数字集成电路 电路系统与设计 chapter1
数字集成电路设计第1章引论讲义.

v0
v1
v2
v3Biblioteka v4v5v6
v1 = f(v0) v1 = finv(v2)
v3
v1 finv(v)
f(v)
v1 v3
finv(v)
f(v)
v2
v0
v0
v2
2.4抗噪声能力
噪声容限描述的一个电路超过一个 噪声源的能力。 抗噪声能力则表明系统在噪声存在的情况下 正确处理和传递信息的能力。许多数字电路, 它们的噪声容限很小,但却有很好的抗噪声 能力。
4、工艺尺寸的缩小会使以抽象为基础的模型的其 它一些缺陷更为明显。例如时钟分布、电源分布 这样的问题更为关键。 5、工艺水平提高导致新的设计问题和约束条件会 不断出现。如功耗、器件和互连线寄生参数之间的 比例。 6、对一个设计进行检查和排错需要电路方面的 专门知识。
数字电路设计中运用的典型抽象层次按抽象程度增加的顺序依次为:
三、为什么在设计自动化可以解决所有的设计问题后, 我们还要去关心数字集成电路的设计呢?
原因如下:
1、工艺升级后,而模型库不能直接移植
2、对模块内部的理解。例如数字电路中对一个单元内部的 关键是时序路径的寻找 3、以抽象为基础的方法只在一定程度上是正确的。例如一个 加法器的性能还与其环境连接方式的影响。
二、功能性和稳定性
1电路响应出现偏离的原因: a,制造过程中存在差异 b,芯片上或芯片外存在的干扰噪声源。对数字电路而言,噪声 为指在逻辑节点上不希望发生的电压或电流的变化。 数字系统中的大多数噪声都是内部产生的,噪声的值与信号的 摆幅成正比。 如何克服这些噪声干扰是高性能数字电路设计所面临的主 要挑战之一。
噪声源可分为以下两种类型: A,与信号摆幅VSW成正比的噪声。它对信号节点的影响用gVsw来 表示 B,固定噪声。它对信号节点的影响等于fVNf,VNf是噪声源的幅值, 而f是从噪声到信号节点的传递函数
数字集成电路-电路系统与设计

数字集成电路-电路系统与设计数字电路设计的抽象层次:器件->电路->门->模块->系统时钟偏差对全局信号都可能产⽣影响,是⾼性能⼤系统的设计关键。
集成电路的成本:固定成本+可变成本;固定成本可理解为研发成本,⾮重复的成本;可变成本可理解为⽣产制造(芯⽚成本和封测成本)过程中产⽣的成本,与良率也有关,控制芯⽚⾯积能够有效且直接的控制芯⽚成本。
⼀个门电路要想具有再⽣性,其VTC(电压传输特性)应当具有⼀个增益⼤于1的过渡区,以及增益⼩于1的合法区域,如下图:封装可按照封装材料,互连层数量,散热⽅式进⾏分类:封装材料:陶瓷封装、塑封(⾼分⼦聚合物)NMOS与PMOS,以增强型为例,NMOS VGS>Vth时导通,PMOS |VGS|>|Vth|时导通,且VGS<0。
CMOS反相器电压传输特性(VTC)推导:上式为CMOS上下管需要遵守的规则。
结合上式得到,下图为CMOS中上官PMOS部分不同栅极输⼊电压下,下管NMOS电流与输出电压的关系为了使NMOS和PMOS的传输特性能够符合上式DC成⽴,需要根据⼆者的V-I曲线找到交叉点,使其满⾜DC平衡找到上图中的DC平衡交叉点,并提取绘制得到CMOS的电压传输特性如下图,可以看出CMOS的电压传输特性具有再⽣性其中res表⽰呈电阻特性PMOS和NMOS的电流⽅向问题:源極的源是指載流⼦的起點;漏極的漏是指載流⼦的終點。
載流⼦從源極出發,穿過溝道,到達漏極,從外部看,載流⼦最終從漏極漏出去了。
顯然,NMOS和PMOS的載流⼦是不同的,因此導致了令⼈困惑的電流⽅向問題。
盯住載流⼦即可,別被電流⽅向迷惑。
可以簡單地認為,柵極和襯底間的電壓超過閾值後,漏極和源極就接通了,⽽電流⼤⼩則是由柵漏源三極間的電壓決定。
因為MOS是對稱結構,所以源極和漏極無區別且可互換。
關於D和S,也就是漏和源,其實是從⼯藝⾓度觀察的結果。
在MOS中,有兩種載流⼦,⼀種是電⼦,另⼀種是空⽳,標記為N和P。
《数字电路与系统设计》 第1章习题答案

