非齐次线性方程组

合集下载

3.5 非齐次线性方程组

3.5 非齐次线性方程组

2.设1 (1,3,0,5)T , 2 (1,2,1,4)T , 3 (1,1,2,3)T ,
(1, a,3, b) .
T
( )a, b取何值时能用1,2,3线性表示?表示式为? 1
(2)a, b取何值时不能用1,2,3线性表示?
设 x11 x22 x33 x1 (1 , 2 , 3 ) x2 AX x 3
3.5 非齐次线性方程组有解的条件 及解的结构
复习
非齐次线性方程组Am×nX=b有解 增广矩阵(A,b)经初等行变换化得的阶梯矩阵“无尾巴”
阶梯矩阵法
一、非齐次线性方程组有解的条件 定理 非齐次线t; 秩( A) 秩( A, 秩( A,b) b)=
A 1 b, A 2 b A(1 2 ) O
• 非齐次方程组AX=b的解与其导出组AX=0的解的和是非 齐次方程组AX=b的解。
A b, A O A( ) b
2. 非齐次线性方程组的结构式通解 定理 设A是一个 m n矩阵,b是一个m维列向量,
证明: Am×n X = b 有解
秩法
x 11 + x2 2+ … + xnn = b 有解
b可由1 ,2 ,,n线性表出 秩{1,2 ,,n,b} 秩{1, 2 ,, n}
秩( A, b)
另一思路: Am×n X = b 有解
秩( A)
(A,b)经初等行变换化得的阶梯矩阵(C,d)“无尾巴”
不再是含 参数的方 程组了。
x1 x2 x3 x4 0 例2.为何值时,方程组 x1 x2 x3 3x4 1 有解? x x 2 x 3x 2 3 4 1

第三节 非齐次线性方程组

第三节 非齐次线性方程组
2
1
43 R(A)=R(B)=3 <5
4 3
方程组有
2
无穷多个解
x1
1 2Biblioteka x41 4x5
1 4

x2
3 2
x4
3 4
x5
3 4
x3
x4
1 2
x5
3 2
1
43
取x4=x5=0, 得方程组的一个特解:
*
4 3
对应齐次方程组
x1
1 2
x4
1 4
x5
的同解方程组为:
x2
3 2
x4
3 4
x5
3 x1
x2
p
x3
15 x4
3,
x1 5 x2 10 x3 12 x4 t
当p, t取何值时,方程组无解?有唯一解?
有无穷多解?在方程组有无穷多解的情
况下,求出一般解.
32
返回

1 1 2 3 1
B
1 3
3 1
6 p
1 3 15 3
1 5 10 12 t
1 1 0 2
2
3 1
(2). 当 1时,
1 1 1 1
B 0 0 0 0 . 0 0 0 0
R( A) R(B) 1.
因此方程组有无穷多个解.
(n r 3 1 2. 有两个任意常数).
26
返回
(3). 当 2 时,
1 1 2 4 B [ A,b] 0 3 3 6.
0 0 0 3
1、非齐次方程组的求解步骤
(1) 写出B,并将B化为行阶梯形;从而求出 R( A)与 R(B)以判 断是否有解;

3-6.非齐次线性方程组

3-6.非齐次线性方程组

ïï í ï
x2 x3
= =
x2
2x4 + 1 2
ïîx4 =
x4
çæ x1 ÷ö çæ 1÷ö çæ 1÷ö çæ1 2÷ö
ç ç ççè
x2 x3 x4
÷ ÷ ÷÷ø
=
k1
ç ç
ççè
1÷ 00÷÷÷ø
+
k2
ç ç
ççè
0÷ 12÷÷÷ø
+
ççççè1002÷÷÷÷ø.
(k1, k2 Î R)
例2 求解非齐次线性方程组
ú ú
êë0 0 0 0 0 k -3úû
ìx1 = x3 + x4 + 5x5 - 2

ï ïï í
x2 x3
= =
-2 x3 x3
-
2x4
-
6 x5
+
3
ï ï
x4
=
x4
ïîx5 =
x5
通解 为
é 1 ù é 1 ù é 5 ù é- 2ù
êê- 2úú
êê- 2úú
êê- 6úú
ê ê
3
ú ú
x
x = k1x1 + L + kn-rxn-r + h * .
例1 求解非齐次方程组的通解
ì ï í
x1 x1
-
x2 x2
+
x3 x3
+ -
x4 = 0 3x4 = 1
注意书写格式
ïî x1 - x2 - 2x3 + 3x4 = - 1 2
非齐次线性方程组:增广矩阵化成行阶梯形矩 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解;

