变压器设计

变压器设计
变压器设计

变压器的基本知识

变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。

一、变压器的基本原理

当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。

如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。

二、变压器的损耗

当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。

由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此

进行描述,η=输出功率/输入功率。

三、变压器的材料

要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。1、铁心材料:

变压器使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为,

2、绕制变压器通常用的材料有

漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。

3、绝缘材料

在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。

4、浸渍材料:

变压器绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。

电工学名词解释

要学好电工技术必须要对在电工学上的一些物理量的概念有所理解,为此本人将一些常用的电工学名词汇总并作注解:

1、电阻率---又叫电阻系数或叫比电阻。是衡量物质导电性能好坏的一个物理量,以字母ρ表示,单位为欧姆*毫米平方/米。在数值上等于用那种物质做的长1米截面积为1平方毫米的导线,在温度20C时的电阻值,电阻率越大,导电性能越低。则物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加

与原来的电阻电阻率的比值,通常以字母α表示,单位为1/C。

2、电阻的温度系数----表示物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加量与原来的电阻率的比值,通常以字母α表示,单位为1/C。

3、电导----物体传导电流的本领叫做电导。在直流电路里,电导的数值就是电阻值的倒数,以字母ɡ表示,单位为欧姆。

4、电导率----又叫电导系数,也是衡量物质导电性能好坏的一个物理量。大小在数值上是电阻率的倒数,以字母γ表示,单位为米/欧姆*毫米平方。

5、电动势----电路中因其他形式的能量转换为电能所引起的电位差,叫做电动势或者简称电势。用字母E表示,单位为伏特。

6、自感----当闭合回路中的电流发生变化时,则由这电流所产生的穿过回路本身磁通也发生变化,因此在回路中也将感应电动势,这现象称为自感现象,这种感应电动势叫自感电动势。

7、互感----如果有两只线圈互相靠近,则其中第一只线圈中电流所产生的磁通有一部分与第二只线圈相环链。当第一线圈中电流发生变化时,则其与第二只线圈环链的磁通也发生变化,在第二只线圈中产生感应电动势。这种现象叫做互感现象。

8、电感----自感与互感的统称。

9、感抗----交流电流过具有电感的电路时,电感有阻碍交流电流过的作用,这种作用叫做感抗,以Lx表示,Lx=2πfL.

10、容抗----交流电流过具有电容的电路时,电容有阻碍交流电流过的作用,这种作用叫做容抗,以Cx表示,Cx=1/12πfc。

11、脉动电流----大小随时间变化而方向不变的电流,叫做脉动电流。

12、振幅----交变电流在一个周期内出现的最大值叫振幅。

13、平均值----交变电流的平均值是指在某段时间内流过电路的总电荷与该段时间的比值。正弦量的平均值通常指正半周内的平均值,它与振幅值的关系:平均值=*振幅值。

14、有效值----在两个相同的电阻器件中,分别通过直流电和交流电,如果经过同一时间,它们发出的热量相等,那么就把此直流电的大小作为此交流电的有效值。正弦电流的有效值等于其最大值的倍。

15、有功功率----又叫平均功率。交流电的瞬时功率不是一个恒定值,功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特。

16、视在功率----在具有电阻和电抗的电路内,电压与电流的乘积叫做视在功率,用字母Ps来表示,单位为瓦特。

17、无功功率----在具有电感和电容的电路里,这些储能元件在半周期的时间里把电源能量变成磁场(或电场)的能量存起来,在另半周期的时间里对已存的磁场(或电场)能量送还给电源。它们只是与电源进行能量交换,并没有真正消耗能量。我们把与电源交换能量的速率的振幅值叫做无功功率。用字母Q表示,单位为芝。18、功率因数----在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSφ表示。

19、相电压----三相输电线(火线)与中性线间的电压叫相电压。

20、线电压----三相输电线各线(火线)间的电压叫线电压,线电压的大小为相电压的倍。

21、相量----在电工学中,用以表示正弦量大小和相位的矢量叫相量,也叫做向量。

22、磁通----磁感应强度与垂直于磁场方向的面积的乘积叫做磁通,以字母φ表示,单位为麦克斯韦。

23、磁通密度----单位面积上所通过的磁通大小叫磁通密度,以字母B表示,磁通密度和磁场感应强度在数值上是相等的。

24、磁阻----与电阻的含义相仿,磁阻是表示磁路对磁通所起的阻碍作用,以符号Rm表示,单位为1/亨。

25、导磁率----又称导磁系数,是衡量物质的导磁性能的一个系数,以字母μ表示,单位是亨/米。

26、磁滞----铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。

27、磁滞回线----在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线如图1。

28、基本磁化曲线----铁磁体的磁滞回线的形状是与磁感应强度(或磁场强度)的最大值有关,在画磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线

叫基本磁化曲线。

29、磁滞损耗----放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。

30、击穿---绝缘物质在电场的作用下发生剧烈放电或导电的现象叫击穿。

31、介电常数---又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米。

32、电磁感应---当环链着某一导体的磁通发生变化时,导体内就出现电动势,这种现象叫电磁感应。

33、趋肤效应---又叫集肤效应,当高频电流通过导体时,电流将集中在导体表面流通,这种现象叫趋肤效应

电源变压器简易设计(一)

电源变压器是低频变压器.本文介绍的方法适合50Hz一千瓦以下普通交流变压器的设

计.

(1) 电源变压器的铁心. 它一般采用硅钢片. 硅钢片越薄, 功率损耗越小, 效果越好. 整个铁

心是有许多硅钢片叠成的, 每片之间要绝缘. 买来的硅钢片, 表面有一层不导电的氧化膜, 有足够

的绝缘能力. 国产小功率变压器常用标准铁心片规格见后续文

章.

(2) 电源变压器的简易设计. 设计一个电源变压器, 主要是根据电功率选择变压器铁心的

截面积, 计算初次级各线圈的圈数等. 所谓铁心截面积S是指硅钢片中间舌的标准尺寸a和叠

加起来的总厚度b的乘积. 如果电源变压器的初级电压是U1, 次级有n个组, 各组电压分别

是 U21, U22, ┅, U2n, 各组电流分别是I21, I22, ┅, I2n, ...计算步骤如

下:

第一步, 计算次级的功率P2. 次级功率等于次级各组功率的和, 也就

是 P2 = U21*I21 + U22*I22 + ┅ + U2n*I2n.

第二步, 计算变压器的功率P. 算出P2后. 考虑到变压器的效率是η,那么初级功率

P1 = P2/η,η一般在~之间. 变压器的功率等于初, 次级功率之和的一半, 也就

是 P = ( P1 + P2 ) / 2

第三步, 查铁心截面积S. 根据变压器功率, 由式(2.1)计算出铁心截面积S, 并且从国产小功率变压器常用的标准铁心片规格表中选择铁心片规格和叠

厚.

