特殊平行四边形动点及存在性问题压轴题终审稿)

合集下载

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

平行四边形存在性问题【知识储备】①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: 类型一 几何背景下的平行四边形存在性问题【典题练习】1.(2023•河北二模)如图,在四边形ABCD 中,∠A =∠B =90°,AD =8cm ,BC =6cm ,点P 从点D 出发,以1cm /s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当t =3s 时,四边形ABMP 为矩形B .当t =4s 时,四边形CDPM 为平行四边形C .当CD =PM 时,t =3sD .当CD =PM 时,t =3s 或5s【分析】根据题意,表示出DP ,BM ,AP 和CM 的长,当四边形ABMP 为矩形时,根据AP =BM ,列方程求解即可;当四边形CDPM 为平行四边形,根据DP =CM ,列方程求解即可;当CD =PM 时,分两种情况:①四边形CDPM 是平行四边形,②四边形CDPM 是等腰梯形,分别列方程求解即可.【解答】解:根据题意,可得DP =t cm ,BM =t cm ,∵AD =8cm ,BC =6cm ,∴AP =(8﹣t )cm ,CM =(6﹣t )cm ,当四边形ABMP 为矩形时,AP =BM ,即8﹣t =t ,解得t =4,故A 选项不符合题意;当四边形CDPM 为平行四边形,DP =CM ,)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若即t=6﹣t,解得t=3,故B选项不符合题意;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,此时CM=PD,即6﹣t=t,解得t=3,②四边形CDPM是等腰梯形,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:则∠MGP=∠CHD=90°,∵PM=CD,GM=HC,∴△MGP≌△CHD(HL),∴GP=HD,∵AG=AP+GP=8﹣t+,又∵BM=t,∴8﹣t+=t,解得t=5,综上,当CD=PM时,t=3s或5s,故C选项不符合题意,D选项符合题意,故选:D.2.(2023春•盱眙县期末)如图,在▱ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动.点Q在BC边上以每秒4cm的速度从点C出发,在CB之间往返运动.两个点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒.当5<t<10时,运动时间t为何值时,以P、D、Q、B为顶点的四边形是平行四边形()A.B.8C.4或D.或8【分析】根据P的速度为每秒1cm,可得AP=t cm,从而得到PD=(10﹣t)cm,由四边形ABCD为平行四边形可得出PD∥BQ,结合平行四边形的判定定理可得出当PD=BQ时以P、D、Q、B四点组成的四边形为平行四边形,当5<t<10时,分两种情况考虑,在每种情况中由PD=BQ即可列出关于t的一元一次方程,解之即可得出结论.【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则PD=BQ.当5<t≤时,AP=t cm,PD=(10﹣t)cm,CQ=(4t﹣20)cm,BQ=(30﹣4t)cm,∴10﹣t=30﹣4t,解得:t=;当<t≤10时,AP=t cm,PD=(10﹣t)cm,BQ=(4t﹣30)cm,∴10﹣t=4t﹣30,解得:t=8综上所述:当运动时间为秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选:D.3.(2022春•曹县期中)如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F 运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q 也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或5【分析】由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD =AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.4.(2023春•大竹县校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t=时,四边形AECF是平行四边形.【分析】先根据平行四边形的性质求出OB的长,从而得到OE的长,再由平行四边形的性质得到OE=OF进而得到关于t的方程,解方程即可.【解答】解:由题意得OE=OB﹣BE=OB﹣t,OF=2t,∵四边形ABCD是平行四边形,BD=12cm,∴OB=OD=6cm,∴OE=6﹣t,∵四边形AECF是平行四边形,∴OE=OF,∴6﹣t=2t,∴t=2,∴当t=2时,四边形AECF是平行四边形,故答案为:2.5.(2023秋•红山区校级月考)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度向点C运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点P运动到点C时,点Q随之停止运动,设运动的时间t(秒).(1)求DQ、PC的代数表达式;(2)当t为何值时,四边形PQDC是平行四边形;(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【分析】(1)根据题意,写出代数表达式即可;(2)根据平行四边形的性质知DQ=CP,分当P从B运动到C时,当P从C运动到B时,两种情况进行求解即可;(3)分PQ=QD、PQ=PD、QD=PD三种情况讨论求出t值即可.【解答】解:(1)根据题意,DQ=(16﹣t)cm,PC=(21﹣2t)cm;(2)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t,∴16﹣t=21﹣2t,解得:t=5,∴当t=5秒时,四边形PQDC是平行四边形;(3)当PQ=PD时,作PH⊥AD于H,则HQ=HD,∵cm,AH=BP,∴,∴.当PQ=QD时,QH=AH﹣AQ=BP﹣AQ=2t﹣t=t cm,QD=(16﹣t)cm,∵QD2=PQ2=t2+122,∴(16﹣t)2=122+t2,解得.当QD=PD时,DH=AD﹣AH=AD﹣BP=16﹣2t,∵QD2=PD2=PH2+HD2=122+16﹣2t)2,∴(16﹣t)2=122+(16﹣2t)2,即3t2﹣32t+144=0,∵Δ=(﹣32)2﹣4×3×144=﹣704<0,∴方程无实根,综上可知,当秒或秒时,△PQD是等腰三角形.6.(2023春•和平区校级月考)已知▱ABCD中,一动点P在AD边上,以每秒1cm的速度从点A向点D 运动.(1)如图1,运动过程中,若BP平分∠ABC,且满足AB=BP,求∠ABC的度数.(2)如图2,在(1)的条件下,连结CP并延长,与AB的延长线交于点F,连结DF,若CD=2cm,直接写出:△DPF的面积为cm2.(3)如图3,另一动点Q在BC边上,以每秒4cm的速度从点C出发,在BC间往返运动,两个点同时出发,当点P停止运动时Q点也停止,设运动时间为t(t>0),若AD=12cm,则t=秒时,以P、D、Q、B为顶点的四边形是平行四边形.【分析】(1)可证AB=AP,从而可证AB=BP=AP,即可求解;(2)设边CD上的高为h1,边BC上的高为h2,,可得S△DPF=S△P AB,即可求解;(3)当PD=BQ时,四边形PDBQ是平行四边形,进行分类讨论:①当12﹣t=12﹣4t时,②当12﹣t =24﹣4t时,③当12﹣t=4t﹣12时,④当12﹣t=4t﹣24时,⑤当12﹣t=36﹣4t时,⑥当12﹣t=4t﹣36时,即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠APB=∠CBP,∵BP平分∠ABC,∴∠ABP=∠CBP,∴∠ABP=∠APB,∴AB=AP,∵AB=BP,∴AB=BP=AP,∴△ABP是等边三角形,∴∠ABP=60°,∴∠ABC=120°.(2)如图,设边CD上的高为h1,边BC上的高为h2,,∵四边形ABCD是平行四边形,∴S△CDF=•CD=S▱ABCD,S△PBC=h2•BC=S▱ABCD,∴S△PBC=S△CDF=S▱ABCD,∴S△PCD+S△DPF=S▱ABCD,∴S△P AB+S△PCD=S▱ABCD,∴S△PCD+S△DPF=S△P AB+S△PCD,∴S△DPF=S△P AB,∵△ABP是等边三角形,∴S△DPF=S△P AB==3,故答案为:;(3)∵PD∥BQ,∴当PD=BQ时,四边形PDBQ是平行四边形,∵(s),∴0≤t<12,①当12﹣t=12﹣4t时,解得:t=0(不合题意,舍去);此时当P与A重合,Q与C重合;②当12﹣t=24﹣4t时,解得:t=4;③当12﹣t=4t﹣12时,解得:t=4.8;④当12﹣t=4t﹣24时,解得:t=7.2;⑤当12﹣t=36﹣4t时,解得:t=8;⑥当12﹣t=4t﹣36时,解得:t=9.6;综上所述:t为4秒或4.8秒或7.2秒或8秒或9.6秒.类型二“三定一动”求平行四边形的顶点坐标当平面直角坐标系中有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A、B、C三点,在平面内找第4个点,构成平行四边形;【典题练习】7.(2022春•西双版纳期末)在平面直角坐标系中,点A、B、C的坐标分别是A(0,1),B(1,0),C(3,1),若以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(4,0);②AB为对角线时,点D的坐标为(﹣2,0)③AC为对角线时,点D的坐标为(2,2)综上所述,点D的坐标是(﹣2,0)或(4,0)或(2,2);故答案为:(4,0)或(﹣2,0)或(2,2).8.(2018春•大邑县期末)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;(2)在图中作出△ABC关于y轴的对称图形△A2B2C2;(3)若以点A,B,C,D为顶点的四边形为平行四边形时,请直接写出满足条件的点D的坐标.【分析】(1)根据关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)分别以AB、BC、AC为对角线画平行四边形可得到D点坐标.【解答】解:(1)如图,△A11C1为所作;(2如图,△A2B2C2为所作;(3)满足条件的点D的坐标为(2,2)或(﹣4,﹣2)或(﹣6,4).9.(2023春•凤山县期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,且OA,OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C,过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求直线AB的解析式;(2)若△ABC的面积为15,求点C的坐标;(3)在(2)的条件下,在坐标平面内是否存在点P,使以O,C,E,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据绝对值和完全平方式的非负性得出OA和OB的值,然后确定A点和B点的坐标,用待定系数法求出直线AB的解析式即可;(2)根据△ABC的面积为15,得出AC的长,确定C点的坐标即可;(3)分情况根据平行四边形的性质分别求出P点的坐标即可.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,∴A(﹣8,0),B(0,6),设直线AB的解析式为y=kx+b,代入A点和B点的坐标得,解得,∴直线AB的解析式为y=;(2)∵△ABC的面积为15,∴AC•OB=15,即AC×6=15,∴AC=5,∵OA=8,∴OC=OA﹣AC=8﹣5=3,即C(﹣3,0);(3)存在,∵D点在直线AB上,设D(a,a+6),∵BC平分∠ABO,∴CD=OC,即=3,解得a=﹣,∴D(﹣,),设直线DE的解析式为y=sx+t,∴,解得,∴直线DE的解析式为y=﹣x﹣4,∴E(0,﹣4),设点P的坐标为(m,n),①以CE为对角线时,此时以O,C,E,P为顶点的四边形是矩形,∵O(0,0),C(﹣3,0),E(0,﹣4),∴P(﹣3,﹣4);②以OE为对角线时,由平行四边形对角线互相平分可知,,解得,即P'(3,﹣4);③以OC为对角线时,由平行四边形对角线互相平分可知,,解得,即P''(﹣3,4);综上所述,符合条件的P点坐标为(﹣3,﹣4)或(3,﹣4)或(﹣3,4).类型三“两定两动”求平行四边形的顶点坐标当坐标系中有2个定点,且另外两个动点均在特殊的位置上时,方法策略同类型二。

