应位置上) 1.23-的绝对值是 ▲ ;127-的立方根是 ▲ . 2.分解因式:4y 2+ 8y= ▲ ;244x y xy y -+= ▲ .3.一个多边形的每一个外角都是30°,则这个多边形是 ▲ 边形,它的内角和是____▲___°.4.在函数x xy -=1中,自变量x 的取值范围是 ▲ . 函数14y x =-中自变量x 的取值范围是 ▲ .5.某校初三·一班6名女生的体重(单位:kg )为:35, 36 ,38, 40 ,42 ,42, 则这组数据的众数是 ▲ ;中位数是 ▲ .6.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为 4.581亿帕的钢材.4.581亿帕用科学计数法表示为______▲____帕(保留两位有效数字).7.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根, 则菱形ABCD 的周长为 ▲ .8.已知一个圆锥的底面半径与高分别为3,33,则其侧面积为 ▲ . 9.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2, tan ∠ADC =1,则AB = ▲ .10.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。

若点A 的坐标为(-3,-3),则k 的值 ▲ .11.二次函数2y =2ba 在第 ▲ 象限. 第9题 第12题12. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 ▲ .(填序号)二、选择题(本大题共5小题,每小题3分,共15分。

河南省洛阳市中考数学二模试卷

河南省洛阳市中考数学二模试卷

河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)-的相反数是()A . 2016B . -2016C .D . -2. (2分) (2016九上·思茅期中) 下列运算正确的是()A . (a3)2=a5B . a3+a2=a5C . (a3﹣a)÷a=a2D . a3÷a3=13. (2分)如图是小强用八块相同的小立方块搭建的一个积木,他从左面看到的形状图是()A .B .C .D .4. (2分)在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A .B .C .D .5. (2分)(2017·广东模拟) 如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A .B .C .D .6. (2分) (2019八下·瑞安期末) 欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是()A . ACB . ADC . ABD . BC二、填空题 (共6题;共7分)7. (2分)已知有两个三角形相似,一个边长分别为2,3,4,另一个的对应边长分别为x,y,12,则x=________,y=________.8. (1分) (2020九下·西安月考) cos30°+ sin45°=________9. (1分)(2016·扬州) 2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为________.10. (1分)(2019·天台模拟) 如图,在平面直角坐标系中,△ABC的顶点在坐标轴上,A,B,C三点的坐标分别为 (0,2),(1,0),(0,-0.5),D为线段AB上-个动点(不与点A,B重合),过B,D,0三点的圆与直线BC 交于点E,当△OED面积取得最小值时,ED的长为________.11. (1分)甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有________ .(在横线上填写正确的序号)12. (1分) (2017八下·广州期中) 如图,矩形ABCD中,AB=15cm,点E在AD上,AE=9cm,连接EC,将矩形ABCD沿BE翻折,点A恰好落在EC上的点A′处,则BC=________cm.三、解答题 (共12题;共101分)13. (5分)三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,求这个三角形的周长.14. (5分)已知:如图,过圆O外一点B作圆O的切线BM,M为切点,BO交圆O于点A,过点A作BO的垂线,交BM于点P,BO=3,圆O的半径为1.求:MP的长.15. (5分)先化简,再求值:÷(1+ ),其中a= .16. (5分) (2018八上·揭西期末) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?17. (8分) (2019九上·新密期末) 在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,郑州市某校开设了“3D”打印、数学编程、智能机器人、陶艺制作”四门创客课程,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查(问卷调查表如表所示),将调查结果整理后绘制成图1、图2两幅均不完整的统计图表.最受欢理的创客课程词查问卷你好!这是一份关于你喜欢的创客深程问卷调查表,请你在表格中选择一个(只能选择一个)你最喜欢的课程选项在其后空格内打“√“,非常感谢你的合作.请根据图表中提供的值息回答下列问题:(1)统计表中的a=________,b=________;(2)“D”对应扇形的圆心角为________;(3)根据调查结果,请你估计该校2000名学生中最喜欢“数学编程”创客课程的人数.18. (6分) (2018八下·桂平期末) 如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为________.(2)若正方形ABCD的边长为a,求k的值.19. (10分)(2017·济宁模拟) 一个不透明的口袋里装有分别标有汉字“幸”、“福”、“济”、“宁”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“济宁”的概率.20. (5分)如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,c os10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)21. (10分)(2018·深圳模拟) 如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB 与x轴平行,点B(1,-2),反比例函数(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22. (15分)(2020·石城模拟) 反比例函数y= (x>0) 的图像经过矩形ABCD的顶点A、C,AC的垂直平分线分别交AB、CD于点P、Q;己知点B坐标为(1,2),矩形ABCD的面积为8。

