平方根-知识讲解
平方根、算术平方根、立方根重点 例题讲解

平方根、算术平方根、立方根重点例题讲解平方根、算术平方根、立方根,这三个概念听起来好像很高大上,但其实它们都是我们日常生活中经常用到的数学知识。
今天,我就来给大家讲解一下这三个概念,让你在生活中轻松运用数学。
我们来说说平方根。
平方根就是一个数的正平方根,也就是一个数的平方等于这个数本身的那个数。
比如说,4的平方根是2,因为2乘以2等于4;9的平方根是3,因为3乘以3等于9。
平方根在我们生活中有很多应用,比如说计算土地面积、测量身高等等。
你可能会问:“我怎么知道一个数的平方根是多少呢?”这就需要用到计算器或者手算的方法了。
如果你不会手算,也没关系,我可以教你一个简单的方法:把那个数想象成一个正方形,然后找到它的边长,边长的平方就是那个数的平方根。
我们来说说算术平方根。
算术平方根就是一个数的正平方根,但是它只考虑奇数的情况。
比如说,5的算术平方根是无理数,因为5不能表示成两个整数相乘的形式;而4的算术平方根是2,因为2乘以2等于4。
算术平方根在我们生活中也有很多应用,比如说计算房间面积、测量长度等等。
你可能会问:“我怎么知道一个数的算术平方根是多少呢?”这同样需要用到计算器或者手算的方法。
如果你不会手算,也可以试试下面的方法:把那个数想象成一个正方形,然后找到最短的那条边,这条边的长度就是那个数的算术平方根。
我们来说说立方根。
立方根就是一个数的三次方根,也就是一个数的三次方等于这个数本身的那个数。
比如说,8的立方根是2,因为2乘以2乘以2等于8;27的立方根是3,因为3乘以3乘以3等于27。
立方根在我们生活中也有很多应用,比如说计算体积、计算速度等等。
你可能会问:“我怎么知道一个数的立方根是多少呢?”这同样需要用到计算器或者手算的方法。
如果你不会手算,也可以试试下面的方法:把那个数想象成一个正方体,然后找到最短的那条棱,这条棱的长度就是那个数的立方根。
平方根、算术平方根、立方根这三个概念虽然看起来有点复杂,但是只要掌握了它们的规律和方法,就可以在生活中轻松运用数学了。
(完整版)平方根、算术平方根、立方根重点例题讲解

6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
即若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。
(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
其中a x =叫做a 的算术平方根。
(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。
4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
即若a x =3,则x 叫做a 的立方根。
即有3a x =。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。
湘教版八年级数学 3.1 平方根(学习、上课课件)

知1-练
感悟新知
例2 求下列各式中的 x 的值:
知1-练
(1)
x2=16;(2)9x2
-
49
=
0;(3)
1 2
(
x
-
5)
2
=
8.
解题秘方:若 x2=a( a ≥ 0),则 x=± a . 先把各题 化为x2=a 的形式,再求 x 的值 .
感悟新知
(1) x2=16;
知1-练
解: x2=16,开平方,得 x=± 16 =± 4. (2)9x2 - 49 = 0;
知1-练
感悟新知
方法点拨:求一个正数的平方根的方法:先找出 知1-练 平方等于这个正数的数,这样的数有两个,它们 互为相反数,因而这两个数均为这个正数的平方 根 . 如果一个数为带分数,一般先将其转化为假 分数,再求平方根;如果有乘方运算,那么先求 出乘方运算的结果,针对结果再求平方根;如果 一个正数 a 不能写成有理数的平方的形式,那么 可以将 a 的平方根表示成 ± a.
第三章 实 数
3.1 平方根
学习目标
1 课时讲解 2 课时流程
平方根及其性质 算术平方根及其性质 无理数 算术平方根的估算
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 平方根及其性质
知1-讲
1. 定义 : 如果有一个数 r,使得 r2=a,那么我们把 r 叫作 a 的 一个平方根,也叫作二次方根 . 这就是说,若 r2=a,则 r 是 a 的一个平方根 . 表示方法:非负数 a 的平方根记作± a ,读作“正、负根 号 a”
因为 9x2 - 49 = 0,所以 x2 = 499,开平方,
得 x =±
初二上册数学平方根讲解

