脉冲增量插补方法的原理
一、插补及其算法 插补:是指在一条已知起点和终点的曲线上进行数

插补: 插补:是指在一条已知起点和终点的曲线上进行 数据点的密化。 数据点的密化。 CNC系统插补功能:直线插补功能 系统插补功能: 系统插补功能 圆弧插补功能 抛物线插补功能 螺旋线插补功能
淮海工学院
8.1
插补原理
直线和圆弧插补功能插补算法: 直线和圆弧插补功能插补算法:
⑴逐点比较法直线插补的象限与坐标变换 线 G01 型 偏 差 判 别 F≥0 F<0 象 2 限 3
1
4
+X +Y
+Y - X
-X -Y
-Y +X
淮海工学院
8.1
插补原理
(2)逐点比较法圆弧插补象限与坐标变换 )
象 线 型 偏差判别 F≥0 G02 G03 F<0 F≥0 F<0 1 -Y +X -X +Y 2 +X +Y -Y -X 3 +Y -X +X -Y 限 4 -X -Y +Y +X
淮海工学院
或半闭环)CNC系统的加减速控制 二、闭环(或半闭环 闭环 或半闭环 系统的加减速控制
前加减速控制: 前加减速控制 (1)稳定速度和瞬时速度 ) (2)线性加减速处理 ①加速处理 )
②减速处理 ③终点判别处理
8.1
插补原理
图8-2 逐点比较法直线插补轨迹
淮海工学院
8.1
插补原理
2.逐点比较法圆弧插补 逐点比较法圆弧插补
(1)判别函数及判别条件 ) (2)进给方向判别 ) (3)迭代法偏差函数F的推导 )迭代法偏差函数 的推导 (4)逐点比较法圆弧插补终点判别 )
淮海工学院
8.1
插补原理
⒊ 坐标变换及自动过象限处理
插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
第5章 数控插补原理

3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补

插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
数控机床的工作原理

终点判别 N=12
N=12-1=11 N=12-2=10 N=12-3=9 N=12-4=8 N=12-5=7 N=12-6=6 N=12-7=5 N=12-8=4 N=12-9=3 N=12-10=2 N=12-11=1 N=12-12=0
圆弧插补的象限处理
四个象限圆弧插补进给方向和偏差计算
其他象限的圆弧插补以|Xi|和|Yi|代替Xi和Yi。
-X
F2,2=F2,1+|Xe|=2 F3,2=F2,2-|Ye|=-1
n=3+1=4<N n=4+1=5<N
6
F3,2=-
+Y
1<0
F3,3=F3,2+|Xe|=3
n=5+1=6<N
2. 逐点比较法圆弧插补
如右图所示逆圆弧AE,C、D、B点分别在圆弧的外、
内部和圆弧上。
C点在圆弧的外部,则有
y
(X
+ΔX -ΔX -ΔX
Fi1 Fi 2Yi 1 Yi1 Yi 1
+ΔY -ΔY +ΔY
NR3(逆)
+ΔX
-ΔY
圆弧插补举例
用逐点比较法加工第二象限顺圆弧AB,起点为A (-5,0),终点为B(-3,4)
序
偏差判别
进
号
给
偏差计算
终点判别
0
F5,0=0
N=6
1
F5,0=0
+X
2
F4,0=-9<0
N=6-1=5 N=6-2=4 N=6-3=3 N=6-4=2 N=6-5=1 N=6-6=0
A(-4,3)
插补轨迹
y
y B(-3,4)
数控加工中两种插补原理及对应算法