河南省洛阳市中考数学二模试卷

河南省洛阳市中考数学二模试卷

河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列运算结果不一定为负数的是()A . 异号两数相乘B . 异号两数相除C . 异号两数相加D . 奇数个负因数的乘积2. (2分) (2018九上·襄汾期中) 在△ABC中,若∠A、∠B满足|cosA﹣ |+(sinB﹣)2=0,则∠C=()A . 45°B . 60°C . 75°D . 105°3. (2分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .4. (2分)(2019·湘潭) 今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A .B .C .D .5. (2分)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .6. (2分)(2020·镇平模拟) 已知a,b为两个连续的整数,且,则()A . 1B . 2C . 6D . 97. (2分)(2017·路南模拟) 化简 + 的结果是()A . n﹣mB . m﹣nC . m+nD . ﹣m﹣n8. (2分) (2016九上·黑龙江月考) 三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A . 11B . 15C . 11或15D . 不能确定9. (2分)已知数轴上A、B表示的数互为相反数,并且两点间的距离是8,点A在点B的左边,则点A、B表示的数分别是()A . ﹣4,4B . 4,﹣4C . 8,﹣8D . ﹣8,810. (2分)(2020·龙泉驿模拟) 关于反比例函数,下列说法正确的是()A . 图象过(1,2)点B . 图象在第一、三象限C . 当x>0时,y随x的增大而减小D . 当x<0时,y随x的增大而增大11. (2分) (2020七下·南山期中) 如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点处,点B落在点处,若则图中的度数为()A . 40°B . 45°C . 50°D . 60°12. (2分)(2018·深圳模拟) ,函数与在同一直角坐标系中的大致图象可能是()A .B .C .D .二、填空题 (共6题;共16分)13. (2分) (2017八上·江阴开学考) x5•x2•x=________,( xy2)2=________.14. (1分) (2020八上·常德期末) 计算 =________.15. (1分)初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性________(填“大”或“小”).16. (1分)(2016·荆州) 若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k 的图象不经过第________象限.17. (1分) (2020八下·永春月考) 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与点B , C重合),过点C作CN⊥DM交AB于点N ,连结OM、ON , MN .下列五个结论:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,则S△OMN的最小值是1;⑤AN2+CM2=MN2 .其中符合题意结论是________;(只填序号)18. (10分) (2020八下·长沙期中) 在四边形中,已知,,,且于点C.试求:(1) AC的长;(2)的度数.三、解答题 (共7题;共40分)19. (5分)请阅读求绝对值不等式|x|<3和|x|>3的解集的过程:因为|x|<3,从如图1所示的数轴上看:大于﹣3而小于3的数的绝对值是小于3的,所以|x|<3的解集是﹣3<x<3;因为|x|>3,从如图2所示的数轴上看:小大于﹣3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为多少?;不等式|x|>a(a>0)的解集为多少?(2)解不等式|x﹣5|<3;(3)解不等式|x﹣3|>5.20. (10分)(2020·北京模拟) 为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲9189778671319793729181928585958888904491乙8493666976877782858890886788919668975988整理、描述数据:(1)按如下数据段整理、描述这两组数据(2)两组数据的平均数、中位数、众数、方差如下表:a经统计,表格中m的值是________.得出结论:b若甲学校有400名初二学生,估计这次考试成绩80分以上人数为________.c可以推断出________学校学生的数学水平较高,理由为:①________;②________.(至少从两个不同的角度说明推断的合理性)21. (5分) (2017九上·官渡期末) 如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.22. (5分)(2018·霍邱模拟) 如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)23. (5分) (2011七下·河南竞赛) 一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位。

