等式与方程

合集下载

等式和方程的解法

等式和方程的解法

等式和方程的解法等式和方程是数学中常见的概念,它们在解决各种实际问题和理论推导中起着重要的作用。

在本文中,我们将探讨等式和方程的不同解法以及它们在数学中的应用。

一、等式的解法等式是指两个表达式的值相等。

解一个等式就是找到使等式成立的未知数的值。

在解等式时,我们可以使用逆运算、等式性质和等价变形等方法。

1.1 逆运算逆运算是指将等式两边同时进行相反的运算,从而保持等式的平衡。

常见的逆运算有加法的逆运算减法、乘法的逆运算除法等。

例如,对于等式2x + 5 = 15,我们可以通过逆运算的方式解出未知数x的值。

1.2 等式性质等式性质是指等式成立的基本性质。

根据等式性质,我们可以进行等式的变形,以便更容易解出未知数的值。

常见的等式性质包括交换律、结合律和分配律等。

例如,对于等式3x + 4 = 7 + x,我们可以利用结合律将等式变形为2x = 3,进而解出未知数x的值。

1.3 等价变形等式的等价变形是指通过一系列等式的变换,将原等式转化成一个与之等价的新等式,从而解出未知数的值。

等价变形的常见方法有合并同类项、消去离去项等。

例如,对于等式2(x + 1) = 3(x - 2),我们可以通过合并同类项和消去离去项的变形,得到2x + 2 = 3x - 6,然后再用其他方法解出未知数x的值。

二、方程的解法方程是指等号连接的含有未知数的代数式。

解一个方程就是找到使方程成立的未知数的值。

在解方程时,我们可以使用逆运算、代入法和配方法等方法。

2.1 逆运算与解等式时的逆运算类似,我们可以对方程两边同时进行逆运算,从而解出未知数的值。

例如,对于方程3x - 5 = 7,我们可以通过加上5再除以3的逆运算,解出未知数x的值。

2.2 代入法代入法是指将一个已知的值代入方程中,检验方程是否成立,进而解出未知数的值。

代入法适用于一元一次方程组等情况。

例如,对于方程4x + 3y = 10和2x - y = 5,我们可以通过代入已知的x和y的值,来解出未知数x和y的值。

方程与等式的区别和联系

方程与等式的区别和联系

方程与等式的区别和联系方程和等式这俩家伙,其实在数学里就像是兄弟,但性格却大不相同。

想象一下,方程就像是个调皮的孩子,喜欢和你玩捉迷藏,总是藏着一个未知数,让你费尽脑筋去找。

而等式嘛,就像是个老实人,跟你摊牌说“我就等于你”,没啥隐秘。

这两者的关系还挺有趣的。

你要是把方程看成是一种关系,它是两个表达式的游戏,而等式就是这个游戏的规则。

方程里总是有一个未知数,比如x,听起来很神秘对吧?你永远不知道x是什么,直到你找到它的答案。

就像是侦探在寻找线索。

这个过程,真是让人又爱又恨。

有时候你觉得自己快要抓到它了,结果却又迷失在复杂的算式里。

等式就简单多了。

它就是告诉你,左边和右边是完全一样的。

比如2+2=4,这种直接的交流,让人感觉心里一阵舒畅,没啥复杂的。

你说,这是不是跟生活中的一些真理差不多?简单明了。

再说说解方程的过程,就像在冒险游戏里打怪升级。

你要一步一步找出x,经历各种挑战。

先是加减,再乘除,最后可能还要用到平方根。

整个过程就像在做一道美食,调料加多了,味道可能就变了。

数学就这点好玩,虽然有时候让人抓狂,但总能给你带来成就感。

而等式呢,解决起来就像是早晨的阳光,透过窗帘洒在床上,给人一种温暖的感觉,没啥压力。

你就知道,它就是对的。

方程和等式的联系也特别紧密。

解决一个方程,实际上就是在建立一个等式的过程。

就像是一场精彩的对话,双方都在为了解释彼此而努力。

通过方程你可以找到等式的真相。

这个关系真的是如鱼得水,互相成就,互相辉映。

方程让你探索未知,而等式则让你确认真相,真是让人感叹数学的魅力。

如果把数学比作一场舞会,方程就是那个活泼的舞者,永远在变换着舞步,让你眼花缭乱。

而等式则像是那个稳重的舞伴,跟你保持着和谐的节奏,让舞蹈充满韵律。

你试想一下,在这个舞会上,方程给你带来了无限的可能,而等式则提供了安全感。

两者缺一不可,正是这种互补,让数学世界充满了生机。

最后说说生活中的点滴,方程和等式其实无处不在。

等式与方程(精品教案)[大全5篇]