106682367.doc1.1将下列各式写成按权展开式:(352.6)10=3×102+5×101+2×100+6×10-1(101.101)2=1×22+1×20+1×2-1+1×2-3(54.6)8=5×81+54×80+6×8-1(13A.4F)16=1×162+3×161+10×160+4×16-1+15×16-21.3二进制数00000000~11111111和0000000000~1111111111分别可以代表多少个数?解:分别代表28=256和210=1024个数。
1.4将下列个数分别转换成十进制数:(1111101000)2,(1750)8,(3E8)16解:(1111101000)2=(1000)10(1750)8=(1000)10(3E8)16=(1000)101.5将下列各数分别转换为二进制数:(210)8,(136)10,(88)16解:结果都为:(10001000)21.6将下列个数分别转换成八进制数:(111111)2,(63)10,(3F)16解:结果都为(77)81.7将下列个数分别转换成十六进制数:(11111111)2,(377)8,(255)10解:结果都为(FF)161.8转换下列各数,要求转换后保持原精度:解:(1.125)10=(1.0010000000)10——小数点后至少取10位(0010 1011 0010)2421BCD=(11111100)2 (0110.1010)余3循环BCD码=(1.1110)21.9用下列代码表示(123)10,(1011.01)2:解:(1)8421BCD码:(123)10=(0001 0010 0011)8421BCD(1011.01)2=(11.25)10=(0001 0001.0010 0101)8421BCD(2)余3 BCD码(123)10=(0100 0101 0110)余3BCD(1011.01)2=(11.25)10=(0100 0100.0101 1000)余3BCD1.10已知A=(1011010)2,B=(101111)2,C=(1010100)2,D=(110)2(1)按二进制运算规律求A+B,A-B,C×D,C÷D,(2)将A、B、C、D转换成十进制数后,求A+B,A-B,C×D,C÷D,并将结果与(1)进行比较。
数字集成电路-电路系统与设计第二版课程设计

数字集成电路-电路系统与设计第二版课程设计
一、课程设计介绍
数字集成电路是现代电路设计中的重要组成部分,也是计算机科学与工程的重要分支。
本课程设计旨在通过对数字集成电路的系统与设计进行探究,并结合具体的案例来设计和实现数字集成电路,使学生能够熟悉数字集成电路的基本原理、设计方法和实现技术。
本课程设计主要包含以下内容:
1.数值系统和编码
2.逻辑功能设计:组合逻辑电路和时序逻辑电路
3.集成电路设计方法和流程
4.VHDL和FPGA实现数字逻辑电路
5.数字信号处理器
通过本次课程设计,学生将掌握数字集成电路的系统性设计思路和实现方法,具备数字电路设计的基本能力和实际操作技术,能够针对具体应用场景提出解决方案,实现数字电路的设计、验证和调试。
二、课程设计要求
1. 课程设计题目
本次课程设计的题目为“4位计数器设计”。
2. 软件工具
VHDL编程软件和EDA工具
1。
数字集成电路 电路系统与设计

数字集成电路电路系统与设计
数字集成电路是指将若干个数字电路组合在一起,形成一个完整
的电路系统的过程。
数字集成电路充分利用了数字电子技术的优势,
将不同的数字电路模块集成至一个芯片上,从而大大提高了电路系统
的性能和可靠性。
数字集成电路的设计需要遵循特定的规范和标准,包括电路功能
的设计、电路参数的计算和选取,以及电路布局和制造等方面。
同时,数字集成电路的设计需要充分考虑电路系统的稳定性、抗干扰能力、
低功耗、高可靠性等特点,以满足不同应用场景的需求。
数字集成电路常常应用于各种高精度、高复杂度数字系统中,包
括计算机、通信系统、音视频处理、自动化控制等领域。
在数字集成
电路的设计和制造中,还需要根据具体应用场景选择不同的设计方案
和制造工艺,以获得最优性能和可靠性。
数字集成电路--电路、系统与设计

