必修4之《辅助角公式》 ()

合集下载

(完整版)必修4之《辅助角公式》

(完整版)必修4之《辅助角公式》

高一数学期末复习————必修4之《辅助角公式》一.知识点回顾对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x aa b x b a b 222222(sin cos )··。

记a a b 22+=cos θ,ba b 22+=sinθ,则cos cos sin ))y x x x θθθ+=+由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(*cos ,θ=sin θ=来确定。

通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终化为y=Asin(ϕ+ωx )+k 的形式。

二.训练1.化下列代数式为一个角的三角函数(1)1sin 2αα+; (2cos αα+;(3)sin cos αα- (4)sin()cos()6363ππαα-+-.(5)5sin 12cos αα+ (6)sin cos a x b x +2.函数y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x (x ∈R)的最小值等于 ( )A .-3B .-2C .-1D .- 53.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为 ( )A .1B .2C 1D 24.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π8对称,那么a= ( )(A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ⎝⎛⎭⎪⎫x +π3的最大值是________.7.已知向量(cos(),1)3a x π=+r ,1(cos(),)32b x π=+-r , (sin(),0)3c x π=+r ,求函数()h x =2a b b c ⋅-⋅+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21cos ,sin cos sin 222a αααα+==)。

三角函数复习之辅助角公式讲义

三角函数复习之辅助角公式讲义

三角函数复习之辅助角公式讲义辅助角公式是指在三角函数的计算中,使用一些特定角度的三角函数值来计算其他角度的三角函数值的公式。

这些特定角度被称为辅助角。

在三角函数的求解和计算中,辅助角公式是非常实用的工具。

下面是一些常用的辅助角公式。

1.正弦函数的辅助角公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。

这两个公式可用于计算任意两个角度的正弦函数值。

2.余弦函数的辅助角公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。

这两个公式可用于计算任意两个角度的余弦函数值。

3.正切函数的辅助角公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的正切函数值来推导得到。

这两个公式可用于计算任意两个角度的正切函数值。

4.余切函数的辅助角公式:cot(A+B) = (cotAcotB - 1) / (cotA + cotB)cot(A-B) = (cotAcotB + 1) / (cotA - cotB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的余切函数值来推导得到。

这两个公式可用于计算任意两个角度的余切函数值。

辅助角公式在实际问题中有广泛的应用。

例如,在求解三角函数方程或证明三角恒等式时,辅助角公式可以帮助简化计算。

此外,辅助角公式还可以用于求解三角函数的特殊值,如求解sin15°、cos75°等。

辅助角公式(高一必修四新授课)

辅助角公式(高一必修四新授课)

两角和与差的正弦、余弦、正切公式的化归
-辅助角公式
教学目标:
知识与技能:熟练利用两角和与差的正弦、余弦、正切公式化归以及辅助角公式的应用。

过程与方法:讲练结合法
情感、态度及价值观:会用联系变化的观点看待事物,增强解决问题的能力。

教学重点:熟练掌握两角和与差的正弦、余弦、正切公式和辅助角公式的应用。

教学难点:在应用辅助角公式进行化归求值的过程中,涉及两角和与差的正弦、余弦、正切公式的使用。

教学过程:
一、讲解新知:
课本6、化简
解:原式
解:原式
解:原式
知识点讲解:
辅助角公式:
有原式
或原式
其中,叫辅助角。


二、当堂训练:
课本6、化简
课本13、化简
答案:课本6、化简原式
课本13、化简原式原式
原式原式
三、课堂小结
四、课后作业。

高中数学三角函数辅助角公式

高中数学三角函数辅助角公式

高中数学三角函数辅助角公式
高中数学三角函数辅助角公式是一种在三角函数中用于求解角度的公式。

它是用来求解直角三角形的非直角角的,是由弧度,两个直角角以及三角函数的函数关系来推导而来的。

三角函数辅助角公式是三角函数的基本应用,它由弧度的定义引出,是由两个直角角和三角函数的函数关系来推导出来的。

其主要用于求解非直角三角形的角度。

其具体表达式为:
α + β + γ = π
sinα = cosβcosγ
cosα = sinβsinγ
tanα = cotβcotγ
其中α、β、γ分别为三个角的角度,π为圆周率。

三角函数辅助角公式主要用于求解三角形的角度,可以帮助我们更好地理解直角三角形的特性。

它可以用来解决许多复杂的问题,比如:求解梯形、平行四边形等多边形的角度,计算三角形内角和,计算三角形的面积等。

三角函数辅助角公式的应用很广泛,它可以用来解决许多复杂的问题,是学习三角函数的必备工具。

因此,学习者一定要把它熟练掌握,有效地运用,以便更好地解决问题。

三角函数辅助角公式推导过程是什么

三角函数辅助角公式推导过程是什么

三角函数辅助角公式推导过程是什么
三角函数辅助角公式推导过程是什么
辅助角公式是一种高等三角函数公式,下面小编整理了三角函数辅助角公式公式及推导过程,供大家参考!
1 三角函数辅助角公式是什幺辅助角公式是一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a2+b2)sin[x+\\arctan(b/a)] (a>0)。

虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。

设要证明的公式为asinA+bcosA=√(a +b )sin(A+M) (tanM=b/a)
以下是证明过程:
设asinA+bcosA=xsin(A+M)
∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)
由题,(a/x) +(b/x) =1,sinM=a/x,cosM=b/x
∴x=√(a +b )
∴asinA+bcosA=√(a +b )sin(A+M) ,tanM=sinM/cosM=b/a
1 三角函数辅助角公式推导过程三角函数辅助角公式推导:
asinx+bcosx=√(a2+b2)[asinx/√(a2+b2)+bcosx/√(a2+b2)]
令a/√(a2+b2)=cosφ,b/√(a2+b2)=sinφ
asinx+bcosx=√(a2+b2)(sinxcosφ+cosxsinφ)=√(a2+b2)sin(x +φ)
其中,tanφ=sinφ/cosφ=b/a,φ的终边所在象限与点(a,b)所在象限相同. 简单例题:
(1)化简5sina-12cosa
5sina-12cosa
=13(5/13sina-12/13cosa)。

高中数学必修4辅助角公式

高中数学必修4辅助角公式

高中数学必修4辅助角公式
学习高中数学必修4要学会对辅助角的公式进行归纳整理,高中数学必修4辅助角公式有哪些呢?下面是店铺为大家整理的高中数学必修4辅助角公式,希望对大家有所帮助!
高中数学必修4辅助角公式1.两角和差公式 (写的都要记) sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
高中数学必修4辅助角公式2.用以上公式可推出下列二倍角公式tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA*cosA
高中数学必修4辅助角公式3.半角的只需记住这个
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
高中数学必修4辅助角公式4.用二倍角中的余弦可推出降幂公式(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
高中数学必修4辅助角公式5.用以上降幂公式可推出以下常用的化简公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2。

必修4之《辅助角公式》

必修4之《辅助角公式》

必修4之《辅助角公式》(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一数学期末复习————必修4之《辅助角公式》一.知识点回顾对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x a a b x b a b 222222(sin cos )··。

记aa b 22+=cos θ,b a b 22+=sinθ,则cos cos sin ))y x x x θθθ=+=+由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(*)其中θ由cos ,θ=sin θ=来确定。

通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终化为y=Asin(ϕ+ωx )+k 的形式。

二.训练1.化下列代数式为一个角的三角函数(1)1sin 2αα; (2cos αα+;(3)sin cos αα- (4)sin()cos()6363ππαα-+-.(5)5sin 12cos αα+ (6)sin cos a x b x +2.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .-53.若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为 ( )A .1B .2C 1D 24.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π8对称,那么a= ( ) (A )2 (B )-2(C )1 (D )-1 6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________.7.已知向量(cos(),1)3a x π=+,1(cos(),)32b x π=+-, (sin(),0)3c x π=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21cos ,sin cos sin 222a αααα+==)。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期末复习————必修4之《辅助角公式》
一.知识点回顾
对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =
++++a b x a a b
x b a b
222
2
2
2
(sin cos )·
·。


a a b
2
2
+=cos
θ,
b a b 22
+=sin
θ,则cos cos sin ))y x x x θθθ=+=+
由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(*
cos ,θ=
sin θ=来确定。

通常称式子(*)为辅助角公式,它可以将多个三角式的函数问
题,最终化为y=Asin(ϕ+ωx )+k 的形式。

二.训练
1.化下列代数式为一个角的三角函数 (1
)1sin 2αα+; (2
cos αα+;
(3)sin cos αα- (4
)sin()cos()6363
ππ
αα-+-.
(5)5sin 12cos αα+ (6)sin cos a x b x +
2.函数
y =2sin ⎝ ⎛⎭
⎪⎫π3
-x -cos ⎝ ⎛⎭
⎪⎫π6
+x (x ∈R)的最小值等于
( )
A .-3
B .-2
C .-1
D .- 5
3.若函数()(1)cos f x x x =,02
x π
≤<,则()f x 的最大值为
( )
A .1
B .2
C 1
D 2
4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈
5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π
8
对称,那么a= ( )
(A )2 (B )-2 (C )1 (D )-1
6.函数y =cos x +cos ⎝ ⎛⎭
⎪⎫
x +π3的最大值是________.
7.已知向量(cos(),1)3a x π=+,1
(cos(),)32
b x π
=+-,
(sin(),0)3
c x π
=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x 的值.
(本题中可以选用的公式有21cos 21
cos ,sin cos sin 222
a αααα+=
=)。

相关文档
最新文档