等式与方程(精品教案)[大全5篇]

等式与方程(精品教案)[大全5篇]第一篇:等式与方程(精品教案)等式与方程(精品教案)教学内容:教科书第1-2页的例1、例2,试一试和练一练及练习一的1~3题。

教学目标:1.理解并掌握等式和方程的意义,体会方程与等式间的关系。

会列方程表示事物之间简单的数量关系。

2.在观察、分析、比较、抽象、概括和操作交流中,经历将现实问题抽象成等式与方程的过程,积累将现实问题数学化的活动经验。

3.有机结合地方教育资源、我国在方程史上的贡献等内容渗透健康生活方式,爱家乡、爱祖国的数学文化等积极情感,增强民族认同感。

教学重点经历从现实问题情境中抽象出方程的过程,理解方程的本质。

教学难点会用方程表示事物之间简单的数量关系。

教学准备:例1、例2挂图,实物投影仪教学过程一、认识等式1.谈话:同学们,今天老师给大家带来了一位朋友,它叫(天平)。

(结合课件演示)小明在天平的两边放上砝码,天平(平衡了)。

你能用式子表示天平左右两边物体的质量关系吗?(50+50=100)还可以怎样表示?(50×2=100)2.揭示:像这样左右两边相等的式子,我们把它叫做等式。

提问:这两个等式左边表示的是什么?右边呢?它们之间是(相等的)关系。

3.提问:小明从天平的左边拿走了一只砝码,这时候还能用等式表示两边物体的质量关系吗?那该怎样表示左右两边物体的质量关系呢?(50<100,100>50)【设计意图:从学生熟悉的天平平衡的直观情境出发,经历从自然语言描述事件到数学语言描述的过程,体会等号左边的算式和右边的数表示两个相等的量,它们的地位是均等的,突破原有等号作为表示运算结果时出现的符号的认识。

又通过对不平衡的情境的数学化表达,丰富对数量之间关系的认识。

】二、认识方程1.用含用未知数的式子表示质量关系猜想:为了让天平达到平衡,小芳准备在天平的左边放一个物体。

如果把把这个物体放下来,可能会出现哪些情况呢?怎样用式子表示这里(指其中平衡的情况)左右两边物体的质量关系呢?学生尝试用含有字母的式子表示。

方程的意义及等式的性质

方程的意义及等式的性质

方程的意义及等式的性质知识点回顾1、方程的意义(1)概念:含有未知数的等式就是方程例如:100+x=250,8-x=18,6(x-2)=24,(x+4)÷2=3注意:方程中的字母表示未知的量,叫做未知数(2)方程必须具备的两个条件:一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

(3)方程与等式的关系所有的方程一定是等式,但等式不一定是方程2、等式的性质(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变典型题目一、口算。

0.9-0.25= 4.8+0.07=0.24×3=0.7÷0.1=0.69÷0.3=7.8÷0.3=二、填空。

1.含有未知数的(),叫做方程。

2.用5,y,6组成的方程有:()、()。

3.用方程表示数量关系。

比a多2.4的数是3.8。

()7.8除以a,商是0.6。

()4、若天平的左边放3把同样的茶壶,天平的右边放9个同样的茶杯,天平平衡,则1把茶壶和()个茶杯同样重。

三、判断。

(对的打“√”,错的打“×”)1.含有未知数的式子都是方程。

()2.所有的方程都是等式。

()3.等式不一定是方程。

()4.6x-18=0和4x-8中都含有未知数,所以都是方程。

()5、3x+3是方程()6、方程是等式,等式是方程()7、未知数的式子都是方程。

()四、给小式子找家。

(1)15+8a=374-2x4y=5a5a÷8 34×0.2=3.6a+9<163a÷4=74y+5y=7×9等式方程不等式(2)5+8a=374-2x4y=5a5a÷8 18×0.2=3.6a+9<16a÷4=74y+5y=7×9等式方程不等式五、你能写出3个方程式吗?()()()六、选择。