2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)

2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)

洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。

2023年河南省洛阳市中考二模数学试题和答案详解

2023年河南省洛阳市中考二模数学试题和答案详解

2023年河南省洛阳市中考二模数学试题和答案详细解析(题后)一、单选题1. 下列4个数中,最小的数是()A.B.C.D.2. 据报道,在中国科研团队在联合攻关下,成功构建76个光子的量子计算原型机“九章”.实验显示,当求解5000万个样本的高斯玻色取样时,“九章”仅需200秒.从运算等效来看,“九章”的计算用时仅为“悬铃木”用时的百亿分之一.“百亿分之一”用科学记数法可以表示为( )A.B.C.D.3. 如图是由个同样大小的小正方体摆成的几何体,现将第个小正方体摆放在①、②、③某个位置,下面说法有误的是()A.放在①前面主视图不改变B.放在②前面俯视图不改变C.放在③前面主视图不改变D.放在①左面左视图不改变4. 下列计算正确的是()A.B.C.D.5. 下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各跳远8次,他们成绩的平均数相同,方差分别是,,则甲的成绩更稳定D.了解一批冰箱的使用寿命,采用普查的方式6. 如图,在平行四边形上,尺规作图:以点为圆心,的长为半径画弧交于点,分别以点、为圆心,以大于的长为半径画弧交于点,作射线交于点,连接.若,,则线段的长为()A.18B.17C.16D.147. 若关于x的一元二次方程有实数根,则m的值可以是( )A.4B.3C.2D.18. 在显示汽车油箱内油量的装置模拟示意图中,电压一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积与电路中总电阻是反比例关系,电流与也是反比例关系,则与的函数关系是( )A.反比例函数B.正比例函数C.二次函数D.以上答案都不对二、未知9. 如图,在△ABC中,顶点A在x轴的负半轴上,B(0,2),,AB=BC,将△ABC绕点A逆时针旋转,每秒旋转90°,则第2023秒旋转结束时,点B的坐标为()A.(-2,-2)B.(1,-1)C.(-3,1)D.(0,2)三、单选题10. 如图(1),在中,,点从点出发,沿三角形的边以的速度逆时针运动一周,图(2)是点运动时,线段的长度随运动时间变化的关系图象,则图(2)中点的坐标是()A.B.C.D.四、未知11. 写出一个y关于x的函数解析式,使其经过点(2,0):_______________.五、填空题12. 若方程组的解满足,则m的取值范围为_________.13. 学校组织秋游,安排给九年级3辆车,小明和小慧都可以从这3辆车中任选一辆搭乘.则小明和小慧同车的概率为___________.14. 如图,在中,,,以点为圆心,为半径作圆弧交于点,交于点.则阴影部分的面积为___________.15. 如图,矩形的边长为4,将沿对角线翻折得到,与交于点E,再以为折痕,将进行翻折,得到.若两次折叠后,点恰好落在的边上,则的长为___________.六、未知16. (1)计算:.(2)化简:17. 水火箭是一个利用质量比和气压作用而设计的玩具,是初中物理中的一个著名案例,许多同学通过制作水火箭加深了学习物理的兴趣.近日,某中学九年级举办了首届水火箭制作与放飞比赛,每班各20支水火箭在操场上空“展翅高飞”,本次比赛以水火箭的飞行距离x(单位:m)作为比赛成绩.