数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
数控装置的插补原理

算法特点:插补误差小于一个脉冲当量,输出脉冲 均匀且速度变化小,调节方便。 应用:广泛应用于两坐标联动数控机床。 二、直线插补 1.偏差计算 设被加工直线OE位于XOY平面第一象限内。起点 为坐标原点,终点为E(Xe,Ye), 则直线方程为: x xe y ye 改写为:yxe xye 0 直线插补时,刀具位置有三种情况
(4-2)
两种方法: a.求出每个程序段中的总步数n n xe ye 每走一步,n-1 n,直至n=0为止。 Xi-Xe≥0 b.每走一步判断 成立否 yi-ye≥0 若成立,插补结束。 4.直线插补软件流程图 第一象限直线插补的软件 流程图如右图
例:现要加工第一象限直线OE,终点坐标Xe=3,Ye=5,
减小误差的方向移动,且只有一个方向移动。 步骤:每进给一步经四个工作节拍 第一节拍—偏差判别:判别刀具当前位置相对工 件轮廓的偏差 第二节拍—进给:控制刀具相对工件轮廓进给一步 第三节拍—偏差计算:计算刀具当前位置的新偏差 第四节拍—终点判别:判别刀具是否到达轮廓段 终点,若到达终点,停止插补。 不断重复四个节拍, 即可加工出所要求轮廓。
3.终点判别 每进给一步也要进行终点判别。 判别方法与直线插补同。n xe xs ye ys 4.插补软件流程图 第一象限逆圆,如图 5.圆弧插补举例 例:设AB为第一象限逆圆 圆弧,起点为A(5.0),终 点为B(0,5),用逐点比较 法加工 ,进行插补运算。
解:总步数 n 0 5 5 0 =10 ∵开始加工时刀具应在圆弧起点, ∴F0=0,加工运算过程见下表 插补轨迹如图
为便于计算机计算,将F 计算简化如下: xi, yi )的F 值为F i : 设第一象限中点(
Fi yixe xiye
第四部分插补原理与速度控制

(3)迭代法偏差函数F的推导
①设加工点P在圆弧外侧或圆弧上,则加工偏差F≥0, 刀具需向X坐标负方向进给一步,即移动到新的加工点
P(Xi+1,Yi)。新加工点的偏差为: Fi+1,i = (Xi – 1)2 +Yi2 -(X02 + Y02)
=Xi2-2Xi+1-X02+Yi2-Y02 =F-2Xi+1 ②设加工点P在圆弧内侧,则加工偏差F<0,刀具需向
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
③偏差计算 计算新加工点相对直线的偏差,作为下一步 偏差判别的依据。
④终点判别 判断是否到达终点,未到达终点则返回第一 步,继续插补,到终点,则停止本程序段的插补。终 点判别可采用两种方法:一是每走一步判断Xi-Xe≥0及 Yi-Ye≥0是否成立,如成立,则插补结束否则继续。二 是把每个程序段中的总步数求出来,即n=|Xe | + | Ye | , 每走一步n-1,直到n=0为止。
线 型 偏差判别
象
1
2
限
3
4
F≥0
-Y
+X
+Y
-X
G02
F<0
+X
+Y
-X
-Y
F≥0
-X
-Y
+X
+Y
G03
F<0
+Y
-X
-Y
+X
(3)圆弧插补自动过象限处理
为了加工二个象限或二个以上象限的圆弧,圆弧插 补程序必须具有自动过象限功能。自动过象限程序包 括象限边界处理、过象限判断及数据处理等模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲增量插补方法的原理
脉冲增量插补方法是指根据每个坐标轴的移动距离,通过给定的脉冲信号来实现机床的运动控制。
其原理如下:
1. 基准脉冲信号:根据给定的控制方式(比如脉冲数、脉冲频率等),产生用于驱动控制系统的基准脉冲信号。
2. 脉冲计数器:通过对基准脉冲信号进行计数,得到机床每个坐标轴的移动距离。
3. 增量运动控制:根据脉冲计数器的结果,控制机床按照指定的移动方向和距离进行运动。
根据脉冲计数器的正负值,可以确定运动的方向;根据脉冲计数器的绝对值,可以确定运动的距离。
4. 反馈控制:在实际运动过程中,通过传感器等装置对机床的运动状态进行反馈监测,以实现闭环控制。
根据反馈信息,可以对脉冲计数器进行修正,以提高运动的精度和稳定性。
总的来说,脉冲增量插补方法通过脉冲信号的计数和控制,实现了对机床的精确定位和移动控制。
这种方法简单、稳定,并且具有较高的精度和可靠性,广泛应用于数控机床等自动化设备中。