高等代数.第六章.线性空间.课堂笔记
第六章 线性空间与线性变换

其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.
高等代数考研复习[线性空间]
![高等代数考研复习[线性空间]](https://img.taocdn.com/s3/m/988c69e4e009581b6bd9ebdc.png)
1.2 常用线性空间
n P (1)n维向量空间: {(a1, a2,
, an ) | ai , P}
Pn 空间的基 1, 2 , , n 其中 i (0
n dim P n. 空间维数 P
1
i
0)
n
nm P (2)矩阵空间: Anm | A (aij ), aij P.
3 1 1 3 3 0 1 1 F1 , F2 , F3 , F4 . 1 1 1 1 2 1 0 2
(1)求由 F1, F2 , F3 , F4到 E11, E12 , E21, E22 的过渡矩阵.
1 线性空间概念、基维数与坐标
1.1
线性空间的定义: 设V是一个非空集合,P是一个数域.在V的元 素之间定义了两种运算:加法与数乘,并且 两种运算满足8条性质.则称集合V是数域P上 的线性空间. 简单地说:带有线性运算的集合,同时运算 满足8条性质的集合称为线性空间. 线性空间中的元素称为向量,线性空间也称 为向量空间.
y1 y 2 A . yn
(1 , 2 ,
y1 y , n ) 2 , yn
那么,
x1 x 2 xn
题型分析:1)确定空间的基与维数
nn V { A | A A , A P }, 求V的基与维数. 例1 设
过渡矩阵都是可逆的!并且由 1, 2 , , n 到
1 坐标变换:设 1, 2 , , n 与 1, 2 , , n 都是
n维空间V的基,对V中任一向量,有
x1 x , n ) 2 ( 1 , 2 , xn
高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵
有
1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
高等代数第6章线性空间

a ∈ A表示a是A的元素, a ∈ A a∈A)表示a不是A的元素, (或
集合的表示法:列举ຫໍສະໝຸດ ; 集合的表示法:列举法;描述法{1,,,...,n,...} 23 {a ∈ C 存在正整数n,使得a = 1} |
n
集合的运算
M ∩ N = {x | x ∈ M且x ∈ N} M ∪ N = {x | x ∈ M或x ∈ N}
二、简单性质
的零元素) (1) 定义条件 3°中 0( 称为 的零元素)是唯 ° ( 称为V的零元素 一的. 一的. (2) 对于任意 α ∈ V,定义条件 °中 α’ (称为 ,定义条件4° α的负元素 )是唯一的.记为 α 。 是唯一的.记为(3) 0α = 0,k0 = 0. , . (4) 若kα = 0,则k = 0,或α = 0. , 或 . 证 若 k ≠ 0,则k-1(kα) = k-10 = 0. 而 则 k-1(kα) = (k-1k)α = 1α = α, 所以, 所以 α = 0. . (5) 每个向量 α 的负向量等于 (−1)α −
如果上述运算满足如下8条运算性质 则称V 如果上述运算满足如下 条运算性质, 则称 条运算性质 数域P上的 上的线性空间 是 数域 上的线性空间
1°加法交换律:α +β = β + α ; 加法交换律: 2°加法结合律:(α +β )+ γ = α + (β + γ); °加法结合律: ; 3°存在向量 ,使得对任一个向量α ,都有 °存在向量0, 都有 α+0=α; 4°对任一个向量α , 存在向量α ’,使得 ° α + α ’ = 0. 5°1的数乘 1α = α ; 的数乘: ° 的数乘 6°数乘结合律:k(lα) = (kl)α ; °数乘结合律: 7°数乘分配律:k(α +β ) = kα + kβ; °数乘分配律: 8°数乘分配律:(k + l)α = kα + lα. °数乘分配律: 中的向量, ∈ 其中α, β, γ 是V中的向量,k,l∈P. 中的向量
