数学分析20曲线积分总练习题(含参考答案)

合集下载

数学分析课本(华师大三版)-习题及答案20+22

数学分析课本(华师大三版)-习题及答案20+22

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。

数学分析20.2第二型曲线积分(含习题及参考答案)

数学分析20.2第二型曲线积分(含习题及参考答案)

第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。

《曲线积分习题》课件

《曲线积分习题》课件

THANKS.
《曲线积分习题算方法 • 曲线积分的应用 • 常见题型解析 • 习题与答案
曲线积分的基本概
01

定义与性质
定义
曲线积分是数学分析中一个重要的概 念,它是对曲线上的函数进行积分的 一种方法。
性质
曲线积分具有线性性质、可加性、积 分区间的可分性以及对称性等。
提高习题在难度上有所提升,要求学生对 曲线积分的计算方法和应用有更深入的理 解。题目涉及更复杂的曲线和积分区间, 需要灵活运用公式和技巧。
综合习题与答案
总结词
综合运用与解题技巧
详细描述
综合习题是最高难度的题目,需要学生综合 运用曲线积分的多个知识点,解决复杂的问 题。答案部分会详细解析解题思路和关键步 骤,帮助学生理解并掌握解题技巧。
证明题解析
证明题是曲线积分习题中难度 较大的一类题型,主要考察学 生对积分性质和定理的理解和 应用能力。
这类题目通常会给出一些已知 条件,要求学生通过证明或推 导,得出与曲线积分相关的结 论或性质。
解题步骤包括:首先根据已知 条件进行分析,然后运用相关 的积分性质和定理进行推导, 最后得出结论。
学生在解题时需要特别注意证 明的逻辑严密性和数学表达的 规范性,避免出现推理错误或 表述不清的情况。
详细描述
在物理学中,曲线积分常用于分析各种场(如力场、电磁场、流体场等)的性质。例如,在分析力场时,可以通 过计算曲线上的力矩来分析物体的运动状态;在分析电磁场时,可以通过计算电场线上的电势差来分析电荷的运 动状态。
常见题型解析
04
计算题解析
这类题目通常会给出一条具体的曲线和对应的 被积函数,要求学生计算出该函数在给定曲线
上的积分值。

曲线积分与曲面积分习题答案.pdf

曲线积分与曲面积分习题答案.pdf
(1) (2x y 2z) dS,其中 为平面 x y z 1在第一卦限的部分;
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr

数学分析20.2第二型曲线积分(含习题及参考答案)

数学分析20.2第二型曲线积分(含习题及参考答案)

第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。

数学分析20曲线积分总练习题(含参考答案)

数学分析20曲线积分总练习题(含参考答案)