因动点产生的平行四边形问题中考压轴题精编版

因动点产生的平行四边形问题中考压轴题精编版

因动点产生的平行四边形问题中考压轴题精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】因动点产生的平行四边形问题 例 1 2012年福州市中考第21题如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD 思路点拨1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.满分解答(1)QB =8-2t ,PD =43t . (2)如图3,作∠ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ⊥AB ,垂足为E ,那么BE =BC =8.在Rt △ABC 中,AC =6,BC =8,所以AB =10. 图3在Rt △APE 中,23cos 5AE A AP t ===,所以103t =. 当PQ //AB 时,CQ CP CB CA =,即106386CQ -=.解得329CQ =. 所以点Q 的运动速度为3210169315÷=. (3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0).如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4).直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数:当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得a =0,b =-2,c =6.所以点M 的运动路径的解析式为y =-2x +6.例 2 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1动感体验请打开几何画板文件名“12烟台26”,拖动点P 在AB 上运动,可以体验到,当P 在AB 的中点时,△ACG 的面积最大.观察右图,我们构造了和△CEQ 中心对称的△FQE 和△ECH ′,可以体验到,线段EQ 的垂直平分线可以经过点C 和F ,线段CE 的垂直平分线可以经过点Q 和H ′,因此以C 、Q 、E 、H 为顶点的菱形有2个.请打开超级画板文件名“12烟台26”,拖动点P 在AB 上运动,可以体验到,当P 在AB 的中点时,即t=2,△ACG 的面积取得最大值1.观察CQ ,EQ ,EC 的值,发现以C 、Q 、E 、H 为顶点的菱形有2个.点击动画按钮的左部和中部,可得菱形的两种准确位置。