第六章线性空间与线性变换

高等代数第六章 线性空间与线性变换第六章 线性空间与线性变换§6.1 线性空间与简单性质一、线性空间的概念定义 设V 是一个非空集合,F 是一个数域.在V 上定义了一种加法运算“+”,即对V 中任意的两个元素α与β,总存在V 中唯一的元素γ与之对应,记为βαγ+=;在数域F 和V 的元素之间定义了一种运算,称为数乘,即对F 中的任意数k 与V 中任意一个元素α,在V 中存在唯一的一个元素δ与它们对应,记为αδk =.如果上述加法和数乘满足下列运算规则,则称V 是数域F 上的一个线性空间.(1) 加法交换律:αββα+=+;(2) 加法结合律:()()γβαγβα+=+++;(3) 在V 中存在一个元素0,对于V 中的任一元素α,都有αα=+0; (4) 对于V 中的任一元素α,存在元素β,使0=+βα; (5) α⋅1=α;(6) βαβαk k k +=+)(,∈k F ; (7) ()∈+l k l k l k ,,ααα+=F ; (8) ()()ααkl l k =,其中γβα,,是V 中的任意元素,l k ,是数域F 中任意数.V 中适合(3)的元素0称为零元素;适合(4)的元素β称为α的负元素,记为α−.下面我们列举几个线性空间的例子. 例1数域F 上的所有n 维列向量集nF 算规则,它是数域F 上的一个线性空间.特别地,当R F =时,n R 称为n 维实向量空间;当C F =时,n C 称为n 维复向量空间.例2 数域F 上的全体n m ×矩阵构成一个F 上的线性空间,记为)(F n m M ×. 例3数域F 上的一元多项式全体,记为][x F ,构成数域F 上的一个线性空间.如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域F 上的一个线性空间,记为n x F ][.高等代数讲义例4实系数的n 元齐次线性方程组0=Ax 的所有解向量构成R 上的一个线性空间.称之为方程组0=Ax 的解空间.例5闭区间],[b a 上的所有连续实函数,构成一个实线性空间,记为],[b a C .例6 零空间.注:线性空间中的元素仍称为向量.然而其涵义比n 维有序数组向量要广泛的多.二、性质性质1 零向量是唯一的. 性质2 负向量是唯一的.注:利用负向量,我们定义减法为:)(βαβα−+=−.性质3 对V 中任意向量γβα,,,有(1) 加法消去律:从γαβα+=+可推出γβ=;(2) 0=⋅α0,这里左边的0表示数零,右边的0表示零向量; (3) 00=⋅k ; (4) αα−=−)1(;(5) 如果0=αk ,则有0=k 或0=α.注:线性空间上的加法和数乘运算与nF 的一样,都满足八条运算规律,所以第四章 中关于向量组的一些概念以及结论,均可以平行地推广到一般的n 维线性空间中来.在这里不再列举这些概念和结论,以后我们就直接引用,不另加说明.§6.2 基与维数本节讨论线性空间的结构一、定义与例子定义1 设V 是数域F 上的一个线性空间,如果V 中的n 个向量n εεε,,,21L 满足 (1)n εεε,,,21L 线性无关;(2)V 中的任意向量都可由n εεε,,,21L 线性表示,则称n εεε,,,21L 为线性空间V 的一组基,n 称为V 的维数,记为n V =dim ,并称V 为数域F 上的n 维线性空间.注1:零空间没有基,其维数规定为0.注2:如果在线性空间V 中存在无穷多个线性无关的向量,则称V 为无限维线性空间,第六章 线性空间与线性变换例:连续函数空间],[b a C 就是一个无限维空间.推论1 n 维线性空间中的任意1+n 个向量必线性相关.注3: 将线性空间V 看成一个向量组,那么它的任意一个极大线性无关组就是V 的一组基,其秩就是维数.推论2 n 维线性空间V 中的任意n 个线性无关的向量组成V 的一组基.定义2 设n εεε,,,21L 是n 维线性空间V 的一组基,则对V 中的任意向量α,存在唯一数组n x x x ,,,21L ,使得n n x x x εεεα+++=L 2211,我们称n x x x ,,,21L 为向量α在基n εεε,,,21L 下的坐标,记作()Tn x x x ,,,21L .