(将正确答案的序号填在括号里)1.a+a+a=()。

等式与方程的区别与联系_概述说明以及概述

等式与方程的区别与联系_概述说明以及概述

等式与方程的区别与联系概述说明以及概述1. 引言:1.1 概述:等式和方程是数学中非常重要的概念,它们在解决数学问题和现实生活中的各种问题时发挥着关键作用。

尽管等式和方程有一些共同之处,但它们也有一些区别。

本文旨在比较和说明等式与方程的区别与联系,并探讨它们在数学领域和实际应用中的差异。

1.2 文章结构:本文将按照以下结构来论述等式与方程的区别与联系:- 第二部分将对等式与方程的定义、特点以及解的概念和存在性进行详细说明。

- 第三部分将重点讨论等式与方程之间的区别,包括形式上的区别、意义上的区别以及在数学领域中应用上的差异。

- 第四部分将探讨等式与方程之间的联系,包括等式可以看作一种简单类型的方程、方程可以看作一种广义形式的等式,以及复杂问题中同时存在等式和方程。

- 最后一部分将总结等式与方程之间的关系,并强调它们在数学和现实中的重要性,并提出进一步研究等式和方程相关问题的建议。

1.3 目的:本文旨在帮助读者更好地理解等式与方程的概念、区别与联系,并认识到它们在数学领域和实际应用中的作用和重要性。

通过深入分析等式与方程的特点,我们可以为解决各种数学问题提供更有效的方法和思路,并将这些概念应用到实际生活中,解决现实中遇到的各种问题。

2. 等式与方程的区别与联系2.1 定义和特点等式和方程都是数学中常见的概念,它们之间存在着一定的区别和联系。

首先,我们来看它们的定义和特点。

等式是指两个表达式相等的关系,通常用“=”符号连接两个表达式。

在一个等式中,左边的表达式和右边的表达式具有相同的值。

方程是指包含未知数的等式。

在一个方程中,除了含有已知数或已知量外,还包含一个或多个未知数,并且方程中至少存在一个未知数。

通过解方程可以求得未知数的值。

2.2 解的概念和解的存在性等式和方程都涉及到解的概念。

对于一个等式,当找到满足等号两侧表达式相等的值时,这个值就叫做该等式的解。

例如,在等式3x + 5 = 14中,当x取值为3时,就满足了等号两侧相等。

等式与方程——精选推荐

等式与方程——精选推荐

等式与方程
知识点总结
一、方程的有关概念:
1.含有未知数的等式叫做方程。

要判断某式是否是方程,要抓住两点:(1)是否是等式;(2)是否含有未知数。

2.使方程中等号左右两边相等的未知数的值叫做方程的解(根)。

即方程的解就是代入方程可以使等式成立未知数的值。

3.求方程解的过程叫做解方程。

解方程的依据—等式性质
4.只含有一个未知数,并且未知数的指数是1,系数不为0,这样的整式方程叫做一元一次方程。

常见考法
利用等式的性质变形。

误区提醒
(1)方程与等式的概念理解不透彻;(2)等式的性质应用错误。

【典型例题】若-m=4,则m=
【解析】根据等式性质2,等式两边同乘-1,得m=-4。

知识点精练
练习题一难易度:易
练习题二难易度:中
答案
1. 解析过程
在等式的两边都加、减、乘、除(0除外)的同一个数,结果还是等式,所以A、B、C都正确,故选D.
规律方法
在利用等式的基本性质给等式进行变形时,当等式的两边都除以一个单项式,一定要对单项式是不是零进行讨论,如果是零时,方程的两边不能除以这个单项式.
2. 解析过程
规律方法
利用等式的基本性质给方程进行变形时,一定要注意等式基本性质中所提到的注意点.。

等式和方程的应用

等式和方程的应用

等式和方程的应用一、等式的概念与性质1.等式的定义:表示两个数或表达式相等的式子,用等号“=”连接。

2.等式的性质:a.两边同时加减同一个数,等式仍成立;b.两边同时乘除同一个非零数,等式仍成立;c.等式两边交换位置,等式仍成立;d.等式两边同时乘以或除以同一个数(0除外),等式仍成立。

二、方程的概念与解法1.方程的定义:含有未知数的等式,简称方程。

2.方程的解法:a.代入法:将方程中的未知数替换为具体的数值,求出方程的解;b.移项法:将方程中的未知数移到等式的一边,常数移到另一边,使未知数系数化为1;c.合并同类项法:将方程中的同类项合并,简化方程;d.因式分解法:将方程进行因式分解,求出方程的解;e.求根公式法:对于一元二次方程,利用求根公式求解。

三、方程的应用1.实际问题中的应用:a.行程问题:速度、时间和路程的关系;b.利润问题:售价、成本和利润的关系;c.浓度问题:溶质、溶剂和溶液的关系;d.比例问题:比例、外项和内项的关系。