二次函数压轴题之平行四边形存在性问题

二次函数压轴题之平行四边形存在性问题

平行四边形存在性问题考虑到求证平行四边形存在,必先了解平行四边形性质: (1)对应边平行且相等; (2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中: (1)对边平行且相等可转化为:A B D CAB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.y D -y Cx D -x Cy A -y Bx A -x BABC D(2)对角线互相平分转化为:2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD 的中点.DCBA【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D BA B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩, 2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩. 当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:D之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论: (1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题. 1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.D 3D 2D 1OyxCBA思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得: (1)BC 为对角线时,531352m n +=+⎧⎨+=+⎩,可得()17,6D ;(2)AC 为对角线时,135253mn +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235mn +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可. 比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2). (1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质: (1)对边平行且相等; (2)对角线互相平分.但此两个性质统一成一个等式: A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.【2019宜宾中考】如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【分析】(1)抛物线:223y x x =--,直线AB :3y x =-;(2)考虑EC ∥MN ,故若使点M 、N 、C 、E 是平行四边形,则EC =MN 即可,∵E (1,-2)、C (1,-4), ∴EC =2,设M 点坐标为(m ,m -3)(m >1),则N 点坐标为()2,23m m m --, 则MN =()()222333MN m m m m m =----=- 由题意得:232m m -=, 232m m -=,解得:1m =,2m =(舍), 对应P点坐标为⎝⎭; 232m m -=-,解得:32m =,41m =(舍). 对应P 点坐标为(2,-1).综上,P点坐标为⎝⎭或(2,-1). (3)铅垂法可解.【2018河南中考(删减)】如图,抛物线26y ax x c =++交x 轴于A 、B 两点,交y 轴于点C .直线5y x =-经过B 、C . (1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.【分析】(1)265y x x=-+-;(2)考虑到AM∥PQ,故只需AM=PQ即可.过点A作BC的平行线,与抛物线交点即为P点,易得直线AP的解析式:1y x=-,联立方程:2651x x x-+-=-,解得:11x=(舍),24x=,故对应P点坐标为(4,3);作点A关于B点的对称点A',过点A'作BC的平行线,与抛物线的交点亦为题目所求P点,易求直线解析式:9y x=-,联立方程:2659x x x-+-=-,解得:1x,2x=.故对应P点坐标为⎝⎭、⎝⎭.综上所述,P点坐标为(4,3)、⎝⎭、⎝⎭.【2018郴州中考(删减)】如图,已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =-++; (2)由题意可知CP 、DM 为对角线,考虑DM 在直线x =-1上,故CP 中点在直线x =-1上,∵点C 坐标为(0,3),故点P 横坐标为2,代入解析式得P (2,3), 易知M 点坐标为(1,6).【三定一动】(2018·恩施州中考删减)如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(1,0)-,2OC =,3OB =,点D 为抛物线的顶点. (1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标.【分析】(1)抛物线:224233y x x =-++;(2)设P 点坐标为(m ,n ),又B (3,0)、C (0,2)、D 813⎛⎫⎪⎝⎭,①若BC 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:223m n =⎧⎪⎨=-⎪⎩,故1P 的坐标为22,3⎛⎫- ⎪⎝⎭;②若BD 为对角线,由题意得:3108023m n +=+⎧⎪⎨+=+⎪⎩,解得:423m n =⎧⎪⎨=⎪⎩,故2P 坐标为24,3⎛⎫⎪⎝⎭;③若BP 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:2143m n =-⎧⎪⎨=⎪⎩,故3P 坐标为142,3⎛⎫- ⎪⎝⎭.综上所述,P 点坐标为22,3⎛⎫- ⎪⎝⎭、24,3⎛⎫ ⎪⎝⎭、142,3⎛⎫- ⎪⎝⎭.【两定两动:x 轴+抛物线】(2018·济宁中考删减)如图,已知抛物线2(0)y ax bx c a =++≠经过点(3,0)A ,(1,0)B -,(0,3)C -.(1)求该抛物线的解析式;(2)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =--;(2)列方程组求:设P ()2,23m m m --、Q (),0n ,又B (-1,0)、C (0,-3),若BC 为对角线,由题意得:21003230m n m m -+=+⎧⎨-=--+⎩,解得:23m n =⎧⎨=-⎩或01m n =⎧⎨=-⎩(舍), 故对应的P (2,-3);若BP 为对角线,由题意得:21023003m n m m -=+⎧⎨--+=-⎩,解得:21m n =⎧⎨=⎩或01m n =⎧⎨=-⎩(舍),故对应的P (2,-3);若BQ 为对角线,由题意得:21000233n m m m -=+⎧⎨+=---⎩,解得:12m n ⎧=⎪⎨=+⎪⎩12m n ⎧=⎪⎨=-⎪⎩, 故对应的P ()1+、()1.综上所述,P 点坐标为(2,-3)、()1、()1.(2019·包头中考删减)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,连接BC . (1)求该抛物线的解析式,并写出它的对称轴;(2)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:224233y x x =-++,对称轴:直线x =1;(2)设M 点坐标为224,233m m m ⎛⎫-++ ⎪⎝⎭,N 点坐标为()1,n ,又B (3,0)、C (0,2)若BC 为对角线,由题意得:23012402233m m m n +=+⎧⎪⎨+=-+++⎪⎩,解得:20m n =⎧⎨=⎩, 故M 点坐标为(2,2);若BN 为对角线,由题意得:23102402233m n m m +=+⎧⎪⎨+=-+++⎪⎩,解得:443m n =⎧⎪⎨=-⎪⎩,故M 点坐标为104,3⎛⎫- ⎪⎝⎭;若BM 为对角线,由题意得:23102420233m m m n +=+⎧⎪⎨-+++=+⎪⎩,解得:2163m n =-⎧⎪⎨=-⎪⎩,故M 点坐标为102,3⎛⎫-- ⎪⎝⎭.综上所述,M 点坐标为(2,2)、104,3⎛⎫- ⎪⎝⎭、102,3⎛⎫-- ⎪⎝⎭.(2019·咸宁中考删减)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【分析】(1)抛物线:213222y x x =-++;(2)设E 点坐标为1,22m m ⎛⎫-+ ⎪⎝⎭,F 点坐标为213,222n n n ⎛⎫-++ ⎪⎝⎭,又B (0,2)、O (0,0),①若OB 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨+=-+-++⎪⎩,解得:1122m n ⎧=--⎪⎨=+⎪⎩或2222m n ⎧=-+⎪⎨=-⎪⎩故E点坐标为(2--或(2-+;②若OE 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨-+=-++⎪⎩,解得:3322m n ⎧=+⎪⎨=+⎪⎩4422m n ⎧=-⎪⎨=-⎪⎩故E点坐标为(2+或(2-;③若OF 为对角线,由题意得:2001310222222n mn n m +=+⎧⎪⎨-++=-+⎪⎩,解得:5522m n =⎧⎨=⎩, 故E 点坐标为(2,1).【两定两动:抛物线+抛物线】(2019·连云港中考删减)如图,在平面直角坐标系xOy 中,抛物线21:L y x bx c =++过点(0,3)C -,与抛物线2213:222L y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q分别是抛物线1L 、2L 上的动点. (1)求抛物线1L 对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标.备用图【分析】(1)1L 解析式:223y x x =--;(2)虽然两个动点均在抛物线上,仍可用设点坐标的方法求解.设P 点坐标为()2,23m m m --,Q 点坐标为213,222n n n ⎛⎫--+ ⎪⎝⎭,又C (0,-3)、A (2,-3),①若CA 为对角线,由题意得;2202133323222m nm m n n +=+⎧⎪⎨--=----+⎪⎩, 解得:35m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-3,12);②若CP 为对角线,由题意得:2202133233222m nm m n n +=+⎧⎪⎨-+--=---+⎪⎩, 解得:31m n =⎧⎨=⎩或43103m n ⎧=-⎪⎪⎨⎪=-⎪⎩,故P 点坐标为(3,0)或413,39⎛⎫- ⎪⎝⎭;③若CQ 为对角线,由题意得:22021********n mn n m m +=+⎧⎪⎨---+=-+--⎪⎩, 解得:11m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-1,0).综上所述,P 点坐标为(-3,12)、(3,0)、413,39⎛⎫- ⎪⎝⎭、(-1,0).【四动点构造】(2019·锦州中考删减)如图,在平面直角坐标系中,一次函数334y x =-+的图像与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.【分析】(1)抛物线:21334y x x =-++; (2)本题4个点皆为动点,使四边形DEGF 为平行四边形易,而使周长最大难.设E 点坐标为3,34m m ⎛⎫-+ ⎪⎝⎭,则D 点坐标为213,34m m m ⎛⎫-++ ⎪⎝⎭,设F 点坐标为213,34n n n ⎛⎫-++ ⎪⎝⎭,则G 点坐标为3,34n n ⎛⎫-+ ⎪⎝⎭,2213333444DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭, 2213333444FG n n n n n ⎛⎫=-++--+=-+ ⎪⎝⎭, 由DE =FG ,可得:2244m m n n -+=-+, ∵m ≠n ,∴4m n +=,过点G 作GH ⊥CD 交CD 于H 点,则()()555425442EG n m m m =-=-=-, 又24DE m m =-+, ∴22524523102DEGFCm m m m m ⎛⎫=-++-=-++ ⎪⎝⎭,当34m =时,四边形DEGF 是平行四边形且周长最大,此时G 点坐标为139,416⎛⎫⎪⎝⎭.。