第四步, 确定每伏圈数N. 根据铁心截面积S和铁心的磁通密度B, 由式得到初级线圈的每伏圈数N. 铁心的B值可以这样选取: 质量优良的硅钢片, 取11000高斯; 一般硅钢片, 取10000高斯; 铁片, 取 7000高斯. 考率到导线电阻的压降, 次级线圈每伏圈数N'应该比N增加 5%~10%, 也就是N'在1.05N~1.1N之间选

取.

第五步, 初, 次级线圈的计算. 初级线圈N1 = N*U1. 次级线圈

N21= N'*U21, N22 = N'*U22, ┅, N2n = N'*U2n.

第六步, 查导线直径. 根据各线圈的电流大小和选定的电流密度, 由式可以得到各组线圈的导线直径. 一般电源变压器的电流密度可以选用3安/毫

米?

第七步, 校核. 根据计算结果, 算出线圈每层圈数和层数, 再算出线圈的大小, 看看窗口是否放得下. 如果放不下, 可以加大一号铁心, 如果太空, 可以减小一号铁心. 采用国家标准GEI铁心, 而且舌宽a和叠厚b的比在1:1~1:之间, 线圈是放得下的.

各参数的计算公式如

下: ln(S) = * ln(P) + ┅

ln(N) = * ln(P) - * ln(B) + ┅

ln(D) = * ln(I) - ┅

变量说明:

P: 变压器的功率. 单位: 瓦(W) B: 硅钢片的工作磁通密

度. 单位: 高斯(Gs)

S: 铁心的截面积. 单位: 平方厘米(cm? N: 线圈的每伏圈数. 单位: 圈每伏

(N/V)

I: 使用电流. 单位: 安(A) D: 导线直径. 单位: 毫米(mm)

电源变压器简易设计(四)变压器的铁心与绕组

为减小交变磁通在铁心中所引起的涡流损耗, 铁心一般用厚为的硅钢片叠装而成; 并且在硅钢片两面涂以绝缘漆. 信号变压器还采用坡莫合金作铁心. 硅钢片有热轧和冷轧两种. 热轧硅钢片的工作磁通密度一般取钢片常冲成"III" 形, 叠装成铁心. 绕组套在中间的铁心柱

上.

冷轧硅钢片的导磁性能比热轧好, 它的工作磁通密度允许达到, 所以铁心体积可以缩小. 它的导磁有方向性, 顺着辗轧方向的导磁性能好, 故通常将冷轧硅钢片卷成环形铁心, 然后切成两半C形, 将绕组分别套在铁心柱上以后, 再将两半铁心粘成整体.

变压器的绕组由原边绕组和副边绕组组成. 原边绕组接输入电压, 副边绕组接负载. 原边绕组只有一个, 副边绕组为一个或多个. 原副边绕组套装在同一铁心柱上. 套在两个铁心柱上的原边绕组或副边绕组可分别相互串联或并联.

附: 变压器原副边绕组要套在同一铁心柱的原因

把原副边绕组套在同一铁心柱上时, 由于原副边绕组紧挨在一起(间隙实际上很小, 它等于原副边绕组之间绝缘纸的厚度), 部分漏磁通在空气中的路径大受限制, 因此漏磁通较小. 而副边绕组

没有套在原边绕组上时, 漏磁通在空气中可以自由经过, 无空间限制, 因此在同样的磁势下漏磁通就大. 将原副边绕组套在一起的合理之处即在于漏抗压降小, 对变压器运行有利. 因为变压器副边电压是随副边电流变化而变化的, 减小原副边的漏阻抗就可以减小电压变化. 为了使变压器副边电压比较稳定, 总是设法减小变压器的漏抗.

如果把变压器的原副边绕组分开放置, 则漏抗将大大增加, 以致负载变动时副边电压变化很大, 这样的变压器就不能满足使用上的要求.

电源变压器简易设计(五)变压器的铭牌与使用

使用变压器首先要弄清并严格遵守制造厂提供的铭牌数据, 以避免因使用不当而不能充分利用, 甚至损坏.

变压器铭牌上的主要额定数据有:

1. 额定电压U1和U2

原边额定电压U1是指原边绕组上应加的电源电压(或输入电压),副边额定输出电压U2通常是指原边加U1时副边绕组的开路电压. 使用时原边电压不允许超过额定值(一般规定电压额定值允许变化±5%).考虑有载运行时变压器有内阻抗压降, 所以副边额定输出电压U2应较负载所

需的额定电压高5-10%. 对于负载是固定的电源变压器, 副边额定电压U2有时是指负载下的输出电压.

附: 输入电压不能超过额定电压的原因

变压器中主磁通和激磁电流的关系称为铁心的磁化曲线, 它是一条具有饱和特性的非线性曲线. 当主磁通小于额定电压时对应的主磁通时, 磁化曲线近似为线形; 超过此值后, 主磁通就逐渐趋向饱和. 此时, 如果再增加磁通, 即增加U1, 则电流就会急剧增加,这样变压器就会因过热而马上烧毁. 因此, 在使用变压器时, 必须

注意变压器的额定电压和电源电压要一致.

2. 额定电流I1和I2

额定电流是指变压器按规定的工作时间(长时连续工作或短时工作或间歇断续工作)运行时原副边绕组允许通过的最大电流, 是根据绝缘材料允许的温度定下来的. 由于铜耗, 电流会发热. 电流越大,发热越厉害, 温度就越高. 在额定电流下, 材料老化比较慢. 但如果实际的电流大大超过额定值, 变压器发热就很厉害, 绝缘迅速老化, 变压器的寿命就要大大缩

短.

3.额定容量S

额定容量是视在功率, 是指变压器副边额定电压和额定电流的乘积. 它不是变压器运行时允许输出的最大有功功率, 后者和负载的功率因数有关. 所以输出功率在数值上比额定容量小.

4. 额定频率

使用变压器时, 还要注意它对电源频率的要求.

因为在变压器中, 在设计变压器时, 是根据给定的电源电压等级及频率来确定匝数及磁通最大值的. 如果乱用频率, 就有可能变压器损坏. 例如一台设计用50Hz, 220V电源的变压

器, 若用25Hz, 220V电源, 则磁通将要增加一倍, 由于磁路饱和, 激磁电流剧增,变压器马上烧毁. 所以在降频使用时, 电源电压必须与频率成正比

地下降. 另外, 在维持磁通不变的条件下, 也不能用到400Hz, 1600V的电源上. 此时虽不存在磁路的饱和问题, 但是升频使用时耐压和铁耗却变成了主要矛盾. 因为铁耗与频率成次方的关系. 频率增大时, 铁耗增加很多. 由于这个原因, 一般对于铁心采用厚的热轧硅钢片的变压器, 50Hz 时的磁通密度可达, 而400Hz时的磁通密度只能取到. 此外变压器用的绝缘材料的耐压等级是一定的, 低压变压器允许的工作电压不超过300-500V. 所以在升频使用时, 电源电压不能与频率成正比的增加, 而只能适当地增加.