2.方程在科学计算中的应用:a.物理中的力学问题:力、质量、加速度的关系;b.化学中的反应问题:反应物、生成物和反应速率的关系;c.生物学中的种群问题:种群数量、增长率的关系。

四、等式和方程在生活中的应用1.购物问题:计算商品总价、找零等;2.Time 问题:计算时间差、周期等;3.测量问题:计算长度、面积、体积等;4.分配问题:计算分配比例、分配数量等。

五、等式和方程的拓展应用1.函数关系式:用等式表示两个变量之间的关系;2.不等式:表示两个数或表达式的大小关系;3.系统方程:多个方程组成的求解体系。

习题及方法:1.等式性质习题:已知等式 2x + 3 = 13,求 x 的值。

答案:将等式两边同时减去3,得到 2x = 10,再将等式两边同时除以2,得到 x = 5。

解题思路:利用等式的性质,将常数项移到等式右边,未知数系数化为1。

2.方程解法习题:已知方程 5x - 8 = 2x + 1,求 x 的值。

等式方程知识点总结

等式方程知识点总结

等式方程知识点总结一、等式方程的基本概念1.1 等式与方程首先,我们需要明确等式与方程的概念。

等式是指两个表达式之间用等号连接起来的数学式子,例如:2x + 3 = 7就是一个等式。

而方程则是含有未知数的等式,例如:2x + 3 = 7就可以看作是一个包含未知数x的方程。

因此,方程是等式的一种特殊形式,它描述了未知数与已知数之间的关系。

1.2 等式方程的种类根据等式方程所含未知数的次数和方程的次数,等式方程可以分为一元一次方程、一元二次方程、二元一次方程等多种类型。

其中,一元一次方程最为常见,它的一般形式可以表示为ax + b = c,其中a、b、c为已知数,x为未知数。

一元二次方程的一般形式则是ax^2 + bx + c = 0,其中a≠0。

1.3 等式方程的解解是指使得方程成立的未知数的取值,对一元一次方程来说,它的解就是使得等式两边相等的x的值。

对于一元一次方程ax + b = c,它的解可以表示为x = (c - b)/a。

而一元二次方程的解则需要用到求根公式。

二、等式方程的解法2.1 方程的移项变元法移项变元法是解一元一次方程最常用的方法之一。

其步骤是将方程两边的式子进行移项,使得方程的未知数x单独出现在一边,然后根据移项后等式仍然成立的原则,得出方程的解。

例如,对于方程2x + 3 = 7,首先将等式两边的常数项3移动到方程的右侧,得到2x = 7 - 3,然后再将系数2移到右侧,得到x = (7 - 3)/2,最终得到x = 2,这就是方程的解。

2.2 方程的加减法对于包含两个未知数的二元一次方程,可以利用方程的加减法来求解。

其基本思路是通过加减法使得两个方程的某一项消失,从而得到一个只含有一个未知数的方程,再利用移项变元法求解即可。

例如,对于方程2x + 3y = 7和3x - 2y = 1,可以通过将两个方程相加或相减,消去其中一个未知数的系数,得到一个只含有一个未知数的方程,然后再利用移项变元法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章等式的基本性质第1课时总第课时
主备人:王彬执教人:
学习目标:
1、学生掌握方程的定义以及等式与方程的区别;
2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

学习重(难)点:检验方程的解的方法
学习重(难)点能辨别等式与方程的联系与不同
教学过程:
一、复习引入:
⑴猜年龄:
将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。

⑵找规律:
如果设小明的年龄为x岁,那么“乘以2再减去5”就是2x-5,所以得到方程:2x-5=21
释疑点拨:
1.等式与恒等式:
①等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号“=来表示相等关系的式子,叫做等式。

等式左边的式子叫做等式的左边;
等式右边的式子叫做等式的右边;
等式的一般形式是:A=B
②恒等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

2.方程与整式方程:
①方程:
这种含有未知数的等式叫做方程。

②整式方程:
方程的两边都是整式时,称为整式方程。

巩固练习:
1、有一个数,它的1.5倍与34的和得109,这个数是多少?
2、一个数的5倍是8的1.5倍,求这个数。

3、一个数的7/10比15的2/3多12求这个数
拓展与延伸:
1、写出两个解是x=5的一元一次方程
2、小丽用10元钱买了两种不同的贺卡共8张,单价分别是1元、2元、设1元的贺卡有x张,列出以x为未知数的方程。

系统总结:
这节课你有哪些收获? 请你说给大家听听!。

相关文档
最新文档