专题03 平行四边形 压轴题(七大题型)(原卷版)

专题03 平行四边形 压轴题(七大题型)(原卷版)

(1)直接写出C 点坐标;(2)如图2,线段BC 的垂直平分线交y 轴于点E ,F 为AD 的中点,试判断(3)如图3,点16,03E ⎛⎫ ⎪⎝⎭,F 为x 轴上的一点,45ECF ∠=︒,求F 点的坐标.2.如图,在平面直角坐标系中,平行四边形OABC 中点A 的坐标为(3,--y 轴交于点M ,点D 是射线OC 上一动点,点E 是OD 的中点,连接AE 交交AE 延长线于点G ,交AB 于点H ,连接OG .(1)若4OD =,求OG 的长.(2)若2OAE GOE GED ∠=∠-∠,求OD 的长.(3)①连接DF ,问直线DF 是否经过一定点,若经过,请求出该定点;若不经过,请说明理由;②连接FB ,BD ,若30DFB ∠=︒,求OD 的长.题型2:平行四边形与一次函数(1)求直线2l 的函数关系式;(2)若点C 的横坐标是2,求△(3)若存在点P ,使以A C 、、试求.出点P 的坐标.4.如图,在平面直角坐标系中,直线C (点C 在A 左侧),且ABC 面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图1,设点F 为线段AB 中点,点G 为y 轴上一动点,其中90FGQ ∠=︒,在G 点的运动过程中,当顶点Q 落在直线(3)如图2,若M 为线段BC 上一点,且满足AMB S S =△△点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请求出点说明理由.题型3:平行四边形与反比例函数5.如图,在平面直角坐标系中,点()2,2A -,()6,6B -(1)求a 和k 的值;(2)作直线l 平行于A C ''且与A B '',B C ''分别交于M ,N 直线l 的函数表达式;(3)在(2)问的条件下,是否存在x 轴上的点P 和直线l 边形是平行四边形?若存在,请直接写出符合题意的点6.如图1,已知点(),0A a ,()0,B b ,且a 、b 满足a 的值;在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M ,当T 在AF 上运动时,MN HT的值是否发生变化,若改变,请求出其变化范围;若不改变,请求出(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A B P Q 、、、为顶点的四边形是平行四边形;试求满足要求的所有点P 的位置.(3)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT AB 于N ,当T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其范围;若不改变,求出其值并给出你的证明.题型4:旋转问题8.如图,在三角形ABC 中,90BAC ∠=︒,AB AC =,点P 为ABC 内一点,连接段AP 绕点A 逆时针旋转90︒得到'AP ,连接PP ',CP '.(1)用等式表示CP '与BP 的数量关系,并证明;(2)当135BPC ∠=︒时,①直接写出P CP '∠的度数为________②若M 为BC 的中点,连接PM ,请用等式表示9.如图,在等边ABC 中,点D 是边得到的.(1)如图1,求CBE ∠的度数;(2)如图2,过点A 作AF DE ∥分别交BC CD ,于点F ,G ,连接AE 平分;(3)如图3,在(2)的条件下,若N 是CE 的中点连接FN ,求证:题型5:存在性问题10.如图1,在平行四边形ABCD 中,20AB =,30AD =,ABC ∠速运动,速度为每秒3个单位长度;同时,点Q 从点B 出发沿BA 度.当点P 停止运动时,点Q 也随之停止运动.过点P 作PM ⊥(1)当QP PM ⊥时,求t 的值.(2)如图2,连接MC ,是否存在t 值,使得PCM △的面积是平行四边形ABCD 面积的38若存在,求出对应的t ;若不存在,请说明理由.(3)如图3,过点M 作∥MN AB 交于点N ,是否存在t 的值,使得点P 在线段MN 的垂直平分线上?若存在,求出对应的t 的值;若不存在,请说明理由.题型6:动点问题11.如图,在ABCD Y 中,O 为对角线BD 的中点,90ADB ∠=︒,60A ∠=︒,4=AD .动点以每秒2个单位的速度沿折线AB BC -向终点C 匀速运动,连结PO 并延长交折线CD DA -PQ 绕着点P 逆时针旋转60︒得到线段PE ,连结QE ,设点P 的运动时间为t (s ).(1)用含t 的代数式表示PB 的长.(1)若设AP 的长为x ,则PC =,(2)当30BQD ∠=︒时,求AP 的长;(3)过点Q 作QF AB ⊥交AB 延长线于点(4)点P Q ,在运动过程中,线段说明理由.题型7:平行四边形与三角形、特殊三角形的性质与判定综合13.如图,在四边形ABCD 中,AD BC ∥B D ∠∠=,.(1)如图1,求证:四边形ABCD 是平行四边形(2)如图2,点E 在BC ,点F 在CD 上,连接AE EF 、,若AB 2AC CF CE-=(3)如图3,在(2)的条件下,连接AF ,过点C 作CH BC ⊥分别交的延长线于点P ,交AC 的延长线于点K ,若22CE =,PK 14.在ABCD Y 中,BD 是对角线,2180ADB BDC ︒∠+∠=,(1)求证:AD BD=(2)当45A ∠=︒时,1DE =,2BE =,3CE =,求CDE 的面积.(3)在(1)的条件下,当BD 平分ADE ∠,DBE CDE ∠=∠,10CD =15.如图,点P 是平行四边形ABCD 内一点,11290AB BPC ︒=∠=,(1)如图1,若45BAD PCD ∠-∠=︒,求证:2AD PB =;(2)如图2,在(1)的条件下,若ABP 的面积与PCD 的面积的比是3:4的面积;(3)如图3,在(1)的条件下,若7514PAB PD ∠=︒=,,求PA 的长.16.如图,在平行四边形ABCD 中,45DAC ∠=︒,AE BC ⊥于E ,CG (1)求证:AEB CEF ≌ :(2)如图2,平行四边形ABCD 外部有一点H ,连接AH EH 、,满足EH AB ∥,45H ∠=︒,求证:2AG AH CG +=;(3)如图3,在BC 上有一点M ,连接FM ,将FEM △绕着点M 顺时针旋转90︒得F E M ''△,连接点P 为DF '的中点,连接AP 若310CD =,32EF =,当CF 最小时,直接写出线段AP 的长度.。

专题03 平行四边形 压轴题(七大题型)(解析版)

专题03 平行四边形 压轴题(七大题型)(解析版)