++ 电源变压器质量的简单判别法++

电源变压器除检查电压准确度和绝缘性能之外,还要知道它的效率、负载率、发热量等。下面介绍一种通过测定两个参素数来判别电源变压器质量的简单判别法。

1.空载电流的测定。

变压器的空载电流是指初级接额定电压,次级完全空载测得的初级电流。这个电流与进线电压的乘积则为空载损耗,也就是指变压器的铁芯损耗。它是铁芯在交流磁场中涡流损耗和磁滞损耗之和。因而,变压器的空载电流越小,表明铁芯的质量越好,且安培匝数设计

非常合理。这种情况下,一般认为空载电流相似于铁损耗,空载电流的大小,也就反映铁损的大小。小于10W的变压器空载电流约7~15mA;100W的变压器,空载电流约30~60mA 之间,都认为正常。铁损较大的变压器,发热量必然大,如果是因安培匝数设计不合理,其空载电流大增,结果造成温升增大,其寿命也不会长。一般环形变压器的空载电流应低于普通插片式变压器的空载电流。

2.铜损的测定。

变压器的铜损是指初、次级导线的直流电阻造成的损耗。因此测定铜损只需将变压器加上额定电流即可测出I2R。测试方法如下:首先将变压器的次级线圈两端直接短接(有几组要短路几组),再将变压器初级串入交流电流表,再与0~250V的交流调压器相接,并接入市电。调节调压器由0V整至使电流表读数为变压器的额定电流(如200VA的变压器,额定电流为),用万用表测出此时变压器初级的电压,将此电压乘上变压器的额定电流既为“铜损”(测量铜损时间要短,不然会损坏变压器)。由于次级的短路,变压器初级上的电压必然很低。这样,铁芯的磁通量极小,铁损也极小,可以忽略。故测出的I2R是很精确的。

在这项测试中损耗越小,漆包线的电阻值也越小,这种变压器的负载率也必然大。

在正常情况下,铁损和铜损之和对500W的变压器应小于45W。随着变压器的容量减小,其损耗相应增大,因为小型变压器的铜损是大于铁损的。

从以上测定可知,变压器的开路损耗加上短路损耗越小,则变压器的质量越好,工作时温升也越低,并且有很好的负载率。这样在很短时间内,就能知道变压器的性能好坏。

变压器的漏感问题,其实大家都不用吹,就算正规专业生产厂有时也会遇到较为辣手。

漏感是由于初、次级绕组间,匝与匝之间的磁通没有完全耦合而造成。

它与:

1。初级绕组匝数;

2。初级绕组平均匝长;

3。绕组的宽度;

有关。

控制方法:

每一绕组绕制时要用专用绕线机绕制,以便将线圈绕紧;

增加排线宽度;如果中间还有内屏蔽绕组,一定将其绕紧;

另外,绕线时定位胶带不要过多过长,否则会增大线包厚度,也会增大搂感!!

晶体管电子滤波器

在很多电子电路中,特别是一些小信号放大电路,其电源往往会加入一级晶体管电子滤波器,其电路结构如图J1,设图的右边是一个与电子滤波效果一样的普通RC滤波电路,则它们有以下关系:图的左边 Uec=Ib*R1+Ueb=Ib*R1

因为Iec=β*Ib (β为晶体管的直流放大系数)

所以有Uec=(Iec/β)*R1

图的右边Uec=Rec*Iec 由于左右图互相等效所以有

Rec*Iec=(Iec/β)*R1得Rec=R1/β

两滤波器的滤波性能一般用R与C的乘积来衡量,所以有:

R1*C1=Rec*C1'=(R1/β)*C1'

C1=C1'/β

由上式可知,电子滤波器所需的电容C1比一般RC滤波器所需电容少β倍.打个比方设晶体管的直流放大系数β=100,如果用一般RC滤波器所需电容容量为1000μF,如采用电子滤波器那么电容只需要10μF就满足要求了.

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/404441332.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

怎样配置住宅小区配电变压器

怎样科学配置住宅小区配电变压器 1 前言 在经济和文化持续发展,大力构建和谐社会的今天,人们的衣、食、住、行的条件正在逐步得到改善,住宅生活小区的用电成为人们关注的重要话题。既要使居民家庭用好电,又要使供电企业的供电经济、高效,尽可能地把各种电气损耗降到最低限度。因此,供电企业必须加强用电营销的精细化管理,同时,供电企业和用电单位在规划、勘察及设计用电负荷时,要切合实际加以分析并严格遵守有关的电力规程和设计规范,科学分析、计算变压器配置,合理地选择变压器容量,切实做到供电部门经济运行,同时也减轻用户不合理的投资及不必要的电损负担。不但是对新的住宅区要规范设计,而且还要对一些现有的老住宅小区变压器配置方法进行分析,对已不能适应当前实际情况的变压器配置,有必要进行重新调整,以实现供电部门与用电户的双赢。 2 推广配电室或箱变 长期以来,住宅小区供电方式一般都在附近10kV变压器台区(供电部门公变或用电单位专变)低压侧直接引电源至小区,而且一个变压器台区所带的负荷也比较大,大多数变压器台区同时供应几个小区和一些零散的住宅群的生活用电,造成变压器台区经常过载。尤其是在冬、夏季用电高峰期更加严重,甚至导致变压器过载,直至烧毁变压器现象的发生。另外,人们对供电可靠性要求也不断提高。因此,我们对新建住宅小区的供电方式应该有所改变,必须根据目前广大居民的用电需求及负荷特性进行科学的规划。 (1)新建住宅区内建设配套配电室 配电室由高低压开关柜室和变压器室组成,高、低压进出线均采用电缆并敷设于电缆沟、桥架或电缆保护管内;同时,还要在变压器的高压侧设熔断器(容量较小时)或断路器(容量较大时),低压侧设立框架式或塑壳式断路器并合理设定保护参数,以便对变压器进行有效的保护。如果一些住宅小区公用面积较小,也可以采用箱式变电站(简称箱变)。这样,就能有效地保护变压器,大大提高供电的安全性、可靠性和稳定性。 (2)选择多种供电方式。 第一种方案:10kV高压侧双电源进线(该方式可以通过10kV进线高压开关柜互投装置来实现主备电源互为备用),经出线开关柜后接至变压器;低压侧采用单母线分段,正常情况下分段运行。第二种方案:10kV高压侧单电源进线,低压侧单母线分段或不分段。前一种方式可靠性较高,但投资大,适用于较高档的住宅小区,特别是有高层建筑的小区;后一种方式可靠性较前一种低,但投资比较节省。从目前的情况来看,后一种方式的供电可靠性已能够满足普通的生活用电,一般采用后种方式,但考虑以后的发展,配电室应该预留有安装备用电源高、低压进线柜的位置。综合以上两点,当前新建住宅小区应该配套建立配电室或箱变;同时,10kV电源进线应该预留进线位置(以保证供电可靠性),首期可以根据实际情况只接入1回10kV进线。 3 预测用电负荷 单位住宅小区用电负荷的特点必须考虑楼层的高低、是否安装电梯、消防水泵等设施,是否设置中央空调等因素。还要考虑除住宅外,是否存在社区办学校(幼儿园)、商场、娱乐场所等公共事业。根据这些实际情况来综合预测住宅的用电负荷。 目前,我国大部分地区新建住宅小区的套房为2房2厅、3房2厅,极少数为4房2厅。套房面积普遍为90~130m2,少数在140m2以上。随着住宅家用电器拥有量的迅速增加,特别是微波炉、电磁炉、消毒柜、电热水器等大功率电器进入普通家庭,以往常规考虑4~6kW的设计功率已不能满足现代家居的要求,根据对某城市家庭用电器的调查统计,得出

