向量三点共线结论的推广及应用

合集下载

(完整版)平面向量中“三点共线定理”妙用

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

高中数学教学论文 向量法证明三点共线的又一方法及应用

高中数学教学论文 向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线.证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r∴A 、B 、C 三点共线.思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质;3. 特别地,12λμ==时,1()2OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V中线OB 的一个向量公式,应用广泛.应用举例 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. 证明:由已知BD BA BC =+u u u r u u u r u u u r ,又点N 在BD 上,且13BN BD =,得 1111()3333BN BD BA BC BA BC ==+=+u u u r u u u r u u u r u u u r u u u r u u u r 又点M 是AB 的中点, 12BM BA ∴=u u u u r u u u r ,即2BA BM =u u u r u u u u rD A B C M N2133BN BM BC ∴=+u u u r u u u u r u u u r 而21133+= ∴M 、N 、C 三点共线.点评:证明过程比证明MN mMC =u u u u r u u u u r 简洁.例2如图,平行四边形OACB 中,13BD BC =,OD 与AB 相交于E ,求证:. 14BE BA =. 思路分析:可以借助向量知识,只须证明:14BE BA =u u u r u u u r ,而BA BO BC =+u u u r u u u r u u u r ,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且1λμ+=,使BE λBO μBD =+u u u r u u u r u u u r ,从而得到BE u u u r 与BA u u u r 的关系. 证明:由已知条件,BA BO BC =+u u u r u u u r u u u r ,又B 、E 、A 三点共线,可设BE k BA =u u u r u u u r ,则BE k BO k BC =+u u u r u u u r u u u r ①又O 、E 、D 三点共线,则存在唯一实数对λ、μ,使BE λBO μBD =+u u u r u u u r u u u r ,且1λμ+=. 又13BD BC =u u u r u u u r 13BE λBO μBC ∴=+u u u r u u u r u u u r ②根据①、②得 131k λk μλμ=⎧⎪⎪=⎨⎪+=⎪⎩,解得141434k λμ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 14BE BA ∴=u u u r u u u r 14BE BA ∴= 点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁. D O AC E B。

向量三点共线结论的推广及应用

向量三点共线结论的推广及应用

向量中“三点共线”结论的推广及应用 姓名: 一、知识点:1、向量共线(平行)的定义: 2、三点共线的向量证明原理:二、结论:已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.小结:变式.已知A ,P ,B 是共线的三点,O 为面内任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),若OP tOP '=,则求tm tn +的值。

小结:二、三点共线例题分析例1.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,求实数p 的值.小结:例2.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值.小结:变式1.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,求m +n 的值.小结:变式2.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m 的值.小结:变式3.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.小结: 例3.给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.小结:变式1、平行四边形ABCD 中,060BAD ∠=,1AB AD ==,P 为平行四边形内一点,且2AP =, 若AP AB AD λμ=+ , 则λ+的最大值为变式2. 在矩形ABCD 中,1,2AB AD ==,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 .小结:变式3.已知点G 是ABC ∆的重心,点P 是GBC ∆内一点,若,AP AB AC λμλμ=++则的取值范围是___________小结: 例4.已知O 是△ABC 内部一点,且3OA →+4OB →+5OC →=0求△AOB 与△AOC 的面积之比.变式1.已知O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之比.变式2.已知O 为三角形ABC 内一点,且满足()1OA OB OC O λλ++-=,若O A B ∆的面积与OAC ∆的面积比值为13,则λ的值为小结:ABGP G ’P ’三、三点共线练习1.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为 .2、平行四边形ABCD 中,060BAD ∠=,1AB AD ==,P 为平行四边形内一点,且2AP =, 若AP AB AD λμ=+ , 则λ+的最大值为3.如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),则1m +1n的最小值为 .4.在ABC ∆中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足31=,若),(R ∈+=μλμλ,则μλ+的值为 .5.已知点()()1,0,0,1A B ,O 为坐标原点,点P 为函数()()20f x x x x=+>图象上任意一点,若OP mOA nOB =+(),m n R ∈,则m n +的最小值为6.已知点()()2,0,0,1A B -,O 为坐标原点,点P 为函数()2x f x e =+图象上任意一点,若OP mOA nOB =+(),m n R ∈,则m n +的最小值为7. ,,A B C 为单位圆上三个不同的点,若π,,(,)4ABC OB mOA nOC m n ∠==+∈R ,则m n +最小值为_______.。