(1)直接写出C点坐标;(2)如图2,线段BC的垂直平分线交y轴于点E,F为AD的中点,试判断(3)如图3,点16,03E⎛⎫⎪⎝⎭,F为x轴上的一点,45ECF∠=︒,求F点的坐标.【答案】(1)()4,4∵四边形ABCD是平行四边形,∴=,∥AD BC AD∴∠=∠,DAO CBEAOD CEB∠=∠=(AASCBE DAO∴≌∵线段BC 的中垂线交CE BE ∴=,∵F 为AD 的中点,22,1F ⎛⎫∴- ⎪⎝⎭,222DE DC EC ∴+=①当F 在点E 的左侧时,如图3,过 45ECF ∠=︒,FH CE ⊥,CFH ∴ 是等腰直角三角形,FH CH ∴=,(1)若4OD =,求OG 的长.(2)若2OAE GOE GED ∠=∠-∠,求OD 的长.(3)①连接DF ,问直线DF 是否经过一定点,若经过,请求出该定点;若不经过,请说明理由;②连接FB ,BD ,若30DFB ∠=︒,求OD 的长.∵2OAE GOE GED ∠=∠-∠,GED ∠∴2GOE OAE OEF ∠=∠+∠,∵IOE OAE OEF ∠=∠+∠,∴2IOE GOE ∠=∠,∴30FBF '∠=︒,设FM n =,则2FF n '=,∵226BF BF n '==+,∴22162FN n =+,∵FN BF BM FF ''⋅=⋅,(BFF ' 的两组底和高相乘)(1)求直线2l 的函数关系式;(2)若点C 的横坐标是2,求△(3)若存在点P ,使以A C 、、试求.出点P 的坐标.【答案】(1)4y x =-+则1402m ⨯+=,解得2m =-,∴直线AP 的解析式为122y x =-;DP AC ∥,且过(20),D -,设直线DP 的解析式为y x n =-+,则20n +=,解得2n =-,(1)求点C 的坐标及直线BC 的解析式;(2)如图1,设点F 为线段AB 中点,点G 为y 轴上一动点,其中90FGQ ∠=︒,在G 点的运动过程中,当顶点Q 落在直线(3)如图2,若M 为线段BC 上一点,且满足AMB S S =△△D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请求出点明理由.4∵FGQ 是等腰直角三角形,易证∴1MG NQ ==,FM GN ==∴()2,1Q n n -+-,∵点Q 在443y x =+图象上,同理:()2,1Q n n -+,∵点Q 在直线443y x =+图象上,∴()41243n n -=-+,解得:n ∴点()0,1G -,此时与点C 重合;23⎛⎫∵AMB AOB S S =△△,∴ABC AMC AOB S S S -=△△△,∴141105424232m ⎛⎫-⨯+=⨯⨯ ⎪⎝⎭,解得:∴点612,55M ⎛⎫- ⎪⎝⎭,(1)求a和k的值;(2)作直线l平行于A C''且与A B'',B C''分别交于M,N 直线l的函数表达式;(3)在(2)问的条件下,是否存在x轴上的点P和直线l则A B T B GM '''、均为等腰直角三角形,∵GM A T '∥,则23B G GT B M A M '''==:::,设2B G GM x '==,则3,GT x BT =则6245BT x =-==,的值;在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M∵()1,0A -,(0,B -解得1x =,此时()11,8P ,(10,8Q 如图2所示,若ABPQ ∵()1,0A -,(0,4B -解得=1x -,此时()21,8P --,2Q ②如图3所示,当∵()1,0A -,(0,4B -∴1122x -=,∵MN 是线段HT 的垂直平分线,∴NT NH =,∵四边形AFBH 是正方形,∴ABF ABH ∠=∠,在BFN 与BHN △中,BF BH(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A B P Q、、、为顶点的四边形是平行四边形;试求满足要求的所有点P的位置.(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HTAB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其范围;若不改变,求出其值并给出你的证明.【答案】(1)8∵()()1,0,04A B --,,则12解得1x =,此时()118P ,;如图2所示,若ABQP 为平行四边形,∵()()1,0,04A B --,,则12-解得=1x -,此时()218P --,;②如图3所示,当AB 为对角线时:∵()()1,0,04A B --,,∴1122x -=-,解得=1x -,∴()318P --,;故点P 的坐标为:()18,或(-(3)如图4,连接NH NT 、∵MN 是线段HT 的垂直平分线,∴NT NH =,∵四边形AFBH 是正方形,∴ABF ABH ∠=∠,在BFN 与BHN △中,BF BH =⎧(1)用等式表示CP '与BP 的数量关系,并证明;(2)当135BPC ∠=︒时,①直接写出P CP '∠的度数为________②若M 为BC 的中点,连接PM 【答案】(1)BP CP '=',证明见解析证明:∵90BAC ∠=︒,AB AC =∴2390∠+∠=︒,∵将线段AP 绕点A 逆时针旋转90∴AP AP '=,90PAP '∠=︒,∴1290∠+∠=︒,∴13∠=∠,(1)如图1,求CBE ∠的度数;(2)如图2,过点A 作AF DE ∥分别交BC CD ,于点F ,G ,连接AE 平分;(3)如图3,在(2)的条件下,若N 是CE 的中点连接FN ,求证:【答案】(1)60CBE ∠=︒(2)见解析∴DCE ACB ∠=∠,∴BCE ACD ∠=∠,∵CE CD =,BCE ACD ∠=∠,BC AC =,∴()SAS BCE ACD V V ≌,∴60CBE A Ð=Ð=°;(2)证明:如图1,连接EF ,∵ABC 