大功率电源设计

《电力电子技术》课程设计说明书 大功率电源设计 院、部:电气与信息工程学院 学生姓名: 指导教师: 专业: 班级: 完成时间:2014年5月29日

摘要 主要介绍36kW 大功率高频开关电源的研制。阐述国内外开关电源的现状.分析全桥移相变换器的工作原理和软开关技术的实现。软开关能降低开关损耗,提高电路效率。给出电源系统的整体设计及主要器件的选择。试验结果表明,该装置完全满足设计要求,并成功应用于电镀生产线。 关键词:高频开关电源;全桥移相;零电压开关;软开关技术

ABSTRACT The analysis and design of 36 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase—shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success—fully. Keywords:high frequency switching power supply;full bridge phase—shifted;zero voltage switching;soft switching tech— nlques

中小型变压器设计

中小型变压器设计 一,小型单相变压器的设计 变压器容量大小与其铁心大小有一定的比例关系,计算公式有三,先说小的,后边再说其它两种。早年采用热轧硅钢片时使用的铁心计算公式,与现在相比同容量它计算的铁心面积就偏大。早年的变压器烧毁翻修就得用这个公式,它计算的容量在1KVA左右的日子型和口子型铁心。 铁心截面St=K√P,K为系数,P=0~10VA时K=2。10~50,2~1.75,50~500,1.5~1.4, 500~1000, 1.4~1.2,1000VA 以上为1。 例如:100VA计算,St=1.5√100=15cm2。 1.旧设备上一台能耗制动变压器烧毁返修实例: 把铁心拔掉,用手摇绕线机把一二次侧的匝数记一下,再用卡尺或千分尺记下两导线带绝缘和不带绝缘的直径大小,用平均匝长乘匝数或直接称得重量,到商店买不到合适导线,可根据铁窗余量大小用大一号或小一号导线代用,所以在买导线之前开始计算每层能绕几匝,多少层能绕完。层与层垫什么绝缘,垫多厚,一二次之间绝缘垫几层,与铁心柱之间采用什么绝缘骨架等,它们总厚度是多少,可得知窗口面积的余量。他们能绕下你当然也能绕下,但限于你手头材料有限,绝缘材料厚度及导线截面大小就得灵活掌控。 绕完后用铁心片试插一下,看有不合适可修正,觉得无问题可在烘箱内干燥,浸漆再烘干,线包插上铁心应通电试验一下,是否经得起考验,并把铁心夹紧后铁心四周刷漆烘干,使铁心粘紧通电不发声,到此变压器返修完毕,可以放心安放到设备上运行。 2.新设计一台能耗制动变压器: (1).已知条件:采用磁密为10000高斯的热轧硅钢片,制动对象为7KW交流异步电动机,直流电流Id=4Io(7KW 电机空载电流为6A)=4×6=24A,直流电压Ud=Id×Rd(电机线圈直流电阻1Ω)=24×1=24V。(2).按电感负载单相桥式整流有关系数计算:交流电压U=24÷0.9=27V,交流功率P=27V×24A=648VA(也可以交流功率P=24V×24A ×1.11=640VA。经常启动制动但不是连续工作,暂载率可取50%,不太经常取30%,取一半功率P=640VA÷2=320VA,采用前面的铁心计算公式,St=1.4√320=1.4×17.9=25cm2,每匝电压=25mm2×10÷450=0.557V/匝(10为10000高斯,450为50HZ时的系数)。热轧硅钢片磁密可取14000左右,冷轧硅钢片取16000~17500高斯,磁密变动后每匝电压=25×15÷450=0.833V/匝,当f=60HZ时,每匝电压Et=25mm2×15÷375=1.0V/匝,当f=50KHZ时,Et=25mm 2×15×50k×10ˉ3/22500也可Et=25mm2×15×1000÷450=834V/匝(故频率越高铁心越小)。380V÷0.57=682匝,27V÷0.57=49匝,320VA÷27V=11.85A,320VA÷380V=0.842A。 (3).电流密度及导线选取: 在空气中自冷的漆包铜导线电密取2~2.5A/mm2。 在油中自冷的纸包铜导线电密取3.5~4.5A/mm2。 在空气中自冷的双玻璃丝包线电密取3.5~4.5A/mm2 高压导线截面选取=0.842A÷2.5A/mm2=0.337mm2,QQ铜漆包导线Φ0.67/Φ0.75(实有面积0.3526mm2)。 低压导线截面选取=11.85A÷2.5A/mm2=4.74mm2,QQ铜漆包导线Φ2.44/Φ2.74(实有面积4.676mm2)。(4).导线及绝缘在窗口内的排布: 第一步:铁心选宽150mm高125mm中柱宽50mm窗口高75mm宽25mm,铁心有效面积25cm2,实际面积=25÷0.95=26.3mm2铁心厚度=26.3÷5cm=53mm。 第二步:预计绕组骨架,用2mm玻璃布板,这样窗口面积由75×25变成71×23,高压导线排列=71÷Φ0.75×1.05(余量系数)=90根,682匝÷90=7.6≈8层。低压导线排列=71÷Φ2.74×1.05=24匝,49匝÷24匝=2.04≈3层(当然遇到这种情况还可以调整铁心尺寸)。 第三步:计算高低压绕组幅向宽度,高压幅向=8层×Φ0.75×1.05=6.5mm,低压幅向=3层×Φ2.74×1.05=9mm,层间绝缘用0.12mm厚电缆纸,绝缘厚度=(11×2层+5层)×0.12=3.5mm,总幅向=6.5+3.5+9=19mm。 以上设计不是最佳方案,如是一台还可以,是批量生产得反复调整直到最佳,也就是用料最省,成本最小,线包绕好后的工序同返修变压器一样。 (5)绕制时的其它注意事项:在绕制较小变压器时,原线直接引出容易折断,这时引出头用粗导线引出。需要电磁干扰屏蔽的变压器在高低压绕组之间放上一层铜或铝箔,由于它引出接地,它与高压绕组之间的绝缘厚度等于高低压之间绝缘厚度,它与低压之间绝缘厚度相应薄一些。金属箔首尾不留间隙但必须用绝缘隔开,不得形成短路回路。 二,焊机类变压器设计 1,点焊、对焊等低压只有一匝的变压器设计 它与磷铜焊机一样具有输出电流大阻抗低的特性,所不同的磷铜焊机低压为3~5匝,它们铁心外形尺寸是高≥宽的日字形,如果宽≥高为高阻抗特性,输出电流小不好用或用不成。 点焊机、对焊机为了焊接不同厚度的铁皮和对焊不同粗细的钢筋,它的低压电压要在较大的范围内变化,因低压只有一匝,只能在高压匝数上变化。高压绕组分成几个单元,通过不同的串并连来改变低压电压,无论那种串并连,高压每个单元绕组全都得利用。 点焊、对焊机还有一个特点就是不连续工作,存在一个暂载率问题,所以在铁心截面计算及导线截面计算上都得乘上一个暂载率系数。下面设计一台25KVA的点焊对焊机,暂载率取40%,冷轧硅钢片磁密取17500高斯。