数字集成电路是现代电子产品中不可或缺的一部分,它们广泛应用于计算机、手机、汽车、医疗设备等领域。
数字集成电路通过在芯片上集成大量的数字电子元件,实现了电子系统的高度集成和高速运算。
本文将从电路、系统与设计三个方面探讨数字集成电路的相关内容。
一、数字集成电路的电路结构数字集成电路的电路结构主要包括逻辑门、寄存器、计数器等基本元件。
其中,逻辑门是数字集成电路中最基本的构建元件,包括与门、或门、非门等,通过逻辑门的组合可以实现各种复杂的逻辑功能。
寄存器是用于存储数据的元件,通常由触发器构成;而计数器则可以实现计数和计时功能。
这些基本的电路结构构成了数字集成电路的基础,为实现各种数字系统提供了必要的支持。
二、数字集成电路与数字系统数字集成电路是数字系统的核心组成部分,数字系统是以数字信号为处理对象的系统。
数字系统通常包括输入输出接口、控制单元、运算器、存储器等部分,数字集成电路在其中充当着处理和控制信号的角色。
数字系统的设计需要充分考虑数字集成电路的特性,包括时序和逻辑的正确性、面积和功耗的优化等方面。
数字集成电路的发展也推动了数字系统的不断完善和创新,使得数字系统在各个领域得到了广泛的应用。
三、数字集成电路的设计方法数字集成电路的设计过程通常包括需求分析、总体设计、逻辑设计、电路设计、物理设计等阶段。
需求分析阶段需要充分了解数字系统的功能需求,并将其转化为具体的电路规格。
总体设计阶段需要根据需求分析的结果确定电路的整体结构和功能分配。
逻辑设计阶段是将总体设计转化为逻辑电路图,其中需要考虑逻辑函数、时序关系、并行性等问题。
电路设计阶段是将逻辑电路图转化为电路级电路图,包括门电路的选择和优化等。
物理设计阶段则是将电路级电路图转化为实际的版图设计,考虑布线、功耗、散热等问题。
在每个设计阶段都需要充分考虑电路的性能、面积、功耗等指标,以实现设计的最优化。
结语数字集成电路作为现代电子系统的关键组成部分,对于数字系统的功能和性能起着至关重要的作用。
数字集成电路第1章PPT课件

双极集成电路的基本制造工艺
掺硼P型硅作为衬底材料并进行初始氧化,以形 成二氧化硅表层,然后再进行隐埋层光刻以形 成一个窗口后进行N+层掺杂,接着就用外延层 所覆盖,故称隐埋层
制作隐埋层后,去除表面的二氧化硅,再进行N 型外延层生长
掺P型材料进行隔离扩散. 用第三块掩模版完成基区光刻
双极集成电路的基本制造工艺
基区重掺杂 制作晶体管发射极和集电极 形成表面金属互连接的接触区 完成一层金属铝膜的沉积,然后再介质淀积 在介质层上蚀刻出连接通孔 成第二层金属铝膜的沉积 后续工序,划片,粘片,压焊,封装,测试分类,筛选,
成品测试,入库
双极集成电路应用
TTL,DTL,RTL,HTL,ECL STLL,SLTTL,I2L,I3L ASTLL.ASLTTL
环 长PSG 引线孔光刻 铝引线光刻 压焊块光刻
N阱硅栅CMOS工艺(略)
▪ 双阱硅栅CMOS工艺
BI---CMOS工艺
双极工艺特点: 速度高、驱动能力强、模拟精度高 但功耗、集成度无法满足VLSI的
要求
BI---CMOS工艺
CMOS工艺特点: 功耗低、集成度高、抗干扰能力强 但速度低、驱动能力差
成
P+
NPN管的基区扩散 PMOS管的源、漏区扩散 横向PNP管集电区、发射区扩散 纵向PNP管的发射区扩散可以同时进行完成
以双极性工艺为基础的P阱BICMOS工艺
栅氧化在PMOS管沟道注入以后进行 可获的大电流、高压 LDMOS-LOW DOUBLE MOS VDMOS-VERTICAL DOUBLE MOS
以双极性工艺为基础的BI-CMOS工艺
以双极性工艺为基础的P阱BI-CMOS工艺 以双极性工艺为基础的双阱BI-CMOS工艺 特点是对双极器件有利
数字集成电路:电路系统与设计(第二版)