第三节 非齐次线性方程组 非齐次线性方程组的概念

第三节    非齐次线性方程组 非齐次线性方程组的概念

11
22
nn
问题是:非齐次线性方程组何时是有解的?如果有
解时怎样求出其所有解?
根据齐次线性方程组的不同表示方法,以及矩阵 与其行向量组、列向量组的关系,不难得知如下 等价命题:
二、非齐次线性方程组有解的条件
非齐次线性方程组有解得等价条件
(1)线性方程组 AX b 有解
(2)向量b能由向量组1, 2 ,
例 设四元非齐次线性方程组的系数矩阵的秩
为3,已知 1 , 2 , 3 是它的三个解向量,且
2
1
1
3 4
,
2
3
2. 3
5
4
求该方程组的通解。
解: 设非齐次线性方程组 Ax b
对应的齐次线性方程组 Ax 0
已知 1,2 ,3 是Ax b的解,
故有 A1 b, A2 b, A3 b 令 21 (2 3 ), 则
解:设有方程 a1 x1 a2 x2 a3 x3 a4 x4 0
a1
由题意应有:
0 3
1 2
2 1
3 0
a2 aa43
0 0
对系数矩阵施行初等行变换,有:
0 1 2 3 1 0 1 2
3 2 1 0 ~ 0 1 2
3
a1
1 0
0 1
1 2
2
3
a2 aa43
0 0
0 , 0 1
从而得到齐次线性方程组的一个基础解系
1 (2,1,1,0,0)T ,2 (2,1,0,1,0)T ,3 (6,5,0,0,1)T
齐次线性方程组通解为 c11 c22 c33 非齐次线性方程组的通解为 c11 c22 c33
其中 c1 , c2 , c3 为任意常数.

3 非齐次线性方程组

3  非齐次线性方程组
12
( k1 , k2 R ).
返回
x1 1 1 1 2 x 0 1 2 k1 k2 即 x3 2 0 x 1 0 4
例2. 求解方程组
1 / 2 0 . 1 / 2 0 ( k1 , k2 R).
0 1 1 1 1 r2 r1 0 0 2 4 1 r3 r1 0 0 1 2 1 / 2
1 1 r 3 r2 2 0
1 1 0 0
11
0
2 0
0 4 1 . 0 0 1
返回
R( A) 2,
§3 非齐次线性方程组
一、非齐次线性方程组有解的充要条件 二、非齐次线性方程组的通解结构 三、非齐次线性方程组的解法
1
返回
一、非齐次线性方程组有解的充要条件
a11 x1 a12 x2 a1n xn b1 am 1 x1 am 2 x2 amn xn bm
6
返回
二、非齐次线性方程组的通解结构
④有解, 叫相容. ④ 可写成: 相应的齐次方程组: AX = b AX = 0 ⑥ ⑦
性质3. 若1 ,2是⑥的解, 则1 2是⑦的解. 性质4. 若 是⑥的解, 是⑦的解, 则 是⑥的解. 定理: 若 是 ⑥的一个解, 则⑥的任一个解 X总可写成: X . 是⑦的解.
2
返回
则方程组④可写成:
x1 1 x2 2 xn n b
④的系数阵:

a11 A am 1
a12 am 2
a1n amn

非齐次线性方程组

非齐次线性方程组
10
例 判别方程组是否有解?
2x y 2z 3w 1 3x 2y z 2w 4 3x 3y 3z 3w 5
解 方程组的增广矩阵为
2 A 3
3
1 2 3
2 1 3
3 2 3
1 4 5
2
0
0
1 1 3
2 4 12
3 5 15
1 2
5
0
7 0
1 1 0
2 4 0
3 5 0
a11 a12 L
A
a21
a22
L
M
am1 am2
a1n
a2n
amn
x1
X
x
2
M
x
n
m个方程 ,
n个未知数
b1
b
b2
M
bm 3
非齐次线性方程组
a11x1a12 x 2 L a1n xn b1
a21x1a22 x 2 L a2n xn b2 ........................................
r3 r1
0
0
1 4 4
3 6 6
1 7 7
1
1
1
1 1 3
r3 r2
r2 ( 14 )
0
1
3
2
1 7
4
1
1
4
1
0
3 2
r1r2
0
1
3 2
3 4 7 4
5
4
1 4
0 0 0 0 0
R( A) R( A) 2
0 0 0 0 0 12
1
0
32
3 4
5 4

非齐次线性方程组

非齐次线性方程组

1 9

3 7


6 3 6
( k1, k2 任意常数)

A~


1 a
a 1
1 1
a 1
a1
1 0
0 1
1 a 1
a a2
a
1 1 a a2
0
0
a2
1

2a

a
2

1 0 0 a1,a2 0 1 0
1 a a2 1

a2


4 x4 5x4

15 22
x1 x2
5x4 9

1 0 1 2 1
A


0 0
1 0
1 0
3 8 0 0


0 0 0 0 0
齐次方程组 的基础解系
2

1

1 1
,
2

3 0

0
0
1
1 2a a2

a2
当 a 1,a 2 时,方程组存在唯一解

x1


1 a a2

x2


x3

1
a2 1 2a
a2
a2
当 a 1时
A~


1 0
1 0
1 0
1 0
0 0 0 0
方程组有无穷多组解
X k11 k22
1 1 1 k1 1 k2 0 0 0 1 0 ( k1, k2 任意常数)