第二十章 曲线积分总练习题1、计算下列曲线积分:(1)⎰L yds , 其中L 是由y 2=x 和x+y=2所围的闭曲线; (2)⎰L ds y , 其中L 为双纽线(x 2+y 2)2=a 2(x 2-y 2);(3)⎰L zds , 其中L 为圆锥螺线x=tcost, y=tsint, z=t ,t ∈[0,t 0];(4)ydx x dy xy L 22-⎰, 其中L 为以a 为半径,圆心在原点的右半圆周从最上面一点A 到最下面一点B ; (5)⎰--Lyx dxdy , 其中L 是抛物线y=x 2-4, 从A(0,-4)到B(2,0)的一段; (6)dz x dy z dx y L 222++⎰,L 是维维安尼曲线x 2+y 2+z 2=a 2, x 2+y 2=ax (z ≥0,a>0),若从x 轴正向看去,L 是沿逆时针方向进行的.解:(1)解方程组⎩⎨⎧=+=22y x x y ,得⎩⎨⎧-==24y x ,⎩⎨⎧==11y x .∴曲线L 抛物线段为x=y 2, y ∈[-2,1], ds=241y +dy; 直线段为x=2-y, y ∈[-2,1], ds=2dy; ∴⎰L yds =dy y y ⎰-+12241+dy y ⎰-122=1232)41(121-+y +12222-y=223)171755(121-- (2)双纽线的极坐标方程为:r 2=a 2cos2θ, θ∈[-4π,4π]∪[43π,45π], ∴ds=θd r r 22'+=θθd ra r 22422sin +=θd r a 2,由被积函数与L 的对称性, 有⎰Lds y =4θθπd r a r ⎰402sin =4a 2θθπd ⎰40sin =4a 2⎪⎪⎭⎫ ⎝⎛-221.(3)ds=dt z y x 222'+'+'=dt t 22+. ∴⎰L zds =dt t t t 2200+⎰=[]22)2(3120-+t.(4)L: x=acost, y=asint, -2π≤t ≤2π.∴ydx x dy xy L 22-⎰=dt t t a ⎰-22224sin cos 2ππ=)4()4cos 1(16224t d t a⎰--ππ=44πa -.(5)⎰--L y x dx dy =dx x x x ⎰+--202412=-)4(412202----⎰x x d x x =-ln|x 2-x-4|2=ln2.(6)设x=asin 2t, 则维维安尼曲线的参量方程为:x=asin 2t, y=asintcost, z=acost, 当t 从2π减少到-2π时,就是曲线的方向, ∴dz x dy z dx y L 222++⎰=a3dt t t t t t t )sin cos sin cos cos sin 2(52222433--+⎰-ππ= a 3⎪⎪⎭⎫ ⎝⎛-⎰⎰--dt t t dt t 2222222cos sin 2cos ππππ= a 3⎪⎭⎫ ⎝⎛+-42ππ=4π-a 3.2、设f(x,y)为连续函数,试就如下曲线: (1)L:连接A(a,a), C(b,a)的直线段;(2)L:连接A(a,a), C(b,a), B(b,b)三点的三角形(逆时针方向), 计算下列曲线积分:⎰L ds y x f ),(, ⎰Ldx y x f ),(,⎰Ldy y x f ),(.解:(1)⎰L ds y x f ),(=dx a x f ba ⎰),(; ⎰Ldx y x f ),(=dx a x f b a⎰),(;⎰Ldy y x f ),(=0.(2)∵⎰L =⎰AC +⎰CB +⎰BA ,∴⎰L ds y x f ),(=dx a x f ba ⎰),(+dy yb f ba ⎰),(+dt t t f ba 2),(⎰;⎰Ldx y x f ),(=dx a x f b a⎰),(+0+dt t t f ba⎰),(;⎰Ldy y x f ),(=0+dy y b f b a⎰),(+dt t t f ba⎰),(.3、设f(x,y)为定义在平面曲线弧段⌒AB上的非负连续函数,且在⌒AB上恒大于0.(1)试证明⎰⋂ABdsyxf),(>0;(2)在相同条件下,第二型曲线积分⎰⋂ABdxyxf),(>0是否成立?为什么?(1)证:∵存在点(x0,y0)∈⌒AB,使得⎰L dsyxf),(=f(x0,y0)△L,△L为⌒AB的弧长. 又f(x,y)在⌒AB上恒大于0,即f(x0,y0)>0,∴⎰⋂ABdsyxf),(>0.(2)解:不一定成立,如取⌒AB为从A(0,0)到B(0,1)的直线段,取f(x,y)=0,则⎰⋂ABdxyxf),(=0.。

(第三部分)曲线积分习题解答

(第三部分)曲线积分习题解答

第十章 曲线积分与曲面积分(第三部分)曲线积分习题解答一、对弧长的曲线积分1.计算⎰=Lyds I ,其中L 为摆线)cos 1( ),sin (t a y t t a x -=-=的一拱)20 ,0(π≤≤>t a .解 由于⎩⎨⎧-=-=)cos 1()sin (:t a y t t a x L , )20 (π≤≤t ;而dt t a dt y x ds 2122)cos 1(2-='+'=,)20 (π≤≤t故 ⎰⎰π-⋅-==2 021 )cos 1(2)cos 1(dt t a t a yds I L⎰π=232sin 16udu a2232a =. 2.计算曲线积分⎰+Lds y x 22,其中L 为圆周ax y x =+22.解 圆周ax y x =+22在极坐标下的方程为θ=ρcos a )22(π≤θ≤π-,则 θ=θρ'+ρ=ad d ds 22. 故⎰+Lds y x 22⎰ππ-⋅ρ=22 ads ⎰ππ-θ⋅θ=22 cos ad a ⎰πθθ=20 2cos 2d a22a =.3. 计算⎰+=Ly x ds eI 22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解 积分曲线L 为闭曲线(如右图),可分解为321L L L L ++=,其中)0( ,0 :1a x y OA L ≤≤==;)40( , :2π≤θ≤==a r AB L ; )20( , :3a x x y OB L ≤≤==.故 ⎰⎰⎰+++++=322222122 L y x L y x L y x ds eds eds eI2)42(-π+=a e a . 4. 设螺旋线弹簧一圈的方程为t a x cos =,t a y sin =,kt z =,其中π≤≤20t ,它的线密度222) , ,(z y x z y x ++=ρ. 求此线关于z 轴的转动惯量z I .分析 本题为对弧长的曲线积分在物理中的应用问题,应首先将所求的转动惯量用对弧长的曲线积分⎰ρ+=Lz ds z y x y x I 22) , ,()(表示,然后计算积分即可。