物理兴趣小组的同学们统计了一班和二班各20支水火箭的比赛成绩(比赛成绩均为整数),但一班数据不完整,相关数据统计、整理如下:一班(部分)87、87、87、87、88、89、105、105、105、106、106、106、107、108二班:61、62、65、67、76、76、77、79、79、8080、80、80、105、105、108、110、110、110、132一班、二班水火箭比赛成绩统计表一班二班平均成绩87.187.1中位数a80众数187b根据以上信息,解答下列问题:(1)填空:p=__________,a=____________,b=_____________;(2)根据以上数据,你认为该校一班和二班哪个班级的水火箭比赛整体成绩更好?请说明理由.(写出一条理由即可)(3)参加此次活动的九年级一共有15个班,估计这次活动中比赛成绩超过105米的水火箭有多少支?18. 如图,一次函数y=kx+2(k≠0)的图像与反比例函数(m≠0,x>0)的图像交于点A(2,n),与y轴交于点B,与x轴交于点C(4,0).(1)求k与m的值;(2)点P是x轴正半轴上一点,若BP=BC,求△PAB的面积.19. 我市明堂天堂景区经复建后,以其高大挺拔,古朴雄浑,别具一格,深受国内外游客的喜爱.小明想知道天堂的高度,在附近一高层酒店顶楼A处,测得天堂塔顶D处的俯角∠EAD=9.7°,塔底C处俯角∠EAC=26.6°,小明所在位置高度AB=134.5m.(1)求两栋建筑物之间的水平距离BC;(2)求天堂的高度CD.(结果精确到0.1m)(参考数据sin9.7°≈0.17,tan9.7°≈0.17,sin26.6°≈0.45,tan26.6°≈0.50)20. 某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过18750元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A200300B150240其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠m(0<m<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何安排A、B服装的进货量,才能使总利润y最大?七、解答题21. 如图,在中,,以为直径的⊙与交于点,连接.(1)求证:;(2)若⊙与相切,求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点.(不写作法,保留作图痕迹)八、未知22. 掷实心球是某市中考体育考试的选考项目.如图①是一名男生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图②所示,掷出时起点处高度为2m,当水平距离为4.5m时,实心球行进至最高点处.(1)求y关于x的函数表达式;(2)根据该市2023年中考体育考试评分标准(男生),投掷过程中,实心球从起点到落地点的水平距离大于等于12.4m,此项考试得分为满分17分.按此评分标准,该生在此项考试中是否得满分,请说明理由.23. 【回顾思考】:用数学的思维思考(1)如图1,在△ABC中,AB=AC.①若BD,CE是△ABC的角平分线.求证:BD=CE.②若点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.(从①②两题中选择一题加以证明)(2)【猜想证明】:用数学的眼光观察经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.(3)【拓展探究】:用数学的语言表达如图3,在△ABC中,AB=AC=3,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.答案详解1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。