5-2非齐次线性方程组

5-2非齐次线性方程组

思考题
设A是m 3矩阵,且RA 1.如果非齐次线性
方程组Ax
b的三个解向量1 ,2
,

3

1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求Ax b的通解.
思考题解答
解 A是m 3矩阵, R( A) 1, Ax 0的基础解系中含有3 1 2个线性
故得基础解系
1 2 1 2
1
1
,
0
0
0 1
2
0
,
1
0
2 3
3
0
.
0
1
求特解

x3
x4
x5
0, 得x1
9, 2
x2
23 . 2
所以方程组的通解为
1 2 1 2
0 1
2 9 2 3 23 2
x
k1
1
k2
0
k3
0
0
.
0 0 0 0
xr1 1 0
0

xr 2
0
,
1
,
,
0
.
xn 0 0
1

x1
b11
,
b12
,
,
b1 ,n r
,
xr br1 br2
br
,nr
b11
b12
b1 ,n r

br
1
1 1 ,
2
br
2
0 ,
x1 2 x2
x2 x3
x3 2x4
x4 x5 6x5
7 23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非齐次线性方程组Ax=b
一、基本理论
线性方程组Ax=b 有解条件: 系数矩阵A 的秩 = 增广矩阵(A,b )的秩.
非齐次线性方程组的解集结构:
若x 1是Ax=b 的一个特解, N (A )表示齐次线性方程组Ax=0的解空间, 则非齐次线性方程组Ax=b 的解集为x 1+N (A ).
解非齐次线性方程组的方法:
通过初等行变换将增广矩阵(A,b )化为最简行阶梯矩阵(A 1,b 1), 写出对应的方程组,根据方程组写出解.
二、Matlab 实现
调用rref(A )将A 化为最简行阶梯矩阵, 根据对应的方程组写出解.
若方程组有解, 且rank(A )=n ,即A 列满秩时, 方程组有唯一解. 此时可直接用A 左除b 求得唯一解:x=A\b .
三、例子
例1. 求解线性方程组
123452451234512351
2
3
4
5
343226333
434222026231
x x x x x x x x x x x x x x x x x x x x x x -++-=⎧⎪---=-⎪⎪-++-=⎨⎪++-=⎪-+-++=
⎪⎩
A=[3 -4 3 2 -1; 0 -6 0 -3 -3; 4 -3 4 2 -2; 1 1 1 0 -1; -2 6 -2 1 3]; b=[2; -3; 2; 0; 1]; A1=[A b]
A1 =
3 -
4 3 2 -1 2 0 -6 0 -3 -3 -3 4 -3 4 2 -2 2 1 1 1 0 -1 0 -2 6 -2 1 3 1
rref(A1)
ans =
1 0 1 0 -1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
化为方程组
324
1551
0x x x x x x ++=-⎧⎪=⎨⎪=
-⎩
所以解为
15233354555311000001100011010x x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
++
例2. 设函数2
y ax
bx c =++经过点(1,1), (2,2), (3,0), 求系数a , b , c .

1422930a b c a b c a b c ++=⎧⎪
++=⎨⎪++=⎩
输入系数矩阵A 和右端项b
A=sym([1 1 1; 4 2 1; 9 3 1]); b=sym([1; 2; 0]);
增广矩阵1A A1=[A b]
A1 =
[ 1, 1, 1, 1] [ 4, 2, 1, 2] [ 9, 3, 1, 0]
利用rref 求解 R=rref(A1)
R =
[ 1, 0, 0, -3/2] [ 0, 1, 0, 11/2] [ 0, 0, 1, -3]
即解为
311
,,322
a b c =-==-
解二
判断方程组是否有解, 即系数矩阵A 的秩是否等于增广矩阵1A 的秩. rank(A)==rank(A1)
ans = 1 有解.
判断方程组是否有唯一解, 即系数矩阵 A 是否等于A 的列数n .
[m,n]=size(A); rank(A)==n
ans = 1
A 的秩等于列数n , 有唯一解.
直接用A 左除 b 求解 x=A\b
x = -3/2 11/2 -3
例 3. 设三种食物中每100g 中的蛋白质、碳水化合物、脂肪的含量如下表.
三种食物用量各为多少才能保证所需营养?
解. 设脱脂牛奶用量为1x , 大豆面粉用量为2x , 乳清用量为3x .
1231231
2
3
36 51 133352 34 74450 7 1.13
x x x x x x x x x ++=++=++=⎧⎪⎨⎪⎩
A=[36 51 13 33; 52 34 74 45; 0 7 1.1 3]
A =
36.0000 51.0000 13.0000 33.0000 52.0000 34.0000 74.0000 45.0000 0 7.0000 1.1000 3.0000 R=rref(A)
R =
1.0000 0 0 0.2772 0 1.0000 0 0.3919 0 0 1.0000 0.2332
所以脱脂牛奶的用量为27.72g ,大豆面粉的用量为39.19g ,乳清的用量为23.32g 。

相关文档
最新文档