变压器设计1

干式铁心电抗器 一、基本原理 电抗器是一个电感元件,当电抗器线圈中通以交流电时,产生电抗(X L )和电抗压降(U L =I L X L )。 空心电抗器线圈中无铁心,以非导磁材料空气或变压器油等为介质,其导磁系数很小 (1≈μ) ,磁阻(C r )很大,线圈电感(L )、电抗(X L )及电抗压降(U L )均小; 铁心电抗器的线圈中放有导磁的硅钢片铁心材料,硅钢片导磁系数大,磁阻小,其电感(L )、电抗(X L )及电抗压降(U L )均大。另外,铁心电抗器铁心柱上放有气隙(或油隙),改变气隙长度,会改变磁路磁阻,从而得到所需电感值(L )、电抗(X L )及电抗压降(U L )。 铁心电抗器线圈通过交流电,产生磁通分两部分,如图所示。一部分是通过铁心之外的线圈及空道的漏磁通(q Φ),它产生线圈漏抗(X Lq )及漏抗压降(U Lq = I L X Lq );另一部分是通过铁磁路(铁心及气隙)的主磁通(T Φ),它将在线圈中感应一个电势E ,其E ?可以 视为一个电压降,如忽略电阻电压降,此压降可认为是主电抗压降(U LT ) 。等值电路如图所示。 电抗压降(U L )的通式: C C L C C L C L L L L L l A W fI l A W fI r W I L I X I U 28022 109.72?×==== =μμπωω (V) 式中: L I —通过电抗器线圈的电流(A) L X —电抗器电抗(Ω) L —电抗器电感(H) W —线圈匝数 C r —磁阻(H -1 ),C r =C C A l 0μμ μ—相对导磁系数,如空气或变压器油μ=1 0μ—绝对导磁系数,cm H /104.080?×=πμ C l —磁路长度(cm) C A —磁路面积(cm 2 ) 磁通与磁势图 U LT 等值电路图

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

配电变压器节能设计选型

配电变压器节能设计选型 发表时间:2017-03-28T09:31:58.897Z 来源:《电力设备》2017年第2期作者:汪一波 [导读] 本文对于配电变压器节能设计选型进行了有效探讨。 (北京大学北京 100871) 摘要:变压器经济运行是采取各种措施减少各种损失来提高变压器的运行效率。变压器损耗可分为空载损失和负荷损失两部分,运行中的空载耗损是恒定的。若负载损耗发生变化,压力调节器的工作效率也随之变化。尽管配电变压器是一个高效的设备,但由于其数量庞大,以及空载耗电的固定性,变压器本体的节能潜力巨大。因此,本文对于配电变压器节能设计选型进行了有效探讨。 关键词:配电变压器;节能设计;选型 前言 在学校高速发展的今天,电力成为我们平时生产生活中最重要的能源之一。现在国家对公共机构节能要求越来越高,节能减碳工作势在必行。校内变压器数量现达到140余台,总装机容量10万KVA,应用节能变压器可以有效的降低用电量,而变压器的工作环境、负荷大小不一样,选择合理的变压器型号又成为重中之重。 1变压器的分类 除了干式变压器和油浸式变压器外,变压器还有很多分类方法,下面简单介绍几种: 1.1根据变压器相数,可将其分为三相变压器和单相变压器。三相变压器主要用于三相电力系统中,容量大且运输受限的情况下,也可使用三台单相式变压器组成变压器组来替代三相变压器。 1.2根据变压器绕组数,可将其分为双绕组变压器和三绕组变压器。每相铁芯上有原绕组和副绕组两个绕组的称之为双绕组变压器,它的应用相对广泛。当容量变压器在5600kVA以上时,一般采用三相绕组变压器,以实现三种电压输电线的连接。 1.3根据变压器结构,可将其分为芯式变压器和壳式变压器。铁芯式变压器的绕组处于铁芯的外围,壳式变压器的铁芯处于绕组外围。它们在结构有细微的区别,但是在原理是相似的。 2配电变压器节能设计 通过前文分析不难看出配电变压器节能的重要性和必要性,配电变压器节能是提升供配电系统社会效应、经济效益、环境效益的必经之路。下面通过几点来分析配电变压器的节能措施。 2.1用新工艺、新材料降低损耗 2.1.1改进工艺。通过改进工艺来降低运行损耗,最主要的是控制变压器的硅钢片精度。为此,可通过数控加工,利用自动化技术来精确控制硅钢片的形状、规格、厚度等。目前,加工精度达到0.18mm,就可大大降低变压器的空载损耗。 2.1.2重设结构。降低变压器损耗的重要手段之一是重设结构布局。目前,常见的结构布置方式有新型绕组和新型线圈。传统的绕组结构,在抗谐波、节能方面的效果不理想;若根据不同的配电电压来确定绕组结构,则可控制绕组的损耗,如漏磁走向的控制可采用自粘型换位导线。新型线圈结构是控制涡流损耗的理想手段,按涡流流向选择合理的纵向或横向的布置方式,可有效降低涡流损耗,进而达到理想的运行效果。 2.1.3新材料应用。制造变压器时,若选择的材料质量不好,其电阻率就会产生变化,引起损耗,同时变压器中铜铁材料的用量较大且用于关键部件,因此材料的质量将直接影响变压器的传输效率。新材料的突破使得优化变压器材料成为可能,将原有的铜铁材料替换为新型材料,能有效降低损耗,提高转换效率,制成高效节能变压器。磁体材料的优化,也是解决磁滞损耗的理想方法,如非晶合金,相比传统材料制成的磁体,在磁化和消磁性能方面明显胜出。利用非晶合金制作铁芯,能有效控制损耗,提高效益,但成本高,并未大面积推广。 2.1.4新型导线。使用无氧铜制作的导线,可有效降低变压器线圈内阻,从而降低铁损和铜损。如高温超导配电变压器,就是利用超导线材替换了铜芯线材,有效降低了损耗,同时还使变压器具备理想的抗短路性能。 2.2注意干式变压器的负载控制 目前我校对干式变压器的应用还比较多,但这种变压器过负荷时阻抗电压增幅较大,负载损耗十分严重。因此,建议对干式变压器的使用范围和使用数量进行控制,对已使用干式变压器的区域进行定期维护,提高变压器稳定性,避免过负载的发生,这样才能有利于电力节能的实现。 2.3优化配电变压器的选型 目前我国市面上的主流节能配电变压器主要有S7、S9、S11等等,这一系列变压器经过不断技术改良,其空载损耗有明显下降。电力工程中配电变压器的选型应注意优选,要综合考虑电网经济运行参数,根据变压器容量利用率来选择,以降低配电变压器运行中的无功损耗与有功损耗。虽然使用大容量变压器会增加一次性投资量,但却可以降低损耗,节约后续运行成本,所以建设中应根据优化需求来选择型号,电压偏移较大的区域应选择SZL7和SZ9系列,若对电能质量要求较高的区域应选择S11,若雷灾区,要选择防雷配电变压器。 2.4合理配置电网的补偿装置,合理安排补偿容量 2.4.1增加无功补偿的设备,以提高功率的因数 在线路中可以合理的运用电容器来实现提高电网中的无功补偿的能力,电容器充电、放电两大基本功能就可以帮助线路中提高无功功率补偿的能力,从而提高供电系统中的功率因数,降低供电变压器以及输送线路的损耗,提高供电效率。 2.4.2无功功率的合理分布 对于无功功率也要高度的重视,无功功率的存在降低了发电机和电网的供电效率,所以对于无功功率要合理的配置,减少无功功率的运输距离,除此之外还要注意其他方式的损耗进行计算和补偿。 2.4.3合理计划并联补偿电容器的运行 从大量的经验中表现出变压器的节能降耗主要是投入使用电容器。但是人们只是意识到了电容器的积极作用却忽视了其也会造成电网整体的损耗,所以在现实的节能降耗中要考虑整体的耗能来合理的设计电容器的投入。