是等边三角形,∴60CBD ACF ∠=∠=︒,∵//AF DE ,∴60AGD CDE ∠=∠=︒,∵60AGD CAF ACG BCD ACG ∠=∠+∠=︒=∠+∠,∴BCD CAF ∠=∠,∵BCD CAF ∠=∠,BC AC =,CBD ACF ∠=∠,∴()ASA BCD CAF ≌,∴AF CD DE ==,又∵//AF DE ,∴四边形ADEF 是平行四边形,∴AE 与DF 相互平分;(3)证明:如图2,延长FN 至点H ,使HN FN =,∵N 是CE 的中点,∴EN CN =,∵EN CN =,ENH CNF ∠=∠,HN FN =,∴()SAS ENH CNF ≌,∴HEN FCN ∠=∠,EH CF =,∴BC EH ∥,∵()ASA BCD CAF ≌,∴BD CF =,∴EH BD =,∵四边形ADEF 是平行四边形,∴AD EF ,∴60BFE ABC ∠=∠=︒,∵60BEF BFE EBF ∠=∠=∠=︒,∴BEF △是等边三角形,∴EF BF =,∵BC EH ∥,∴60HEF BFE ∠=∠=︒,∴HEF DBF ∠=∠,∵EH BD =,HEF DBF ∠=∠,EF BF =,∴()SAS EHF BDF ≌,∴HF DF =,(1)当QP PM ⊥时,求t 的值.(2)如图2,连接MC ,是否存在t 值,使得PCM △的面积是平行四边形ABCD 面积的38若存在,求出对应的t ;若不存在,请说明理由.(3)如图3,过点M 作∥MN AB 交于点N ,是否存在t 的值,使得点P 在线段MN 的垂直平分线上?若存在,求出对应的t 的值;若不存在,请说明理由.【答案】(1)4t =(2)不存在t 值(3)409t =【分析】(1)由题意得2BQ t =,3DP t =,由平行四边形的性质得出AB CD ,AD BC ∥60D ABC ∠=∠=︒,证出四边形BCPQ 是平行四边形,得出BQ CP =,得出方程220t =-(2)作AE BC ⊥于E ,延长MP 交BC 延长线于F ,由直角三角形的性质得出12BE AB =3103AE BE ==,求出平行四边形ABCD 的面积3003BC AE =⨯=,由直角三角形的性质得出则9030BAE ABC ∠=︒-∠=︒1102BE AB ∴==,3AE =∴平行四边形ABCD 的面积=∥ AB CD ,,MN AB,AB CD∴ ,MN CDAD BC,∴四边形CDMN是平行四边形,(1)用含t的代数式表示PB的长.(2)当点P在边AB上运动时,求证:△内部时,求(3)当点E在ABD在ABCDY中,O为对角线=,∴经过点O,OA OCAC四边形ABCD为平行四边形,∴∥,AB CD由题意得:PQE V 为等边三角形,60PQE QPE ∴∠=∠=︒,AB CE ∥ ,60QPB PQE ∴∠=∠=︒,60A QPB ∴∠=∠=︒,AD PQ ∴∥,∴四边形APQD 为平行四边形,4PQ AD ∴==,4DQ PQ AP ∴===,24t \=,2t ∴=,②当点E 落在AB 边上时,如图,由题意得:PQE V 为等边三角形,60PEQ ∴∠=︒,60A PEQ ∴∠=∠=︒,AD EQ \∥,∴四边形AEQD 为平行四边形,4EQ AD ∴==,AE DQ =,4PE ∴=.24AE AP PE t ∴=-=-.在DOQ △和BOP △中,DOQ BOP OD OB QDO PBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,(AAS)DOQ BOP ≌∴ ,DQ PB ∴=,OD OQ ∴=,30ODQ OQD ∴∠=∠=︒,60QPE ∠=︒ ,90PDQ ∴∠=︒,1232BP BO BD ∴===,2823t ∴-=,(1)若设AP 的长为x ,则PC =,(2)当30BQD ∠=︒时,求AP 的长;(3)过点Q 作QF AB ⊥交AB 延长线于点(4)点P Q ,在运动过程中,线段说明理由.,PE AB QF AB ⊥⊥ ,∴90AEP BFQ ∠=∠=︒,又60,QBF ABC A ∠=∠=∠=︒ ∴()AAS BFQ AEP ≌,∴EP FQ =;AEP BFQ△≌△∴=,AE BF+=+∴BE AE BF BE∴6==AB EF⊥⊥,PE AB QF AB(1)如图1,求证:四边形ABCD是平行四边形、,若AB (2)如图2,点E在BC,点F在CD上,连接AE EF-=2AC CF CE⊥分别交(3)如图3,在(2)的条件下,连接AF,过点C作CH BCCE=,PK 的延长线于点P,交AC的延长线于点K,若22(3)解:如图,以C为原点,BC 交于点T,DK与x轴交于点S 四边形ABCD是平行四边形,3【点睛】本题是四边形综合题,考查了平行线的判定和性质,等腰直角三角形的判定和性质,平行四边形的判定和性质,全等三角形的判定和性质,坐标与图形,坐标两点距离公式,待定系数法求一次函数解析式,一次函数的交点问题等知识,利用数形结合的思想,正确建立直角坐标系,求出相关点坐标是解题关键.14.在ABCD Y 中,BD 是对角线,(1)求证:AD BD=(2)当45A ∠=︒时,1DE =,2BE =,3CE =,求CDE 的面积.(3)在(1)的条件下,当BD 平分ADE ∠,DBE CDE ∠=∠,10CD =【答案】(1)见解析为等腰直角三角形,∴EBK∵ADB BDK ∠=∠,AD DK ADB KDB BD BD =⎧⎪∠=∠⎨⎪=⎩,∴ADB BDK △≌△,(1)如图1,若45BAD PCD ∠-∠=︒,求证:2AD PB =;(2)如图2,在(1)的条件下,若ABP 的面积与PCD 的面积的比是3:4的面积;(3)如图3,在(1)的条件下,若7514PAB PD ∠=︒=,,求PA 的长.【答案】(1)见解析(2)1542∵四边形ABCD 是平行四边形,∴AB CD AB CD ∥,=.∵MN AB ⊥,∴MN CD ⊥.∵:3:4ABP PCD S S = ,。