数字集成电路:电路系统与设计(第二版)简介《数字集成电路:电路系统与设计(第二版)》是一本介绍数字集成电路的基本原理和设计方法的教材。
本书的内容覆盖了数字电路的基础知识、逻辑门电路、组合逻辑电路、时序逻辑电路、存储器和程序控制电路等方面。
通过学习本书,读者可以了解数字集成电路的概念、设计方法和实际应用。
目录1.数字电路基础知识 1.1 数字电路的基本概念 1.2 二进制系统与数制转换 1.3 逻辑运算与布尔代数2.逻辑门电路 2.1 与门、或门、非门 2.2 与非门、或非门、异或门 2.3 多输入门电路的设计方法3.组合逻辑电路 3.1 组合逻辑电路的基本原理 3.2 组合逻辑电路的设计方法 3.3 编码器和译码器4.时序逻辑电路 4.1 时序逻辑电路的基本原理 4.2 同步时序电路的设计方法 4.3 异步时序电路的设计方法5.存储器电路 5.1 存储器的基本概念 5.2 可读写存储器的设计方法 5.3 只读存储器的设计方法6.程序控制电路 6.1 程序控制电路的基本概念 6.2 程序控制电路的设计方法 6.3 微程序控制器的设计方法内容概述1. 数字电路基础知识本章主要介绍数字电路的基本概念,包括数字电路与模拟电路的区别、数字信号的表示方法以及数制转换等内容。
此外,还介绍了数字电路中常用的逻辑运算和布尔代数的基本原理。
2. 逻辑门电路逻辑门电路是数字电路中的基本组成单元,本章主要介绍了与门、或门、非门以及与非门、或非门、异或门等逻辑门的基本原理和组成。
此外,还介绍了多输入门电路的设计方法,以及逻辑门电路在数字电路设计中的应用。
3. 组合逻辑电路组合逻辑电路是由逻辑门电路组成的,本章主要介绍了组合逻辑电路的基本原理和设计方法。
此外,还介绍了编码器和译码器的原理和应用,以及在数字电路设计中的实际应用场景。
4. 时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上引入了时序元件并进行时序控制的电路。
本章主要介绍了时序逻辑电路的基本原理和设计方法,包括同步时序电路和异步时序电路的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EE141 © Digital Integrated
Circuits2nd
Introduction
2
Digital Integrated Circuits
Introduction: Issues in digital design The CMOS inverter Combinational logic structures Sequential logic gates Design methodologies Interconnect: R, L and C Timing Arithmetic building blocks Memories and array structures
(data from Texas Instruments)
EE141 © Digital Integrated
Circuits2nd
Introduction
21
Challenges in Digபைடு நூலகம்tal Design
DSM
“Microscopic Problems”
• Ultra-high speed design • Interconnect • Noise, Crosstalk • Reliability, Manufacturability • Power Dissipation • Clock distribution. Everything Looks a Little Different
EE141 © Digital Integrated
Circuits2nd
Introduction
5
ENIAC - The first electronic computer (1946)
EE141 © Digital Integrated
Circuits2nd
Introduction
6
The Transistor Revolution
Lead Microprocessors power continues to increase
EE141 © Digital Integrated
Circuits2nd
Courtesy, Intel
Introduction
18
Power will be a major problem
100000 10000 Power (Watts)
Circuits2nd Introduction
12
Evolution in Complexity
EE141 © Digital Integrated
Circuits2nd
Introduction
13
Transistor Counts
K 1,000,000 100,000 10,000 1,000 100 10
1980
1990 Year
2000
2010
Die size grows by 14% to satisfy Moore’s Law
EE141 © Digital Integrated
Circuits2nd
Courtesy, Intel
Introduction
16
Frequency
10000 Frequency (Mhz) 1000 100 486 10 1 0.1 1970 8085 8086 286 386
1000
100
18KW 5KW 1.5KW 500W
Pentium® proc
286 486 8086 386 10 8085 8080 8008 1 4004 0.1 1971 1974 1978 1985 1992 2000 2004 2008 Year
Power delivery and dissipation will be prohibitive
Digital Integrated Circuits
A Design Perspective
Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic
Introduction
July 30, 2002
EE141 © Digital Integrated
Circuits2nd
19
EE141 © Digital Integrated
Circuits2nd
Courtesy, Intel
Introduction
Power density
10000 Power Density (W/cm2) 1000
Rocket Nozzle
100
Nuclear Reactor
8086 10 4004 Hot Plate P6 8008 8085 Pentium® proc 386 286 486 8080 1 1970 1980 1990 2000 2010 Year
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Moore’s Law
Electronics, April 19, 1965.
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
3
EE141 © Digital Integrated
Circuits2nd
Introduction
Introduction
Why
is designing digital ICs different today than it was before? Will it change in future?
1/DSM
“Macroscopic Issues”
• Time-to-Market • Millions of Gates • High-Level Abstractions • Reuse & IP: Portability • Predictability • etc. …and There’s a Lot of Them!
8086
Source: Intel
1 Billion Transistors
Pentium® III Pentium® II Pentium® Pro Pentium®
i486 i386 80286
1 1975 1980 1985 1990 1995 2000 2005 2010
Projected
EE141 © Digital Integrated
What will you learn?
Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability
EE141 © Digital Integrated
Circuits2nd
Introduction
4
The First Computer
T he B abbage D iffer e n c e E n g in e (1 8 3 2 ) 2 5 ,0 0 0 p a rts c o st: ? 7 ,4 7 0
Doubles every 2 years
P6 Pentium ® proc
8080 8008 4004 1980 1990 Year 2000 2010
Lead Microprocessors frequency doubles every 2 years
17
EE141 © Digital Integrated
Power density too high to keep junctions at low temp
EE141 © Digital Integrated
Circuits2nd
Courtesy, Intel
Introduction
20
Not Only Microprocessors
Cell Phone
Introduction
15
Die Size Growth
100 Die size (mm)
10 8080 8008 4004 1 1970 8086 8085 286
386
P6 Pentium ® proc 486
~7% growth per year ~2X growth in 10 years
Introduction
9
Intel Pentium (IV) microprocessor
EE141 © Digital Integrated
Circuits2nd
Introduction
10
Moore’s Law
In
1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months
Introduction
1
What is this book all about?
Introduction to digital integrated circuits.
CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.