三点共线算法

三点共线算法

三点共线算法三点共线算法是数学中的一个重要概念,用来判断给定的三个点是否在同一条直线上。

这个算法在几何学、计算机图形学以及计算机视觉等领域中都有广泛应用。

本文将介绍三点共线算法的原理和应用,以及一些相关的概念和定理。

一、三点共线算法的原理三点共线算法的原理其实很简单,就是利用向量的线性相关性来判断三个点是否在同一条直线上。

具体来说,我们可以将三个点分别表示为向量A、B和C,然后计算向量AB和向量AC的叉积。

如果叉积为零,即(AB × AC) = 0,那么这三个点就在同一条直线上;如果叉积不为零,那么这三个点就不在同一条直线上。

三点共线算法在几何学中有广泛的应用。

例如,在解析几何中,我们经常需要判断一个三角形的三个顶点是否共线,这时就可以利用三点共线算法来判断。

此外,在计算机图形学和计算机视觉中,三点共线算法也常用于图像处理和目标识别等任务中。

三、相关概念和定理除了三点共线算法,还有一些相关的概念和定理也与之密切相关。

例如,共线点定理指出,如果一个点在一条直线上,那么它的任意两个点也在同一条直线上。

这个定理可以作为三点共线算法的基础。

还有一些定理可以用于判断三个点是否共线。

例如,如果三角形的两边的中点和第三边的一个顶点共线,那么这三个点就共线。

另外,如果一个三角形的内心和外心与三个顶点共线,那么这三个点也共线。

四、三点共线算法的优化虽然三点共线算法很简单,但是在实际应用中可能会遇到一些性能问题。

例如,当处理大规模数据时,如果对所有的三个点都执行一次三点共线算法,那么算法的时间复杂度将会很高。

为了提高算法的效率,可以采用一些优化措施,例如使用空间分割树结构来加速算法的执行。

五、总结三点共线算法是一种判断给定的三个点是否在同一条直线上的算法。

它的原理很简单,只需要计算两个向量的叉积即可。

这个算法在几何学、计算机图形学和计算机视觉等领域中有广泛的应用。

此外,还有一些相关的概念和定理可以用于判断三个点是否共线。

平面向量中的三点共线结论的应用

平面向量中的三点共线结论的应用

若,3.已知B 为OAC 边AC 上一点,且满足OC y OA x OB +=4,不等式222313x y m m x y +≥-++恒成立时,实数m 的最值范围为___________.巩固练习1.在ABC ∆中,4AB =,O 为三角形的外接圆的圆心,若),(R y x AC y AB x AO ∈+=且21x y +=,则ABC ∆的面积的最大值为_____.2.在P AB ∆中,,60,9,80=∠==APB PB P A 点C 满足PB y P A x PC +=,且,0,0,532≥≥=+y x y x 其中则||PC 的最大值为______,最小值为______.3.已知ABC ∆的外心为O 满足AC y AB x AO +=,若,10,6==AC AB 且,5102=+y x 则=∠BAC cos ______.例5.如图,M 为△ABC 的中线AD 的中点,过点M 的直线分别交线段AB 、AC 于点P 、Q 两点,设AP xAB =,AQ y AC =,记()y f x =,设32()32g x x a x a =++,[0,1]x ∈,若对任意11[,1]3x ∈,总存在2[0,1]x ∈,使得12()()f x g x =成立,则实数a 的取值范围为______.巩固练习2.(2022·辽宁葫芦岛·高三期末)如图,在等腰ABC 中,已知2AB AC ==,120A ∠= ,E ,F 分别是边AB ,AC 上的点,且AE AB λ= ,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN的最小值是()A .77B .217C .2114D .213.(2023·全国·高三专题练习)直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM m AB = ,AN nAC =,()0,0m n >>,则下列结论错误的是()A .12m n+为常数B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为12m =,2n =巧用杠杆原理处理三角形中的向量问题数值,各线段上得如图所示各点的标数则根据杠杆平衡原理可,已知三角形中的赋值标数法,d,cNC AN b a MB AM ==点数值乘数值等于点数值乘线段上,段数值乘积相等。

三点共线向量表示及其性质应用

三点共线向量表示及其性质应用

三点共线向量表示及其性质应用新课标新教材《数学4》一道例题给出了三点共线的向量法表示,还提示我们可以利用这个例题解决三点共线问题,所以值得我们深入探究和发掘.本文就此给出了三点共线向量表示的两种证法探究,以启迪思维和拓展思路之目的,另外又给出了三点共线向量表示在解题中的应用。

下面且看笔者一一道来,供大家参考。

例题:如图1,A ,B ,C 是平面内三个点,P 是平面内任意一点,若点C 在直线AB 上,则存在实数λ,使得PC =λPA +(1-λ)PB .证法探究:思路1分析: 初看欲证目标,始感实难下手。

我们不妨从结论出发探寻线路,欲证PC =λPA +(1-λ)PB ,只需证PC =λPA +PB -λPB ⇔PC -PB =λ(PA -PB )⇔BC =λBA ⇔BC ∥BA .这样证明思路有了。

