平方根和开平方知识讲解
数学中的平方与平方根

数学中的平方与平方根数学中的平方与平方根是基础而重要的概念,它们在解决实际问题、推导数学定理、拓展数学领域中起着关键的作用。
本文将从平方与平方根的定义、特性、应用等方面展开论述,帮助读者更好地理解并运用这一知识。
一、平方的定义与特性平方是指一个数与自身相乘的运算结果。
例如,数a的平方可以表示为a²,读作“a的平方”或“a的二次方”。
平方是二次幂的一种特殊情况。
平方的特性包括以下几个方面:1. 平方的结果是非负数。
对于任意实数a,a²≥0。
2. 平方的结果为0的充分必要条件是,被平方数为0。
即a²=0当且仅当a=0。
3. 平方的结果为1的充分必要条件是,被平方数为1或-1。
即a²=1当且仅当a=1或a=-1。
二、平方根的定义与特性平方根是指一个数的平方等于给定数的运算结果。
如果一个数为x的平方根,表示为√x。
平方根是对平方运算的逆运算。
平方根的特性包括以下几个方面:1. 非负数的平方根存在且唯一。
对于任意非负实数x,存在唯一的非负实数a,使得a²=x。
2. 负数的平方根存在但不是实数。
对于任意负实数x,不存在实数a,使得a²=x。
3. 平方根的结果为0的充分必要条件是,被开方数为0。
即√x=0当且仅当x=0。
三、平方与平方根的应用平方与平方根的应用广泛,涉及数学、物理、工程等多个领域,其重要性不言而喻。
下面将简要介绍平方与平方根在不同领域的应用。
1. 数学领域平方与平方根在数学运算中经常起到重要作用,如解方程、计算面积等。
求解二次方程就是运用平方根的概念,根据平方根的定义可知,二次方程的解是平方根的应用之一。
另外,计算圆的面积和三角形的面积也需要运用到平方和平方根的相关知识。
2. 物理领域平方与平方根在物理学中有广泛的应用。
例如,牛顿第二定律(F=ma)中的质量和加速度,牛顿万有引力定律中的物体间距离,都涉及平方与平方根的运算。
此外,物理学中还有许多与能量、功率、频率等相关的概念,也需要用到平方和平方根的知识来描述和计算。
数学开方知识点总结

数学开方知识点总结一、整数的平方根1、定义对于一个非负整数a,如果存在一个非负整数b,使得b * b = a,那么b就是a的平方根。
通常用符号√a来表示a的平方根。
2、性质(1)非负整数的平方根是一个非负整数。
即如果a是一个非负整数,那么它的平方根一定是一个非负整数。
(2)如果a是一个非负整数,那么a的平方根存在且唯一。
即对于任意一个非负整数a,存在唯一的一个非负整数b,使得b * b = a。
(3)如果a和b是两个非负整数,且a = b * b,那么a的平方根就是b。
3、计算方法(1)试除法试除法是一种通过逐步增大的方式逐个尝试所有可能的非负整数来找到a的平方根的方法。
这种方法比较原始,但是对于小的非负整数还是比较有效的。
(2)牛顿迭代法牛顿迭代法是一种通过不断逼近的方式来计算a的平方根的方法。
该方法利用函数的导数和函数值来不断逼近函数的零点,从而找到a的平方根。
这种方法通常比试除法更加高效,尤其对于大的非负整数。
4、应用整数的平方根在实际生活中有很多应用,比如在工程领域中,用来计算各种物理量的大小,比如速度、加速度、功率等。
在数学领域中,整数的平方根也有很多应用,比如在代数、几何等方面的应用。
二、实数的平方根1、定义对于一个非负实数a,如果存在一个非负实数b,使得b * b = a,那么b就是a的平方根。
同样地,通常用符号√a来表示a的平方根。
2、性质(1)非负实数的平方根是一个非负实数。
即如果a是一个非负实数,那么它的平方根一定是一个非负实数。
(2)如果a是一个非负实数,那么a的平方根存在且唯一。
即对于任意一个非负实数a,存在唯一的一个非负实数b,使得b * b = a。
(3)如果a和b是两个非负实数,且a = b * b,那么a的平方根就是b。
3、计算方法(1)试除法试除法也适用于计算非负实数的平方根,但是由于实数的数量级比较大,那么这种方法通常比较低效。
(2)牛顿迭代法和整数的平方根一样,牛顿迭代法也适用于计算非负实数的平方根。
解平方根的常见方法与技巧