胆机输出变压器制作图解

胆机输出变压器制作图解 所以叫烂牛,是因为铁心是采用经挑选的二手旧铁心,全部材料成本撑死不足100元,设备也落后,一台不足30元的手动绕线机,绕制手法也比较原始与传统。但以价论声,性价比倒也不俗,效果不说出色,也过的去,可以满足一般普通受众的要求,故整理贴上,以期对初入胆坛而囊中羞涩同学有所帮助。 1、做线框,0.4mm弹性纸两层,见图1; 图1 做线框 2、线框绝缘,缠绕0.08电缆纸和0.12黄腊绸各一层,用只胶带粘住,见图2; 图2 线框加绝缘纸 3、用0.08电缆纸包裹初级漆包线线头,出线端打折(防止绕开头几匝时拉出线头),用纸胶带粘住,见图3;

图3 引出线头 4、绕初级线圈第一段,等线圈压住线头和纸框绝缘层时,扯掉纸胶带,见图4; 图4 初级绕线 5、绕满一层后,用纸胶带粘住线尾,在线圈两端用牛皮封箱带裁成的窄胶带粘贴防塌护边,见图5; 图5 加防塌贴边 6、加层间绝缘0.05电话纸一层,加纸时,先在绝缘纸靠头位置剪一豁口,把漆包线通过豁口拉到上一层开始的一边,用纸胶带粘住绝缘层后,再在绝缘纸靠尾部的位置剪一豁口,引出漆包线绕下一层,这就是所谓的Z型绕法。参见图6、图 7、图16—图18;

图6 加层间绝缘纸 图7 Z型绕法 图16 Z型绕法分解一

图17 Z型绕法分解二 图18 Z型绕法分解三 7、在绕完一段初级还有50匝左右的位置,压入6—8毫米宽对折的电缆纸条。待绕完后将线尾穿入纸条,把纸条拉紧进行收尾,见图8; 图8 初级第一段收尾 8、焊接出线焊片,套黄蜡套管,包裹0.08电缆纸绝缘,见图9—图10;

图9 引出焊片 图10 焊片套黄腊管垫绝缘纸 9、组间绝缘,缠绕0.08电缆纸2层,0.12黄蜡绸1层,黄蜡稠夹在电缆只中间,见图11; 图11 组间加绝缘纸 10、绕次级第一段,用黄蜡套管套住线头和焊片,并包裹电缆纸后再绕,见图12;

大型变压器施工设计方案

某大型变压器施工方案 1大型变压器施工方案 主变压器就位技术方案 本工程的主变压器布置在A排墙外,型号为SFP10-240000/220。根据业主提供的资料,变压器重量为147吨。用300吨履带吊在主臂工况下即能完成主变卸车和就位安装等工作。 (1)施工方法 1)基础检查 a 首先验收土建施工的变压器基础,测量出变压器本体中心线,并与图纸所给尺寸认真核对,无误后方可进行下一步施工。 b 因为变压器是用大型拖车运抵变压器安装现场,在就位前应认真核对高低压侧方向,避免安装就位后调换方向。 2)本体就位 a 卸载前的检查 首先对装卸用钢丝绳和挂钩进行选择,而钢丝绳和挂钩将依照被起吊物体尺寸和重量来确定。并且在使用之前必须检查钢丝绳和挂钩是否完好无损。(见表一和表二) 表一:钢丝绳的安全负载(针对大型变压器考虑安全系数:6) 直径安全负载直径安全负载直径安全负载 毫米吨毫米吨毫米吨

表二:挂钩的安全负载(针对大型变压器考虑安全系数:6)直径安全负载直径安全负载直径安全负载毫米吨毫米吨毫米吨

卸载前应当测量和记录冲击值,这个数应小于3G。 不得使钢丝绳或其他物体碰到冲击记录器,阀门等。 如果干燥气体压力小于0.05kg/cm2或冲击记录器数值大于3G,检查结果应通 知给 业主,当取下遮盖物时不得给冲击记录器以任何撞击。 主变压器卸车、吊装就位均采用CC1800/300履带吊,履带吊布置在公路的西南侧,主变基础外。待主变运输至施工现场后,停靠在履带吊附近,保证主变中心距履带吊回

转中心不超过10m,利用履带吊独自卸车,并在起吊能力允许的范围内,安装好主变底部滚轮,然后转杆,行走至变压器基础处,直接将主变放置在就位的轨道上。 施工中要求履带吊站车位置地基坚实、平整并垫上路基板。CC1800履带吊吊装主变使用的工况为:主臂工况,主臂长度为48.0m,作业半径10m,额定起吊量为186t,负荷率为79%。 (2)主变就位图