数学分析课本-习题及答案第二十章

数学分析课本-习题及答案第二十章

第十章 曲线积分一、证明题1.证明:若函数f 在光滑曲线L:x=x(t),y=y(t)(β≤≤αt )上连续,则存在点()L y ,x 00∈,使得,()⎰L ds y ,x f =()L y ,x f 00∆其中L ∆为L 的长。

二、计算题1.计算下列第一型曲线积分:(1) ()⎰+Lds y x ,其中L 是以0(0,0),A(1,0)B(0,1)为顶点的三角形; (2) ()⎰+L 2122ds y x ,其中L 是以原点为中心,R 为半径的右半圆周;(3) ⎰L xyds ,其中L 为椭圆22a x +22by =1在第一象限中的部分; (4) ⎰L ds y ,其中L 为单位圆22y x +=1;(5)()⎰++L 222ds z y x ,其中L 为螺旋线x=acost,y=asinr, z=bt(π≤≤2t 0)的一段;(6) ⎰L xyzds ,其中L 是曲线x=t,y=3t 232,z=2t 21 ()1t 0≤≤的一段; (7) ⎰+L 22ds z y 2,其中L 是222z y x ++=2a 与x=y 相交的圆周.2.求曲线x=a,y=at,z=2at 21(0a ,1t 0>≤≤)的质量,设其线密度为az 2=ρ, 3.求摆线x=a(t -sint),y=a(1-cost)(π≤≤t 0)的重心,设其质量分布是均匀的.4.若曲线以极坐()θρ=ρ()21θ≤θ≤θ表示,试给出计算()⎰Lds y ,x f 的公式.并用此公式计算下列曲线积分.(1)⎰+L y x ds e 22,其中L 为曲线ρ=a ⎪⎭⎫ ⎝⎛π≤θ≤40的一段; (2)⎰L xds ,其中L 为对数螺线θ=ρx ae (x>0)在圆r=a 内的部分. 5.设有一质量分布不均匀的半圆弧,x=rcos θ,y=rsin θ(π≤θ≤0),其线密度θ=ρa (a 为常数),求它对原点(θ,0)处质量为m 的质点的引力.6.计算第二型曲线积分:(1) ⎰-Lydx xdy ,其中L 为本节例2的三种情形; (2)()⎰+-L dy dx y a 2,其中L 为摞线x=a(t-sint),y=a(1-cost)(π≤≤2t 0)沿t 增加方向的一段; (3)⎰++-L 22y x ydy x dx ,其中L 为圆周222a y x =+,依逆时针方向; (4)⎰+L xdy sin ydx ,其中L 为y=sinx(π≤≤x 0) 与x 轴所围的闭曲线,依顺时针方向;(5)⎰++Lzdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段. 7.质点受力的作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a,0)沿椭圆移动到(0,b),求力所作的功.8.设质点受力的作用,力的方向指向原点,大小与质点到xy 平面的距离成反比,若质点沿直线x=at,y=bt,z=ct(0c ≠) 从M(a,b,c)到N(2a,2b,2c),求力所作的功.9.计算沿空间曲线的第二型曲线积分:(1)⎰L xyzddz ,其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8卦限;(2) ()()()⎰-+-+-L 222222dz y x dy x z dx z y ,其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zx 平面部分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章 曲线积分
总练习题
1、计算下列曲线积分:
(1)⎰L yds , 其中L 是由y 2=x 和x+y=2所围的闭曲线; (2)⎰L ds y , 其中L 为双纽线(x 2+y 2)2=a 2(x 2-y 2);
(3)⎰L zds , 其中L 为圆锥螺线x=tcost, y=tsint, z=t ,t ∈[0,t 0];
(4)ydx x dy xy L 22-⎰, 其中L 为以a 为半径,圆心在原点的右半圆周从最上面一点A 到最下面一点B ; (5)⎰--L
y
x dx
dy , 其中L 是抛物线y=x 2-4, 从A(0,-4)到B(2,0)的一段; (6)dz x dy z dx y L 222++⎰,L 是维维安尼曲线x 2+y 2+z 2=a 2, x 2+y 2=ax (z ≥0,a>0),若从x 轴正向看去,L 是沿逆时针方向进行的.
解:(1)解方程组⎩⎨⎧=+=2
2y x x y ,得⎩⎨⎧-==24
y x ,⎩⎨⎧==11y x .
∴曲线L 抛物线段为x=y 2, y ∈[-2,1], ds=241y +dy; 直线段为x=2-y, y ∈[-2,1], ds=2dy; ∴⎰L yds =dy y y ⎰-+1
22
41+dy y ⎰-1
22=
12
3
2)41(12
1
-+y +
12
2
2
2-y
=
22
3)171755(121-- (2)双纽线的极坐标方程为:r 2=a 2cos2θ, θ∈[-4π,4π
]∪[
43π,4
5π], ∴ds=θd r r 2
2
'+=θθ
d r
a r 2
242
2sin +=θd r a 2,由被积函数与L 的对称性, 有⎰L
ds y =4θθπ
d r a r ⎰402
sin =4a 2θθπd ⎰40sin =4a 2⎪⎪⎭
⎫ ⎝⎛-221.
(3)ds=dt z y x 222'+'+'=dt t 22+. ∴⎰L zds =dt t t t 2200
+⎰=
[]
22)2(3
120
-+t
.
(4)L: x=acost, y=asint, -2
π≤t ≤2
π.
∴ydx x dy xy L 2
2
-⎰=dt t t a ⎰-
22
2
24sin cos 2π
π=)4()4cos 1(1622
4t d t a
⎰--ππ=44πa -.
(5)⎰--L y x dx dy =dx x x x ⎰+--2024
12=-)4(412
202----⎰x x d x x =-ln|x 2-x-4|2
=ln2.
(6)设x=asin 2t, 则维维安尼曲线的参量方程为:
x=asin 2t, y=asintcost, z=acost, 当t 从2π
减少到-2
π时,就是曲线的方向, ∴dz x dy z dx y L 222++⎰=a
3
dt t t t t t t )sin cos sin cos cos sin 2(5222
2
433--+⎰-
π
π
= a 3⎪
⎪⎭
⎫ ⎝