河南省洛阳市数学中考二模试卷

河南省洛阳市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七上·徐汇月考) 下列运算结果正确的是()A .B .C .D .2. (2分) (2019七上·黄岩期末) 一张长为a,宽为b的长方形纸片(a>3b),分成两个正方形和一个长方形三部分(如图①).现将左边两部分图形对折,使EF与GH重合,折痕为AB(如图②),再将右边两部分图形对折,使MN与PQ重合,折痕为CD(如图③),则图④中长方形ABCD的周长为()A . 4bB . 2(a﹣b)C . 2aD . a+b3. (2分)连接海口、文昌两市的跨海大桥,近日获国家发改委批准建设,该桥估计总投资1 460 000 000。

数据1 460 000 000用科学记数法表示应是()A . 146×107B . 1.46×109C . 1.46×1010D . 0.146×10104. (2分) (2020九下·牡丹开学考) 商店货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A . 7盒B . 8盒C . 9盒D . 10盒5. (2分) (2020七下·阳东期末) 不等式组的整数解的个数是()A .B .C .D .6. (2分)(2017·新泰模拟) 如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB 于点D,则图中阴影部分的面积是()A . ﹣B . ﹣C . ﹣D . ﹣7. (2分)(2012·玉林) 市农科所收集统计了甲、乙两种甜玉米各10块试验田的亩产量后,得到方差分别是=0.002、=0.01,则()A . 甲比乙的亩产量稳定B . 乙比甲的亩产量稳定C . 甲、乙的亩产量稳定性相同D . 无法确定哪一种的亩产量更稳定8. (2分)(2018·河北模拟) 如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A . 4:2:1B . 5:3:1C . 25:12:5D . 51:24:10二、填空题 (共6题;共6分)9. (1分) (2019七上·施秉月考) 倒数和绝对值都等于本身的数是________.10. (1分)(2017·临沭模拟) 分解因式:m2n﹣2mn+n=________.11. (1分) (2017九下·丹阳期中) 函数中,自变量x的取值范围是________。

河南省洛阳市数学中考二模试卷

河南省洛阳市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·启东期中) 下列各式中,是同类项的是()A . xy2与5x2yB . 3ab3与﹣abcC . 12pq2与﹣8pq2D . 7a与2b2. (2分)(2019·扬州) 如图所示物体的左视图是()A .B .C .D .3. (2分)(2019·长春模拟) 如图,直线,若,,则的大小为()A .B .C .D .4. (2分)(2016·泰安) 下列计算正确的是()A . (a2)3=a5B . (﹣2a)2=﹣4a2C . m3•m2=m6D . a6÷a2=a45. (2分) (2016九上·无锡期末) 已知关于x的一元二次方程m +2x-1=0有两个不相等的实数根,则m 的取值范围是()A . m<-1B . m>1C . m<1且m≠0D . m>-1且m≠06. (2分)等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A . 锐角三角形B . 直角三角形C . 锐角三角形或直角三角形D . 以上结论都不对7. (2分) (2018七上·深圳期中) 对代数式x2﹣1的意义,下列说法不正确的是()A . x与1的差的平方B . x的平方与1的差C . x与1的平方差D . 比x的平方少1的数8. (2分)矩形具有而菱形不一定具有的性质是()A . 两组对边分别平行B . 对角线相等C . 对角线互相平分D . 两组对角分别相等9. (2分) (2017八下·启东期中) 如图,函数和的图象相交于点A(m,3),则不等式的解集为()A .B .C .D .10. (2分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A . 6B . 8C . 10D . 12二、填空题 (共8题;共10分)11. (1分) (2020八上·苍南期末) 函数y= 中,自变量x的取值范围是________。

2023年河南省洛阳市东方第二中学中考二模数学试题(含答案解析)