证法1:∵向量BC 与向量BA 共线,∴BC =λBA ,即PC -PB =λ(PA -PB ),PC =λPA +PB -λPB ,∴PC =λPA +(1-λ)PB .证毕,再思考一下实数λ的几何意义究竟如何。

考察向量等式BC =λBA ,结合图形,易知,当点C 在线段AB 上时,则BC 与BA 同向,有0≤λ≤1;当点C 在线段AB 延长线上时,则BC 与BA 反向,有λ<0;当点C 在线段BA 延长线上时,则BC 与BA 同向,有λ>1.思路2分析:回想平面向量基本定理,如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量a ,存在一对实数21,λλ,使2211e e a λλ+=。

所以我们可以不共线PA 、PB 作为一组基底,PC 则由它们线性表示,即存在λ,μ∈R ,使PC =λPA+μPB .接下来,证明思路有了。

请看证法2。

证法2:当A 、B 、P 共线时,结论显然成立;当A 、B 、P 不共线,即有向量PA 、PB 不共线,以PA 、PB 为基底,PC 由它们线性表示,即存在λ,μ∈R ,使PC =λPA+μPB .过点C 作BP A C //',AP B C //',如图2.PC =A P '+B P ',所以A P '=λPA ,B P '=μPB .由λ='='=||||||PA PA BA ,||PA A P '||PB B B '=||PB B P PB '=1-μ,得1-μ=λ,即μ=1-λ,故PC =λPA +(1-λ)PB .此例题逆命题亦成立,即已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μPB ,且λ+μ=1,则A ,B ,C 三点共线.故此逆命题可作三点共线判定方法。

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。

特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及应用贵州织金一中 龙瑞华最近几年的高考试题中,很多题目都是以向量知识为背景,向量知识成高考的热点。

在高二下册B 版本的课本第九章第五节中讲到共线向量定理的推论。

下面就该推论的推广在解题中的应用加以探究。

一、推论的叙述及变式。

如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式:(1)OP OA ta=+在l 上取AB a =,则(1)式可化为OP OA t AB =+因为AB OB OA =- ∴(1)(2)OP t OA tOB=-+由(2)式可看出等号的左边向量OP 的系数1刚好等于右边的向量OA 与OB 的系数之和1-t +t ,由推论易知此时A 、B 、P 三点同在一条直线上。

O 为直线外一点,即P 为△OAB 边AB 上的点,线段OB 、OP 、OA 是有共同端点的三条线段,另外的三个端点都在同一条线上。

线段OP 刚好是三条线段中的中间一条,它所表示的向量(1)OP t OA tOB =-+,在等式中,左边系数之和=右边系数之和。

图(一)a二、推论的推广由共线向量定理的推论,我们可以得到如下结论: 结论一:在△ABC 中,D 为BC 边上的点,如果BD x =DCy,则以A 点为起点的三个向量的中间一个向量AD =AC AB x y x y x y+++。

证明:BD BC,BD=AD AB,BC=AC-AB xx y=-+即可证明。

结论二:共起点的三个向量如果它们的终点在同一条直线上,那么用其中二个向量表示另一个向量时,左边系数之和等于右边系数之和。

结论三:在结论一中如果点D 不在边BC ,是在三角形ABC 的内部或外部,在图(三)中,AD=xAC+yAB ,则 1x y +<,在图(四)中AD AC AB x y =+,则 1x y +>,证明先找到AD 与BC 的交点,转化为第一种情形,即三点在同一条直线上,再应用向量共线定理a b λ=进行转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量中“三点共线”结论的推广及应用
一、引例:(1)在△ABC 中,若点D 满足BD →=2DC →,则AD →=______AB →+______AC →
(2)已知AP →=43AB →,则OP →=______OA →+______OB → 结论:已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →
(1)若m +n =1,求证:A ,P ,B 三点共线;
(2)若A ,P ,B 三点共线,求证:m +n =1.
变式.已知A ,P ,B 是共线的三点,O 为面内任意一点,且OP →=mOA →+nOB →(m ,n ∈R),
若OP tOP '=u u u u v u u u v ,则tm tn +的值为_________
二、三点共线例题分析
例1.设a ,b 不共线,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,
求实数p 的值.
例2.如图,在△ABC 中,AN →=13
NC →,P 是BN 上的一点,若AP →=mAB →+211
AC →,求实数m 的值.
变式1.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别
交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,求m +n
的值.
变式2.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,
设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m 的值.
变式3.如图所示,在△ABO 中,OC →=14OA →,OD →=12
OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.
例3.已知O 是△ABC 内部一点,)(2PC PB AB +=,求△PBC 与△ABC 的面积之比.
变式1.已知O 为三角形ABC 内一点,且满足()1OA OB OC O λλ++-=u u u v u u u v u u u v u v ,若OAB ∆的
面积与OAC ∆的面积比值为13
,则λ的值为
变式2.已知P 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之
比.。

相关文档
最新文档