解平方根的常见方法与技巧在数学中,平方根是一种常见的运算,求解平方根的方法与技巧是非常重要的数学基础知识。
本文将介绍一些常见的方法与技巧,以帮助读者更好地理解和运用平方根的概念。
1. 直接开平方直接开平方是最常见的方法之一,简单直接。
对于一个正实数a,其平方根记作√a,即a的平方根等于b。
举个例子,√25=5,因为5的平方等于25。
2. 分解质因数法当我们需要求解非完全平方数的平方根时,可以运用分解质因数的方法。
首先,将原数分解成质因数的乘积形式,并对每个质因数的指数进行除2操作。
最后将所得的结果相乘,并开方,即可得到原数的平方根。
例如,对于数100,先将其分解成2^2乘以5^2,然后进行除2操作,结果为2乘以5,即10,最后开方得到√100=10。
3. 二分查找法二分查找法是一种高效的找根方法,特别适用于近似解的求解过程。
该方法基于数值的中间值,通过不断缩小范围来逼近平方根的值。
具体步骤如下:- 确定平方根的上下限,例如对于求解根号2,可以将上限a设置为2,下限b设置为1。
- 求取平方根的中间值c,即(a+b)/2。
- 判断中间值的平方是否接近原数,若平方值大于目标数,将上限a 设置为c,若平方值小于目标数,将下限b设置为c。
- 重复以上步骤,不断缩小范围直至所求的平方根满足要求。
4. 迭代法迭代法是一种逐步逼近平方根的方法,通过不断迭代优化来达到精确解。
该方法使用下面的迭代公式:(x + a / x) / 2,其中x为初始近似解,a为原数。
通过不断迭代,不断更新x的值,最终得到原数的平方根。
迭代法适用于对较大的正实数进行近似求根。
5. 牛顿迭代法牛顿迭代法是一种数值分析中常用的方法,也适合用来解决平方根的问题。
其基本思想是通过切线逼近曲线来求解函数的根。
对于求解根号a,可以选取初始近似解x,然后通过不断迭代优化来逼近平方根。
具体迭代公式如下:x = (x + a / x) /2。
不断迭代,直到满足精度要求。
(完整版)数的开方知识点汇总

7、实数与数轴的关系
任意一个数对应了数轴上的一个点,数轴上任意一上 点对应了一个实数,因此实数与数轴上的点是—对 应关系。
iii:算术平方根非负即当a>0时-,a>0
4、立方根
(1、)定义:如果一个数的立方等于a那么这个数就 叫做a的立方根。即如果x3=a那么x就是a的立方根。
(2、)立方根的表示方法:
一数a的立方根表示为3a,读作三次根号a其中3叫做根指数,a叫被开方数。
(当根指数是2时可以省略,是3或其数时不能省略) (3、)立方根的性质:
(3)算术平方根的性质:
1正数有一个正的算术平方根。
20的算术平方根是0
3负数没有平方根,当然也没有算术平方根。
(4), a的双重非负性
1首先,石要有意义,首先被开方数必须是一个非 负数。
2其次,心表示一个非数的算术平方根,它的值不 可能是一个负数,即它的值是一个非负数。
综上:,a中a>0,a>0
(5)初中所学的三类非负数i:绝对值非负即|a|>0丘:偶次方非负即a偶次>0
数的开方知识点汇总
安皋二中八年级数学组
一、平方根、算术平方根
1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的平方根。即如果x2= a那么x就是a有平方根。
2、平方根的性质:
(1)正数有两个平方根,它们互为相反数。
(2)0的平方根是0
(3)负数没有平方根(因为任何数的平方都是一个非负数)
3、平方根的表示方法
一个非负数a的平方根可表示为土..a,读作正负根号a
其实它的完整写法是土2a我们称2是根指数,a叫做
被开方数,、叫根号,我们平常省略了根指数2。
七年级数学下册【平方根】知识点