2023年河南省洛阳市东方第二中学中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A ....4.下列运算正确的是()A .()236222a b a b =.239-=-()2211b b -=-.()(66x x +-5.乐乐观察“抖空竹时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°A .32°6.下列调查中,适宜采用抽样调查的是(A.49.如图,为测量一条河的宽度,分别在河岸一边相距标注物P,测得∠A.tan tantan tanaαβαβ+米10.如图,点A坐标为得到对应线段A B'',若点A.455二、填空题11.写出一个在第二象限内,12.代数式(3x xx+-13.盒子里装4张形状、15.如图1,在平面直角坐标系果将直线y x =-沿x 轴正方向平移,三、解答题16.(1)计算:()21332cos 6020233π-⎛⎫---+︒-- ⎪⎝⎭;(2)解方程:321236xx x =+--.17.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤,已知八年级测试成绩D 组的全部数据如下:86,85,87,86,请根据以上信息,完成下列问题:(1)n =________,=a ________;(2)八年级D 组测试成绩的中位数是________;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两(1)求反比例函数的关系式;(2)若一次函数1y k x b =+与(1)请用无刻度的直尺和圆规过点(2)连接AB ,若(1)中所作垂线分别与①求证:CBD DCB ∠∠=;②若O 的半径为4,cos参考答案:;故选:C.【点睛】本题考查了三视图,解题关键是明确俯视图的定义,准确进行判断.4.B【分析】根据积的乘方,有理数的乘方,完全平方公式,平方差公式进行计算即可求解.【详解】解:A.故选:B.【点睛】本题考查了积的乘方,有理数的乘方,完全平方公式,平方差公式,熟练掌握积的乘方,有理数的乘方,完全平方公式,平方差公式是解题的关键.5.D【分析】延长DC交AE于F,依据AB∥CD,∠BAE=92°,可得∠CFE=92°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【详解】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE-∠CFE=115°-92°=23°,故选:D.【点睛】本题考查平行线的性质和三角形外角的性质,解题关键是掌握:两直线平行,同位角相等.6.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批中性笔的使用寿命,具有破坏性,适宜采用抽样调查,符合题意;B、调查奥运会马拉松比赛运动员兴奋剂的使用情况,涉及公平性,适宜采用全面调查,不符合题意;C、调查九年级一班全体50名学生的视力情况,适宜采用全面调查,不符合题意;D、调查神舟十五号载人飞船各零部件的质量,涉及安全性,适宜采用全面调查,不符合题意;故选A.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或PC AB ⊥ ,PAB ∠=90PCA PCB ∴∠=∠=︒,tan PCAC α∴=,tan PC BC =AB a = ,AB AC =+tan tan PC PC a αβ∴=+,过A 作AC x ⊥轴于点由AOA BOB ''∠=∠可得, OCA ODB '∠=则ΔΔAOC B OD ~'OA OCOB OD∴=' 点A 坐标为(2,1)-,点∴2OC =,4OB =∴22OA OC OA =+∴2OC OB OD OA '== 故选:B .【点睛】本题考查了三角形相似的判定与性质以及勾股定理,相关知识点是解题的关键.∴BC BN AC AM=,21ABBC=,3AM=,∴13 BCAC=,1BN∴=,(2)①证明:∵直线l 与∴OB l ⊥,∴90OBD ∠=︒,即90OBA DBC ∠+∠=︒,∵OD OA ⊥,(2)①(1)中的结论仍然成立,理由如下:连接BF ,BD ,如图,∵四边形ABCD 和四边形GBEF ∴45ABD GBF ∠=∠=︒,BGF ∠∴BGF 和BAD 为等腰直角三角形,∴ABG ABF ABF ∠+∠=∠+∠∴ABG DBF ∠=∠,BF BD BG AB=∴ABG DBF ∽,∵ABG DBF ∽,∴GAB BDF ∠=∠,∵ANM DNB ∠=∠,∵四边形GBEF 是正方形,∴45BFG ∠=︒,∵45AGD ∠=︒,∴AGD BFG ∠=∠,∵AB 边的中点为O ,∵四边形ABCD为正方形,=,∴BC CD=,由折叠的性质可得:BC CE=,∴CE CD⊥,∵CQ DF。

洛阳市中考数学模拟试卷(二)