-⎰⎰-
-
dt t t dt t 22
22222
cos sin 2cos π
πππ= a 3⎪⎭
⎫ ⎝
⎛+-42
ππ=4
π-a 3.
2、设f(x,y)为连续函数,试就如下曲线: (1)L:连接A(a,a), C(b,a)的直线段;
(2)L:连接A(a,a), C(b,a), B(b,b)三点的三角形(逆时针方向), 计算下列曲线积分:⎰L ds y x f ),(, ⎰
L
dx y x f ),(,

L
dy y x f ),(.
解:(1)⎰L ds y x f ),(=dx a x f b
a ⎰),(; ⎰
L
dx y x f ),(=dx a x f b a
⎰),(;

L
dy y x f ),(=0.
(2)∵⎰L =⎰AC +⎰CB +⎰BA ,
∴⎰L ds y x f ),(=dx a x f b
a ⎰),(+dy y
b f b
a ⎰),(+dt t t f b
a 2),(⎰;

L
dx y x f ),(=dx a x f b a
⎰),(+0+dt t t f b
a
⎰),(;

L
dy y x f ),(=0+dy y b f b a
⎰),(+dt t t f b
a
⎰),(.
3、设f(x,y)为定义在平面曲线弧段⌒AB上的非负连续函数,且在⌒AB上恒大于0.
(1)试证明⎰⋂
AB
ds
y
x
f)
,
(>0;
(2)在相同条件下,第二型曲线积分⎰⋂
AB
dx
y
x
f)
,
(>0是否成立?为什么?
(1)证:∵存在点(x0,y0)∈⌒AB,使得
⎰L ds
y
x
f)
,
(=f(x0,y0)△L,△L为⌒AB的弧长. 又f(x,y)在⌒AB上恒大于0,
即f(x0,y0)>0,∴⎰⋂
AB
ds
y
x
f)
,
(>0.
(2)解:不一定成立,如取⌒AB为从A(0,0)到B(0,1)的直线段,取f(x,y)=0,
则⎰⋂
AB
dx
y
x
f)
,
(=0.。

相关文档
最新文档