七年级数学下册【平方根】知识点1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.(6)<—>a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式(x≥0)中,规定x=。
(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)(x≥0)<—>a是x的平方x的平方是ax是a的算术平方根 a的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方及二次根式是高中数学中常见的一个知识点,也是数学中的基础概念之一。
在学习代数学时,开方及二次根式是必须要掌握的重要内容。
本文将对开方及二次根式进行详细介绍,帮助读者更好地理解和掌握这一知识点。
让我们从最基础的概念开始。
所谓开方,就是对一个数进行开方运算,即找到一个数,使得它的平方等于给定的数。
如果一个数是另一个数的平方,那么这个数就是这个数的平方根。
开方也可以用符号√来表示,如√4表示对4进行开方运算,结果为2,因为2的平方等于4。
二次根式是由一个数与它的二次根号组成的一个式子,例如√2、√3、√5等。
这些数都是无理数,也就是不能用有限位小数表示的数。
在数轴上,二次根式对应的数是不完全平方数,即无法整除的数。
在计算开方及二次根式时,有一些基本规则需要遵循。
对于整数n,如果n>0,则√n是一个正数;如果n<0,则√n是一个虚数。
开方运算是一个单调递增的函数,即当x<y时,√x < √y。
开方运算不满足交换律和结合律,即√xy≠√x·√y,(√x)²≠x。
在开方运算中,常见的性质有:1.开方运算的运算性质:√a ± √b ≠ √(a ± b),√a · √b ≠√(a · b)。
3.二次根式的乘法运算:√a · √b = √(a · b)。
还有一些常见的运算法则需要注意。
如何计算复合二次根式呢?如何计算√(√2 + √3)呢?我们可以用代数的方法将其化简。
设x = √2 + √3,则x² = (√2 + √3)² = 2 + 2√6 + 3 = 5 + 2√6,即x² - 5 = 2√6。
所以√(√2 + √3) = √(x) = √(x² - 5) = √(2√6) = √2 · √3 = √6。
12.2 平方根和开平方 讲义

第十二章 第2讲 平方根和开平方学习目标理解平方根、开平方运算、被开方数、根指数的概念和意义,掌握“一个数的平方和平方根”的区别,掌握平方根的符号表示方法;经历平方根的意义推导过程,感受求一个数的平方和平方根的互逆运算,体会文字语言和符号语言的对应关系;在加减、乘除互逆运算基础上,扩充到乘方和开方的互逆运算,而且运算符号法则遵循有理数的法则,知识间存在联系。
知识精要1.平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根。
一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的两个平方根可以用a ±来表示,叫做a 的算术平方根,记作a ,读作“根号a ”。
2.算术平方根:正数a 的正平方根,叫做a 的算术平方根,记作a ,读作“根号a ”。
平方根与算术平方根的区别与联系:区别:(1)定义不同;(2)结果不同;a ±和a 。
联系:(1)平方根包含算术平方根;(2)被开方数都是非负实数;(3)0的平方根和算术平方根均为0。
注意:在平方根的概念中,涉及到平方运算。
我们规定无理数的平方遵循同有理数一样的符号法则。
3.开平方:求一个数a )0(≥a 的平方根的运算,叫做开平方。
开平方运算是已知指数和幂求底数。
平方与开平方互为逆运算。
求平方根的方法:根据平方根的定义,可以利用平方来检验或寻找一个数的平方根。
另外,还可以利用计算器求任意一个正数的正平方根或它的近似值,具体按键顺序参考计算器的使用说明书。
通常使用计算器求a ,正数a 的位数不超过十个。
如果所显示的结果其位数超过5个,那么这个结果是a 的一个近似值;否则是准确值。
4.平方根的性质(1)当0>a 时,a a =2)(,a a =-2)(。
(2)当0≥a 时,a a =2;当0<a 时,a a -=2。
即 ⎩⎨⎧<-≥==.0,,0,2a a a a a a经典题型精讲(一)计算平方根例1.写出下列各数的平方根:(1)1219 (2)2)9(- (3)16925 (4)81 (5)3 (6)51 (7)49.0 (8))0(>a a例2.从1到100之间所有自然数的平方根的和为________.举一反三:一个数的平方根是3x +和12-,求x 的值.例3.写出下列各数的算术平方根(1)225 (2)9 (3)49151 (4)64.0例4.若4a -没有平方根,则a 的取值范围是__________.举一反三:若___________。
平方根和开平方(基础)知识讲解学习资料