洛阳市中考数学模拟试卷(二)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七上·永登期中) 两个互为相反数的有理数相除,商为()A . 正数B . 负数C . 不存在D . 负数或不存在2. (2分)(2018·衡阳) 对于反比例函数,下列说法不正确的是A . 图象分布在第二、四象限B . 当时,随的增大而增大C . 图象经过点(1,-2)D . 若点,都在图象上,且,则3. (2分)如图,在平行四边形ABCD中,E是AB延长线上的一点,若∠A=60°,则∠1的度数为()A . 120°B . 60°C . 45°D . 30°4. (2分)学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A . 9.70,9.60B . 9.60,9.60C . 9.60,9.70D . 9.65,9.605. (2分)(2020·惠山模拟) 如图,△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△ABC与△DEF的周长比为()A .B . 1:2C . 1:3D . 1:46. (2分)(2019·莲都模拟) 下列立体图形中,主视图是三角形的是()A .B .C .D .7. (2分)(2018·重庆) 若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程 + =1有整数解,则满足条件的所有a的值之和是()A . ﹣10B . ﹣12C . ﹣16D . ﹣188. (2分)(2019·武昌模拟) 如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A .B .C . 2D . 3二、填空题 (共8题;共10分)9. (1分) (2019七上·温岭期中) 近似数8.28万精确到________位.10. (1分)(2020·建邺模拟) 分解因式2x2-8的结果是________;11. (2分)(2020·百色模拟) 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1) M{(﹣2)2 , 22 ,﹣22}=________;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为________.12. (1分) (2019九下·梁子湖期中) 菱形ABCD中,∠A=40°,点P在以A为圆心,对角线BD长为半径的圆上,且BP=BA,则∠PBD的度数为________.13. (1分) (2017九上·巫溪期末) 双曲线y= 的图象在第________象限.14. (2分) (2019八下·北京期末) 关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=________,c=________.15. (1分)(2017·浦东模拟) 如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE=________.16. (1分)(2017·肥城模拟) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为________.三、解答下列各题 (共8题;共77分)17. (10分)计算:(1)(﹣)﹣2+()0+(﹣53)÷(﹣5)2(2) 4(a﹣b)2﹣(2a+b)(﹣b+2a)18. (5分) (2020七下·蚌埠月考) 先将分式(1+ )÷ 进行化简,然后请你给x选择一个合适的值,求原式的值.19. (5分)如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.20. (5分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?21. (5分)(2016·呼和浩特) 在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m 到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)22. (15分)(2017·霍邱模拟) 在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.23. (20分)(2017·贵港模拟) 某校在“校艺术节”期间,举办了A演讲,B唱歌,C书法,D绘画共四个项目的比赛,要求每位同学必须参加且限报一项,以九年(一)班为样本进行统计,并将统计结果绘制如下尚不完整的条形和扇形统计图,请根据统计图解答下列问题:(1)在扇形统计图中,D项的百分率是多少?(2)在扇形统计图中,C项的圆心角的度数是多少?(3)请补充完整条形统计图;(4)若该校九年级有500名学生,那么九年级参加演讲和唱歌比赛的学生共有多少人?24. (12分)(2017·永嘉模拟) 如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB 交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2 ,则S1:S2的值为________(直接写答案)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共10分)9-1、10-1、11-1、11-2、12-1、13-1、14-1、15-1、16-1、三、解答下列各题 (共8题;共77分)17-1、17-2、18-1、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、24-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凌志教育 数学 中考教学质量监控调研试题02
(满分120分,考试时间100分钟)
学生姓名: 所在学校: 成绩: 一、选择题。

(每小题3分,共24分) 1. 5-的绝对值的相反数是( )
A.
15 B. 1
5
- C. 5 D. 5- 2. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )
3. 如图,四边形ABCD 中,若去掉一个060的角得到一个五边形,
则12∠+∠=( )度
A. 120
B. 240
C. 210
D. 156 4. 某大学男生排球队12名队员的年龄情况如下:
则这个队队员年龄的众数和中位数是( )
A. 19,20
B. 19,19
C. 19,20.5
D. 20,19 5. 下列运算正确的是( )
A. 22232x x x -=
B. 22(2)2a a -=-
C. 222()a b a b +=+
D.
2(1)21a a --=--
6. 已知:如图,在O ⊙中,AB 是直径,四边形ABCD
内接于O ⊙,
0130BCD ∠=,过D 点的切线PD 与直线AB 交于P ,
则ADP ∠的度数为( )
A. 045
B. 040
C. 050
D. 065
7. 在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转0180,所得抛物线的解析
式是( )
A. 2(1)2y x =-++
B. 2(1)4y x =--+
C. 2(1)4y x =-++
D. 2(1)2y x =--+ 8. 在锐角ABC Δ中,060BAC ∠=,BN 、CM 为高,P 为BC 的中点,连接 MN 、MP 、NP ,则结论:①NP=MP ;②当060ABC ∠=时,MN ∥BC ; ③BN=2AN ;④AN :AB=AM :AC ,一定正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题。