(完整版)特殊的平行四边形(压轴题)

(完整版)特殊的平行四边形(压轴题)

特殊平行四边形1、如图,四边形OABC 与四边形ODEF 都是正方形。

(1)当正方形ODEF 绕点O 在平面内旋转时,AD 与CF 有怎样的数量和位置关系?证明你的结论;(2)若ODEF 绕点O 旋转,当点D 转到直线OA 上时,DCO 恰好是30°,当点D 转到直线OA或直线OC 上时,求AD 的长。

(本小题只写出结论,不必写出过程)FEDCBAO2、如图,在正方形ABCD 中,点P 是射线BC 上的任意一点(点B 与点C 除外),连接DP ,分别过点C 、A 作直线DP 的垂线,垂足为点E 、F.(1)当点P 在BC 的延长线上时,那么线段AF 、CE 、EF 之间有怎样的数量关系?请证明你的结论; (2)当点P 在BC 边上时,正方形的边长为2,AF 、CE 之间有怎样的数量关系?请证明你的结论; (3)在(2)的条件下,当CE=1时,求EF 的长.P FEDCB A DCBA3、菱形ABCD 中,点E 、F 分别在BC 、CD 边上,且B EAF ∠=∠。

(1)如果B ∠=60°,求证:AE=AF ; (2)如果)(︒<<︒=∠900ααB ,(1)中的结论:AE=AF 是否依然成立,请说明理由。

(3)如果AB 长为5,菱形ABCD 面积为20,BE=a ,求AF 的长。

(用含a 的式子表示)FED CBA4、如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合).过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G 。

(1)BF 、AG 、AE 的数量之间具有怎样的关系?证明你的结论.(2)连接DF ,如果正方形的边长为2,设AE=a ,求△DFG 的面积。

(用含a 的式子表示)(3)如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离。

GFEDCBA5、已知,在矩形ABCD 中,AB=10,BC=20,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE=2。

压轴题解题策略:平行四边形的存在性问题(最新整理)

压轴题解题策略:平行四边形的存在性问题(最新整理)