初二上册数学平方根讲解一、平方根的定义在数学中,平方根是指一个数的平方等于被开方数的运算。
用符号√来表示平方根,被开方数称为被开方数或被开方数。
例如,√9 = 3,表示9的平方根是3,因为3²=9。
二、平方根的性质1. 正数的非负平方根对于一个正数a,它的非负平方根是有两个数,一个为正数,一个为负数。
通常我们所指的平方根是指非负平方根,也就是正数平方根。
2. 零的平方根零的平方根是零本身,即√0 = 0。
3. 负数的平方根一个负数不具有实数域内的平方根。
在复数域内,虚数单位 i 表示一个负数的平方根,即√-1 = i。
如果需要计算负数的平方根,需要在复数域内。
4. 平方根的运算性质•乘法简便法则:√(a b) = √a √b•除法简便法则:√(a/b) = √a / √b(其中b ≠ 0)•乘方转换:√(a^b) = (√a) ^ b三、平方根的求解方法1. 直接求解法对于一个平方数,我们可以直接求解其平方根。
例如,√25 = 5,√100 = 10。
2. 利用分解法求解如果一个数字不是一个完全平方数,可以通过因式分解的方法来求解其非精确平方根。
例如,我们可以将√8分解为√(4 * 2),即√4 * √2 = 2√2。
3. 近似求解法对于无理数或者无法被整数除尽的有理数,我们可以采用近似求解的方法。
例如,√2约等于1.414,√3约等于1.732。
四、平方根的应用1. 几何应用平方根在几何中有着广泛的应用,例如计算三角形的斜边长度、正方形的对角线长度等。
2. 物理应用平方根在物理学中也有重要的应用,例如用于计算物体的速度、加速度、功率等。
3. 工程应用在工程学中,平方根常被用于计算路程、距离、能量等,并且可以通过平方根的相关运算性质简化计算过程。
五、补充说明本文主要讲解了初二上册数学中关于平方根的定义、性质、求解方法以及应用。
通过学习平方根的知识,我们可以更好地理解数学中的运算规律,并且能够将其应用到实际问题中。
平方根知识点讲解

负数 n的算术平方根 ; \ ( 0 表 示非 负数 n的负的平方根 ( 一 / n≥ ) 或算术平
方根 的相反数 )± / ( ; 、 一 n≥ O 表 示 非 负 数 n的平 方 根 . 、 ) 像 / 这 样 的
数 , 定要先算被开方数 , 一 然后 再 开 平 方.
L册●
穆营:
。
知 识 点 讲 解 臻 曩
●
锐、 柬1 6馘平u掇 . 方
- 南 拣
如 果 一 个 数 的 平 方 等 于 n , 那 么 这 个 数 叫做 。的平 方根 .
解 . 。 6 ( 4 6 ’ =1 , 一 ) =1 , 4
1被开方 数的非 负性 . n . 即
≥ 0.
=0 .
2 算术 平方 根本 身 的非 负 .
性 ,即 x /0 ≥ 0 .
, )
b:2.
点 拨 若干个非负数的和为零 , 则它们 同时为零
L f c n it o od n o d c r s b t np a i gwel h s o od i o sss t n h l i gg o a d e n i u ly n l t o ey uh l . i
例 5 用计算器求下列各数的算术平方根 .
( ) 0 5 1 22 ; ( ) 76 ( 2 3 . 精确 到 0O ) 6 .1 .
解
() 1 在计 算 器上 依次 键人
] 图 回 固 固 曰
显示 结果 为 4 . 5
・
.
.
、 呖
=4 . 5
() 2 在计 算 器上 依次 键人
= 固 团 口 固 固 日 = ]
显 示结 果为 616 7 3 7 . 7 4 9 … 3
平方根和开平方知识讲解

平方根和开平方(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方. 叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数的两个平方根可以用“”表示,其中表示的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()是25的算术平方根是l的一个平方根C.的平方根是-4 的平方根与算术平方根都是0【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为=5,所以本说法正确;B.因为±=±1,所以l是l的一个平方根说法正确;C.因为±=±=±4,所以本说法错误;D.因为=0,=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)没有平方根.()(2).()(3)的平方根是.()(4)是的算术平方根.()【答案】√;×;√;×,提示:(2);(4)是的算术平方根.2、填空:(1)是的负平方根.(2)表示的算术平方根,.(3)的算术平方根为.(4)若,则,若,则.【思路点拨】(3)就是的算术平方根=,此题求的是的算术平方根.【答案与解析】(1)16;(2) (3) (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有():①3是9的平方根.② 9的平方根是3.③4是8的正的平方根.④是64的负的平方根.A.1个 B.2个 C.3个 D.4个【答案】B;提示:①④是正确的.【变式2】(2015•凉山州)的平方根是.【答案】±3.解:因为=9,9的平方根是±3,所以答案为±3.3、使代数式有意义的的取值范围是______________.【答案】≥;【解析】+1≥0,解得≥.【总结升华】当式子有意义时,一定表示一个非负数,即≥0,≥0.举一反三:【变式】代数式=有意义,则的取值范围是.【答案】.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值,(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,x,x=,x=.(2)(x﹣2)2﹣36=0,(x﹣2)2=36,x﹣2=,x﹣2=±6,∴x=8或x=﹣4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米【答案与解析】解:设宽为,长为3,由题意得,·3=13233=1323=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问

讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问平方根和立方根是数学中重要的概念,它们在各个学科领域都有广泛的应用。
在本文中,我们将详细讲解平方根和立方根的概念、运算规则以及需要注意的事项,以解答学生们提出的疑问。
一、平方根的概念和运算规则平方根是指一个数的平方等于该数的非负根。
即,对于任意非负数x和非负数a,若a的平方等于x,那么我们称a是x的平方根。
用符号表示,可以写作√x=a。
平方根的运算规则如下:1. 非负数的平方根是唯一的。
即,一个非负数x只有一个非负平方根。
2. 负数没有实数平方根。
平方根的定义要求平方根是非负的,因此负数没有实数平方根。
3. 平方根运算具有交换律和结合律。
即,对于任意非负数x和y,有√(x*y)=√x*√y和√(x/y)=√x/√y。
4. 平方根运算满足开方运算法则。
即,对于任意正数x和正整数n,平方根运算和幂运算可以互相转换,即√(x^n)=(√x)^n。
二、立方根的概念和运算规则立方根是指一个数的立方等于该数的非负根。
即,对于任意数值x 和非负数a,若a的立方等于x,那么我们称a是x的立方根。
用符号表示,可以写作³√x=a。
立方根的运算规则如下:1. 实数的立方根是唯一的。
即,一个实数x只有一个实立方根。
2. 负数的立方根是存在的。
与平方根不同,负数是存在实数立方根的,例如-8的立方根是-2,因为(-2)^3=-8。
3. 立方根运算具有交换律和结合律。
即,对于任意数值x和y,有³√(x*y)=³√x*³√y和³√(x/y)=³√x/³√y。
4. 立方根运算也满足开方运算法则。
即,对于任意正数x和正整数n,立方根运算和幂运算可以互相转换,即³√(x^n)=(³√x)^n。
三、注意事项在计算平方根和立方根时,需要注意以下几点:1. 平方根和立方根的符号。
平方根是指非负根,因此其结果为正数或零。
人教版七年级数学下册平方根(基础)知识讲解

人教版七年级数学下册平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【高清课堂:389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥是a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质||00a aa aa a>⎧⎪===⎨⎪-<⎩()2a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0 【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= . (3181的算术平方根为 .(4)若3x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根. 【答案】解:∵+(3x+y ﹣1)2=0,∴, 解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根和算术平方根.
2.了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.平方根的定义
如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根.
一个正数有正、负两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算.
要点诠释:一个正数a
a的负平方根用“
”表示;因
此,一个正数a
”表示,其中a叫做被开方数.
2.算术平方根的定义
正数的正的平方根称为算术平方根.(规定0的算术平方根还是0);一个数a(a≥0)的
.
要点诠释:
a
0,a≥0.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
(0)
||0(0)
(0)
a a
a a
a a
>
⎧
⎪
===
⎨
⎪-<
⎩
()
2
a a
=≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.
250
=
25
=
2.5
=
0.25
=. 【典型例题】
类型一、平方根和算术平方根的概念
1、下列说法错误的是( )
A.5是25的算术平方根
B.l 是l 的一个平方根
C.()24-的平方根是-4
D.0的平方根与算术平方根都是0
【答案】C ;
【解析】利用平方根和算术平方根的定义判定得出正确选项.
A.因为25=5,所以本说法正确;
B.因为±1=±1,所以l 是l 的一个平方根说法正确;
C.因为±()24-=±16=±4,所以本说法错误;
D.因为0±=0,0=0,所以本说法正确;
【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:
【变式】判断下列各题正误,并将错误改正:
(1)9-没有平方根.( )
(2)164=±.( )
(3)21()10-的平方根是110
±.( ) (4)25--
是425的算术平方根.( ) 【答案】√ ;×; √; ×,
提示:(2)164=;(4)25是425
的算术平方根. 2、(2015•前郭县二模)观察下列各式:
=2,=3,=4,…请你找出其中规律,并将第n (n≥1)个等式写出来______________________________.
【思路点拨】根据所给式子,找规律.
【答案】
.
【解析】
解:=(1+1)
=2, =(2+1)
=3, =(3+1)=4,
…
, 故答案为:.
【总结升华】本题考查了实数平方根,解决本题的关键是找到规律.
举一反三:
【变式】(2015•恩施州一模)观察数表:
根据数阵排列的规律,第10行从左向右数第8个数是.
【答案】7.
类型二、平方根的运算
3、求下列各式的值. 2222252434-+g 111200.36900435
【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:2222252434-+g 49257535=
=⨯=g ; 1118111200.369000.630435435=⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根2(0)a a a =>来解.
举一反三:
【变式】求下列各式的值:
(1)25 (28136(30.040.25(440.36121
【答案】(1)15;(2)15;(3)-0.3;(4)
655
类型三、平方根的应用
4、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求
长和宽各是多少米?
【答案与解析】
解:设宽为x,长为3x,
由题意得,x·3x=1323
32x=1323
x=±
21
x=-21(舍去)
答:长为63米,宽为21米.
【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。