平方根和开平方(基础)知识讲解平方根和开平方(基础)【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果X2 a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.a叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数a的两个平方根可以用“,a”表示,其中,a表示a的正平方根(又叫算术平方根),读作“根号a”;.a表示a的负平方根,读作“负根号a ” .要点诠释:当式子,a有意义时,a 一定表示一个非负数,即,.a > 0,a > 0. 要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:■•一a和' a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根•因此,我们可以利用算术平方根来研究平方根•要点三、平方根的性质a a 0a2 | a | 0 a 0a a 0、a a a 0要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位•例如:62500 250,. 625 25,一625 2.5,.0.0625 0.25 .【典型例题】【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为'、25 = 5,所以本说法正确;B.因为±"二±1,所以I是I的一个平方根说法正确;C.因为±..4 2=±、、16 = ±4,所以本说法错误;D.因为'一0 = 0,■ 0 = 0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9没有平方根•()A.5是25的算术平方根B.I2C. 4的平方根是一 4D.0是I的一个平方根的平方根与算术平方根都是类型一、平方根和算术平方根的概念(2).16 4 .( )1 1(3)( —)2的平方根是一.( )1010(4)| 2是暮的算术平方根.( )【答案】V ;x; V; x,提示:(2)皿4;(4)§是善的算术平方根. 仇、填空:(1)_________ 4是的负平方根.(2)_____________ 16表示 __________________ 的算术平方根,、.16 -(3)______________________ ;的算术平方根为 .(4)___________________ 若3,则x ____________ ,若7 3,则x .【思路点拨】(3) 1就是丄的算术平方根二-,此题求的是-的算术平方V81 81 9 9根•1 1 1【答案与解析】(1)16 ;⑵ 一;—(3)-⑷9 ; ±316 4 3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ②9的平方根是3.③4是8的正的平方根.④8是64的负的平方根.A. 1个 B . 2个 C . 3个 D . 4个【答案】B;提示:①④是正确的•【变式2】(2015?凉山州)材苟的平方根是_____________ .【答案】土 3.解:因为 -=9, 9的平方根是土3,所以答案为土 3.03、使代数式屮灯〒有意义的x的取值范围是 __________________ .【答案】x > 1 ;【解析】x + 1>0,解得x > 1.【总结升华】当式子有意义时,a一定表示一个非负数,即 a >0, a >0.举一反三:【变式】代数式y二x 3有意义,则x的取值范围是______________________ 【答案】x 3.类型二、利用平方根解方程(2015春?鄂州校级期中)求下列各式中的x值,2(1)169x =1442(2)( x - 2) - 36=0 .【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】2解:( 1) 169x =144,2 144x =169x= 144 ■169,12x= 一13 .2(2)( x - 2) - 36=0,2(x - 2) =36,x - 2= 36 ,x - 2=±6,••• x=8 或x= - 4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用C5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米•求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x・3 X = 13233 x =1323x 21x = - 21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根和开平方(基础)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.平方根的定义
如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方. 叫做被开方数.平方与开平方互为逆运算.
2.算术平方根的定义
正数的两个平方根可以用“”表示,其中表示的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.
要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2)结果不同:和
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.
【典型例题】
类型一、平方根和算术平方根的概念
1、下列说法错误的是()
是25的算术平方根是l的一个平方根
C.的平方根是-4 的平方根与算术平方根都是0
【答案】C;
【解析】利用平方根和算术平方根的定义判定得出正确选项.
A.因为=5,所以本说法正确;
B.因为±=±1,所以l是l的一个平方根说法正确;
C.因为±=±=±4,所以本说法错误;
D.因为=0,=0,所以本说法正确;
【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:
【变式】判断下列各题正误,并将错误改正:
(1)没有平方根.()
(2).()
(3)的平方根是.()
(4)是的算术平方根.()
【答案】√;×;√;×,
提示:(2);(4)是的算术平方根.
2、填空:
(1)是的负平方根.
(2)表示的算术平方根,.
(3)的算术平方根为.
(4)若,则,若,则.
【思路点拨】(3)就是的算术平方根=,此题求的是的算术平方根.
【答案与解析】(1)16;(2) (3) (4) 9;±3
【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:
【变式1】下列说法中正确的有():
①3是9的平方根.② 9的平方根是3.
③4是8的正的平方根.④是64的负的平方根.
A.1个 B.2个 C.3个 D.4个
【答案】B;
提示:①④是正确的.
【变式2】(2015•凉山州)的平方根是.
【答案】±3.
解:因为=9,9的平方根是±3,所以答案为±3.
3、使代数式有意义的的取值范围是______________.
【答案】≥;
【解析】+1≥0,解得≥.
【总结升华】当式子有意义时,一定表示一个非负数,即≥0,≥0.
举一反三:
【变式】代数式=有意义,则的取值范围是.
【答案】.
类型二、利用平方根解方程
4、(2015春•鄂州校级期中)求下列各式中的x值,
(1)169x2=144
(2)(x﹣2)2﹣36=0.
【思路点拨】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【答案与解析】
解:(1)169x2=144,
x,
x=,
x=.
(2)(x﹣2)2﹣36=0,
(x﹣2)2=36,
x﹣2=,
x﹣2=±6,
∴x=8或x=﹣4.
【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.
类型三、平方根的应用
5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽
各是多少米
【答案与解析】
解:设宽为,长为3,
由题意得,·3=1323
3=1323
=-21(舍去)
答:长为63米,宽为21米.
【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。