(每小题3分,共21分) 9. 分式方程
12
23
x x =+的解为 。

10. 将一副直角三角板如图放置,使含030
角的三角板的直角边和含045角
的三角板的一条直角边重合,则1∠的度数为 。

11. 如图,AD 、AC 分别是O ⊙的直径和弦,且030CAD ∠=,OB AD ⊥,
交AC 于点B ,若OB=5,则BC 的长等于 。

12. 双曲线1y 、2y 在第一象限的图象如图,14
y x
=
,过1y 上的任意一点A , 作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S =△,则2y 的 解析式是 。

13. 如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是 。

14. 如图,把抛物线2
12
y x =
平移得到抛物线m ,抛物线m 经过A (6-,0)和原点O ((0,0),它的顶点为P ,它的对称轴与抛物线21
2
y x =交于点Q ,则图中阴影部分的面积为 。

折叠,点B 落在'B 处。

如图,当'B 在AD 上时,'B 在AD 上可移动的最大距离为 ;如图,当'B 在矩形ABCD 内部时,'AB 的最小值为 。

三、解答题。

(共75分)
16.(8分)先化简22169
(1)24
x x x x -+-÷--,然后从23x -剟
的范围内选一个合适的整数作为x 的值代入求值。

17.(9分)如图,ABC Δ中,045ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与
CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

求证:(1)BF=AC
(2)CE=1
2
BF
(3)CE 与BG 的大小关系如何。

18. (9分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽
查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,回答下列问题:
(1)这次抽查的家长总人数为 。

(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是 。

19.(9分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶
再原路返回坡脚。

他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍。

设两人出发x min 后距出发点的距离为y m 。

图中拆线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(4,0)。

(1)A 点所表示的实际意义是 ;OM
MA。

(2)求出AB 所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
20.(9分)如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里/时
的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D 处,同时快艇到达C处,测得C处在D处的北偏西0
30的方向上,且C、D两地相距100海里,
求快艇每小时航行多少海里?(结果精确到0.1海里/ 1.41
≈ 1.73
≈)
21.(9分)我国云南、贵州等西南地区遇到多年不遇的旱灾,“一方有难,八方支援”为及时灌溉农
田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩。

现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩。

(1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台。

①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式;
(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用最少?
22.(10分)如图,ABC ∆中,AB=6cm ,BC=4cm ,060B ∠=。

动点P 、Q 分别从A 、B 两点同时出
发,分别沿AB 、BC 方向匀速移动。

它们的速度分别为2cm/s 和1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动。

设点P 的运动时间为t (s ),解答下列问题: (1)当t 为何值时,PBQ ∆是直角三角形?
(2)设四边形APQC 的面积为y (2cm ),求y 与t 之间的函数关系式;当点P 运动到什么位置时,四边形APQC 的面积最小,并求出最小面积。

23.(12分)如图,在平面直角坐标系xOy中,点A的坐标为(1,点B在x轴的负半轴上,
且0
∠=,抛物线经过A、O、B三点。

ABO
30
(1)求抛物线的解析式及对称轴;
(2)在抛物线的对称轴上是否存在点C,使AOC
∆的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把AOB
∆分成两个三角形,使其中一个三角形面积与四边形BPOD面积之比为2:3?若存在,求出点P的坐标;若不存在,请说明理由。

凌志教育数学中考教学质量监控调研试题02 参考答案:
凌志教育
11。

相关文档
最新文档