最佳低频变压器设计方法

最佳低频变压器设计方法 热轧硅钢片选铁心型号和叠厚:比如E I型的,中部舌宽,叠厚每伏匝数:N0=4、510^5/BmQ0=4、510^5/(11000Q0) Bm:磁通密度极大值,10000~12000Gs一次匝数:N1=N0U1二次匝数:N2=N0U 21、0 61、06为补偿负载时的电压下降一次导线截面积: S1=I1/δ=P1/U1δ,δ:电流密度,可选2~3A/mm^2二次导线截面积:S2=I2/δ=P2/U2δ舌口32MM,厚34MM,E宽96MM,问功率,初级220,多少匝,线粗多少,次级51V 双组的,最大功率使用要多粗的线,告口是指<EI型变压器铁芯截面积是指E片中间那一横(插入变压器骨架中间方口里的)的宽度即铁芯舌宽与插入变压器骨架方口里所有E片的总厚度即叠厚的乘积最简单的就是指变压器骨架中间方口的面积,变压器铁芯截面积是指线圈所套着的部分:舌宽叠厚=截面积,单位:C㎡>,第一种方法:计算方法:(1)变压器矽钢片截面:3、2CM*3、4CM*0、9=9、792CM^2(2)根据矽钢片截面计算变压器功率:P=S/K^2=(9、79/1、25)^2= 61、34瓦(取60瓦)(3)根据截面计算线圈每伏几匝: W=4、5*10^5/BmS=4、5*10^5/(10000*9、79)=4、6匝/伏(4)初级线圈匝数:220*4、6=1012匝(5)初级线圈电流: 60W/220V=0、273A(6)初级线圈线径:d=0、715根号0、273=0、

37(MM)(7)次级线圈匝数:2*(51*4、6*1、03)=2*242(匝)(1、03是降压系素,双级51V=2*242匝)(8)次级线圈电流:60W/(2*51V)=0、59A(9)次级线径:d=0、715根号0、59=0、55(MM)第二种方法:计算方法:E形铁芯以中间舌为计算舌宽的。计算公式:输出功率:P2=UI考虑到变压器的损耗,初级功率:P1=P2/η(其中η=0、7~0、9,一般功率大的取大值)每伏匝数计算公式:N(每伏匝数)=4、510(的5次方)/BS(B=硅钢片导磁率,一般在8000~12000高斯,好的硅钢片选大值,反之取小值。S=铁芯舌的面积,单位是平方CM)如硅钢片质量一般可选取10000高斯,那么可简化为:N=45/S计算次级绕组圈数时,考虑变压器漏感和导线铜损,须增加5% 绕组余量。初级不用加余量。由电流求线径:I=P/U (I=A,P=W,U=V)以线径每平方 MM≈2、5~2、6A选取。第三种方法:计算方法首先要说明的是变压器的截面积是线圈所套住位置的截面积、如果你的铁心面积(线圈所套住位置)为32*34=1088mm2= 10、88cm2 我没有时间给你计算、你自己算、呵呵!给你个参考,希望对你有帮助:小型变压器的简易计算:1,求每伏匝数每伏匝数=55/铁心截面例如,你的铁心截面=3、5╳1、6=5、6平方厘米故,每伏匝数=55/5、6=9、8匝2,求线圈匝数初级线圈 n1=220╳9、8=2156匝次级线圈n2=8╳9、8╳1、05= 82、32 可取为82匝次级线圈匝数计算中的1、05是考虑有负荷时的压降3,求导线直径你未说明你要求输出多少伏的电流是

配电变压器保护配置设计

配电变压器保护配置设计 摘要:文章简要说明配电变压器各种保护配置类型,通过分析比较,提出加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性。 关键词:配电变压器;熔断器;负荷开关;断路器 中图分类号:tm41文献标识码:a 文章编号:1009-0118(2012)09-0278-01 变压器是配电网的主要设备,应用面广量大,其安全运行直接影响整个系统的可靠性。目前,配电变压器保护配置方面还存在许多问题,其中配电变压器与保护不匹配或存在动作死区,造成越级跳闸、拒动导致的事故相当多,因此,加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性,有效防止主线路出口断路器保护误动。 一、配电变压器采用熔断器作为保护 熔断器是配电变压器最常见的一种短路故障保护设备,它具有经济、操作方便、适应性强等特点,被广泛应用于配电变压器一次侧作为保护和进行变压器投切操作用。所以一般配电变压器容量在400kva以下时,采用熔断器保护,高压侧使用跌落式熔断器作为短路保护,低压侧使用熔断器作为过负荷保护。 使用跌落式熔断器确定容量时,既要考虑上限开断容量与安装地点的最大短路电流相匹配,又要考虑下限开断容量与安装地点的最

小短路电流的容量关系。目前,户外跌落式熔断器分为50a、100a、200a三种型号,200a跌落式熔断器的开断容量上限是200mva,下限是20mva,其选择是按照额定电压和额定电流两项参数进行,也就是熔断器的额定电压必须与被保护配电变压器额定电压相匹配,熔断器的额定电流应大于或等于熔体的额定电流,可选为额定负荷电流的1.5-2倍,此外,应按被保护系统三相短路容量,对所选定的熔断器进行效验,保证被保护设备三相短路容量小于熔断器额定开断容量上限,但必须大于额定开断容量的下限。笔者曾经参与过事故调查,发现部分配电变压器所配置熔断器的额定开断容量(一般指上限)过大,或者在线路末段t接的配电变压器,选定熔断器造未经过短路容量效验,造成被保护变压器三相短路熔断器熔断时难以灭弧,最终引起容管烧毁、爆炸,导致主线路跳闸事故。 二、配电变压器采用负荷开关加熔断器组合电器作为保护 负荷开关加熔断器组合电器可以开断至31.5ka的短路电流,其基本特征是依赖熔断器熔断触发撞针动作于负荷开关。配电变压器短路有单相、两相、三相短路,无论哪种故障,任意一相熔断后,撞针触发负荷开关的脱扣器,负荷开关三相联动,及时隔离故障点,防止缺相运行,顺序是先熔断熔丝,后断负荷开关。采用负荷开关加熔断器组合电器作为配电变压器保护,经济实用,既可以开断负荷电流,实现安全操作需要,还可以在10ms内开断短路电流,切除故障并限制短路电流,能够有效保护配电变压器短路故障。

反激式电源变压器设计(DCM断续式)