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶ 如图1-1,在平面直角坐标系中,已知抛物线y=-x 2-2x +3与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为P ,如果以点P 、A 、C 、D 为顶点的四边形是平行四边形,求点D 的坐标.图1-1【解析】P 、A 、C 三点是确定的,过△PAC 的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D (如图1-2).由y =-x 2-2x +3=-(x +1)2+4,得A (-3,0),C (0, 3),P (-1, 4).由于A (-3,0)C (0, 3),所以P (-1, 4)D 1(2, 7).33 右,上33 右,上由于C (0, 3)A (-3,0),所以P (-1, 4)D 2(-4, 1).33 下,左33 下,左由于P (-1, 4)C (0, 3),所以A (-3,0)D 3(-2, -1).11 右,下11 右,下我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C 和C ′(4-,点C 和C ′向左平移4个单位得到点D 和D ′.(4+-(--图3-2图3-3 图3-4例❹ 如图4-1,已知抛物线与x 轴的负半轴交241633y x x =+于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M .16(2,3--图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点D 是第四象限内抛物线上的一点,直线AD 与y 轴负半轴交于点C ,且CD =4AC .设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图5-1【解析】由y =ax 2-2ax -3a =a (x +1)(x -3),得A (-1, 0).由CD =4AC ,得x D =4.所以D (4, 5a ).已知A (-1, 0)、D (4, 5a ),x P =1,以AD 为分类标准,分两种情况讨论:①如图5-2,如果AD 为矩形的边,我们根据AD //QP ,AD =QP 来两次平移坐标.由于A 、D 两点间的水平距离为5,所以点Q 的横坐标为-4.所以Q (-4,21a ).由于A 、D 两点间的竖直距离为-5a ,所以点P 的纵坐标为26a .所以P(1, 26a ).根据矩形的对角线相等,得AP 2=QD 2.所以22+(26a )2=82+(16a )2.整理,得7a 2=1.所以P .a =(1-,②如图5-3,如果AD 为矩形的对角线,我们根据AP//QD ,AP =QD 来两次平移坐标.由于A 、P 两点间的水平距离为2,所以点Q 的横坐标为2.所以Q (2,-3a ).由于Q 、D 两点间的竖直距离为-8a ,所以点P 的纵坐标为8a .所以P (1, 8a ).再根据AD 2=PQ 2,得52+(5a )2=12+(11a )2.整理,得4a 2=1.所以.此时P .12a =-(14)-,我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么;如图5-3,如果∠QAP =90°,那么MA ND MD NP=.GQ KA GA KP=图5-2 图5-3例❻ 如图6-1,将抛物线c 1:x 轴翻折,得到抛物线c 2.2y =+现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,、,M ,根据OA 2=OM (1,0)A m --(1,0)B m -(m -2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G 分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE、DA为边作平行四边形DEFA.(1)如果平行四边形DEFA为矩形,求m的值;(2)如果平行四边形DEFA为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEFA.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。

(完整版)压轴题解题策略:平行四边形的存在性问题

(完整版)压轴题解题策略:平行四边形的存在性问题

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶如图1-1,在平面直角坐标系中,已知抛物线y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为P,如果以点P、A、C、D为顶点的四边形是平行四边形,求点D的坐标.图1-1【解析】P、A、C三点是确定的,过△P AC的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D(如图1-2).由y=-x2-2x+3=-(x+1)2+4,得A(-3,0),C(0, 3),P(-1, 4).由于A(-3,0)33右,上D1(2, 7).右,上C(0, 3),所以P(-1, 4)33由于C(0, 3)33下,左D2(-4, 1).下,左A(-3,0),所以P(-1, 4)33由于P(-1, 4)11右,下C(0, 3),所以A(-3,0)11右,下D3(-2, -1).我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4 例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C (422,22)-和C ′(422,22)+-,点C 和C ′向左平移4个单位得到点D (22,22)-和D ′(22,22)-.图3-2 图3-3 图3-4例❹ 如图4-1,已知抛物线241633y x x =+与x 轴的负半轴交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M 16(2,)3--.图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B 两点(点A在点B的左侧),点D是第四象限内抛物线上的一点,直线AD与y轴负半轴交于点C,且CD=4AC.设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图5-1【解析】由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图5-2,如果AD为矩形的边,我们根据AD//QP,AD=QP来两次平移坐标.由于A、D两点间的水平距离为5,所以点Q的横坐标为-4.所以Q(-4,21a).由于A、D两点间的竖直距离为-5a,所以点P的纵坐标为26a.所以P(1, 26a).根据矩形的对角线相等,得AP2=QD2.所以22+(26a)2=82+(16a)2.整理,得7a2=1.所以77a=-.此时P267(1)7-,.②如图5-3,如果AD为矩形的对角线,我们根据AP//QD,AP=QD来两次平移坐标.由于A、P两点间的水平距离为2,所以点Q的横坐标为2.所以Q(2,-3a).由于Q、D两点间的竖直距离为-8a,所以点P的纵坐标为8a.所以P(1, 8a).再根据AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么MA ND MD NP =;如图5-3,如果∠QAP =90°,那么GQ KA GA KP=.图5-2 图5-3例❻ 如图6-1,将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2.现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,(1,0)A m --、(1,0)B m -,M (3)m -,根据OA 2=OM 2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4 例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1 【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD =2OC,连结DE,以DE、DA为边作平行四边形DEF A.(1)如果平行四边形DEF A为矩形,求m的值;(2)如果平行四边形DEF A为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEF A.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4 您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形动点及存在性问题压轴题
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
特殊平行四边形中的动点及存在性问题
【例1】正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为。

【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.
(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F 的坐标.
【例2】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,P的坐标为;
【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),
并且a,b满足16
b=.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)
(1)求B、C两点的坐标;
(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;
(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.
【例3】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为;
(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.
【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).
(1)求G点坐标;
(2)求直线EF解析式;
(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
【例4】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以
4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts
(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.
【练习4】如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动时间为t秒(0
t≥)
(1)点E的坐标为,F的坐标为;
(2)当t为何值时,四边形POFE是平行四边形;
(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.
【巩固练习】
1、菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为。

第1题图第2题图第3题图
第4题图
2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是_________;最小值是__________.
3、已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE取最小值时,AF= .
4、在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。

过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____.
5、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).
(1)当t为何值时,四边形PQDC是平行四边形;
(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?
(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
6、如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)
是方程组⎩
⎨⎧=-=632y x y x 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD =52。

(1)求直线AB 的解析式及点C 的坐标;
(2)求直线AD 的解析式;
(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。

相关文档
最新文档