反激式电源变压器设计 峰值电流:IP=2PO/Uin*Dmax*η单位;A PO:输出功率。 Uin:最小直流输入电压。 Dmax:最大占空比。一般为0.45. η:效率。 一次侧电感量:LP= (Vin*Dmax)^2/2*Pin*Fs*Krf 单位;H Dcm: Krf=1 CCM: Krf=0.3-0.5 一次侧匝数:NP=100*IP*LP/ BM *AE AE:平方厘米 BM:高斯 LP:UH IP: A 二次侧匝数:NS=NP*(UO+UF)/UR UR=UIN*DMAX/1-DMAX UO:输出电压。 UF:输出二极管压降。 UR;反射电压。 DMAX:最大占空比。一般为0.45 反馈匝数:NV=NS*(UV+UFV)/(VO+VF) NV:反馈圈数 NS:次级圈数 UV:反馈电压。 UFV:反馈二极管压降 磁芯气隙:LG={(0.4/3.14)*IP*NP}/BM LG:磁路气隙,单位:CM。 BM:最大磁感应强度;单位:MT。 一次侧电流有效值:IPRMS=IP*√DMAX/3 二次侧电流有效值:IPRMS=(2*IO/1-DMAX)*√DMA X/3 最大磁通密度:BM=100*IP*LP/NP*AE AE:平方厘米 BM:高斯 LP:UH

IP;安倍 1特期拉=1000 毫特斯拉=10000高斯 初级线径:OD=L*(BW-2*M)/NP L:初级层数 BW:骨架宽度MM M:安全边距MM 有效骨架宽度:BE=D*(B-2M) D=层数 B=骨架宽度单位:MM 导线外径DPM:DPM=BE/NP 单位;MM 导线电流验证:J= 1.28*IRMS/DPM^2 IRMS=有效值电流(A) DPM=无绝缘线外径(MM)

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

课题为小型变压器的设计

课题为小型变压器的设计 应为小型变压器主要面向对象为大众人群,工业需求较少,且主要是降压作用,所以以下课题以单相变压器为对象。 小型变压器是指2kVA以下的电源变压器及音频变压器。而对于小型变压器设计原则与技巧,根据所查资料及询问老师傅,应有如下几点。 1:变压器截面积的确定铁芯截面积A是根据变压器总功率P确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即A= 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。 2:每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35W电源变压器,通常计算(中夕片取8500高斯)每伏应绕72匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25mA左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。 3:漆包线的线径确定线径应根据负载电流确定,于漆包线在不同环境

下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2A/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度25A/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样的漆包线取电流密度3~/mm2(线径)。音频变压器的漆包线电流密度可取~4A/mm2(线径)。这样因时制宜取材既可保证质量又可大大降低成本。 4:并且对于容量在2KVA,一次侧电压48V,二次侧电压220V,频率为50Hz的升压变压器市场价格在700至1000不等,所以对于小型变压器设计也应考虑实际价位。 综上所述要想设计出性价比较高的变压器,铁芯的截面积只能大不能小;适当减少每伏的匝数;详细分析负载情况;合理选用漆包线的规格。只有通过反复实践细心推敲,才能真正掌握变压器的设计原则与技巧。 变压器的工作原理及基本结构 1.基本结构图 图基本结构图 2基本原理 根据法拉第电磁感应定律及楞次定律,当一次侧绕组两侧对其施加电压时,绕组会产生电流,于法拉第电磁感应定律,一次侧电流感应出磁,感应磁经主磁路向二次侧方向通过,当感应磁经二次侧绕组时,于法拉第电磁感应定律,二

配电室设计规范

10kV及以下变电所设计规范 GB50053-94 第二节对建筑的要求 第6.2.1条高压配电室宜设不能开启的自然采光窗,窗台距室外地坪不宜低于1.8m;低压配电室可设能开启的自然采光窗。配电室临街的一面不宜开窗。 第6.2.2条变压器室、配电室、电容器室的门应向外开启。相邻配电室之间有门时,此门应能双向开启。 第6.2.3条配电所各房间经常开启的门、窗,不宜直通相邻的酸、碱、蒸汽、粉尘和噪声严重的场所。 第6.2.4条变压器室、配电室、电容器室等应设置防止雨、雪和蛇、鼠类小动物从采光窗、通风窗、门、电缆沟等进入室内的设施。 第6.2.5条配电室、电容器室和各辅助房间的内墙表面应抹灰刷白。地(楼)面宜采用高标号水泥抹面压光。配电室、变压器室、电容器室的顶棚以及变压器室的内墙面应刷白。 第6.2.6条长度大于7m的配电室应设两个出口,并宜布置在配电室的两端。长度大于60m 时,宜增加一个出口。当变电所采用双层布置时,位于楼上的配电室应至少设一个通向室外的平台或通道的出口。 第6.2.7条配电所,变电所的电缆夹层、电缆沟和电缆室,应采取防水、排水措施。 4.10 对有关专业的要求 4.10.1 可燃油油浸电力变压器室的耐火等级应为一级。非燃(或难燃)介质的电力变压器室、高压配电装置室和高压电容器室的耐火等级不应低于二级。低压配电装置和低压电容器室的耐火等级不应低于三级。 4.10.2 有下列情况之一时,变压器室的门应为防火门: (1)变压器室位于高层主体建筑物内。 (2)变压器室附近堆有易燃物品或通向汽车库。 (3)变压器位于建筑物的二层或更高层。

(4)变压器位于地下室或下面有地下室。 (5)变压器室通向配电装置室的门。 (6)变压器室之间的门。 4.10.3 变压器室的通风窗,应采用非燃烧材料。 4.10.4 配电装置室及变压器室门的宽度宜按最大不可拆卸部件宽度加0.30m,高度宜按不可拆卸部件最大高度加0.30m。 4.10.5 有下列情况之一时,油浸变压器室应设置容量为100%变压器油量的挡油设施或设置能将油排到安全处所的设施: (1)变压器室附近有易燃物品堆积的场所。 (2)变压器室下面有地下室。 (3)变压器室位于民用主体建筑物内。 4.10.6 配变电所中消防设施的设置:一类建筑的配变电所宜设火灾自动报警及固定式灭火装置;二类建筑的配变电所可设火灾自动报警及手提式灭火装置。 4.10.7 当配电装置室设在楼上时,应设吊装设备的吊装孔或吊装平台。吊装平台、门或吊装孔的尺寸,应能满足吊装最大设备的需要,吊钩与吊装孔的垂直距离应满足吊装最高设备的需要。 4.10.8 高压配电室和电容器室,宜设不能开启的自然采光窗,窗户下沿距室外地面高度不宜小于1.80m。临街的一面不宜开窗。 4.10.9 变压器室、配电装置室、电容器室的门应向外开,并装有弹簧锁。装有电气设备的相邻房间之间有门时,此门应能双向开启或向低压方向开启。 4.10.10 配变电所各房间经常开启的门窗,不应直通相邻的酸、碱、蒸汽、粉尘和噪声严重的建筑。 4.10.11 当变压器室、电容器室采用机械通风且周围环境污秽时,宜加空气过滤器。 4.10.12 变压器室、配电装置室、电容器室等应有防止雨、雪和小动物从采光窗、通风窗、门、电缆沟等进入屋内的措施。 4.10.13 配电装置室、电容器室和各辅助房间的内墙表面均应抹灰刷白。配电装置室、变压

相关文档
最新文档