例1 在n 维向量空间nF 中,显然⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=100,,010,00121ML M M n εεε,是nF 的一组基.对任一向量Tn a a a ),,,(21L =α都可表示成n n a a a εεεα+++=L 2211,所以Tn a a a ),,,(21L 就是向量α在这组基下的坐标.选取另一组基:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=111,,011,00121ML M M n ηηη,对于向量Tn a a a ),,,(21L =α,有()()()n n n n n a a a a a a a ηηηηα+−++−+−=−−11232121L ,所以α在这组基下的坐标为()Tn n n a a a a a a a ,,,,13221−−−−L .例2 在线性空间n x F ][中,容易验证121,,,1−===n n x x αααL高等代数讲义是n x F ][的一组基.在这组基下,多项式1110)(−−+++=n n x a x a a x f L 的坐标就是它的系数()Tn a a a 110,,,−L .考虑n x F ][中的另一组基()121,,,1−−=−==n n a x a x βββL .由泰勒(Taylor)公式,多项式)(x f 可表示为()1)1()(!1)())((')()(−−−−++−+=n n a x n a fa x a f a f x f L ,因此,)(x f 在基n βββ,,,21L 下的坐标为()Tn n a f a f a f ⎟⎟⎠⎞⎜⎜⎝⎛−−!1)(,),('),()1(L . 例3 在所有二阶实矩阵构成的线性空间)(22R ×M 中,考虑向量组⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=1000,0100,0010,000122211211E E E E . 首先这是一组线性无关组.事实上,若有实数4321,,,k k k k ,使=+++224213122111E k E k E k E k O k k k k =⎟⎟⎠⎞⎜⎜⎝⎛4321, 则有04321====k k k k ,这就说明了22211211,,,E E E E 线性无关.其次,对于任意二阶实矩阵⎟⎟⎠⎞⎜⎜⎝⎛=22211211a aa a A , 可表示为2222212112121111E a E a E a E a A +++=,因此22211211,,,E E E E 是22×M 的一组基,22×M 是4维实线性空间,并且A 在这组基下的 坐标为()Ta a a a 22211211,,,.第六章 线性空间与线性变换二、同构关系1.映射设M,N 是两个集合.如果给定一个法则ϕ,使M 中的每个元素a 都有N 中的一个唯一确定的元素'a 与之对应,则称ϕ是集合M 到集合N 的一个映射.'a ∈N 称为a 在映射ϕ下的像,而a 称为'a 在映射ϕ下的原像.记作')(a a =ϕ.M 中元素在ϕ下像的全体构成N 的一个子集,记之为ϕIm 或)(M ϕ。
高等代数第六章线性空间小结太原理工大学

返回
上页 下页
本章的重点是线性空间的概念,子空间的和, 基与维数;
难点是线性空间定义的抽象性,线性相关和子 空间的直和.
本章的基本题型主要有:线性空间,子空间的 判定或证明,线性相关与无关的判定或证明,基与 维数的确定,过渡矩阵和坐标的求法,直和及同构 的判内容及其内在联系可用下图来说明: 线性空间
④ dim(W)=∑dim(Vi) .
返回
上页 下页
3. 同构映射的基本性质:
(1) 线性空间的同构映射保持零元,负元,线性组 合,线性相关性;
(2) 同构映射把子空间映成子空间; (3) 线性空间的同构关系具有反身性,对称性和传 递性;
(4) 数域P上两个有限维线性空间同构<=>它们有相 同的维数,因而,数域P上的每一个n维线性空间都 与n元数组所成的线性空间Pn同构.
线性空间 小结
线性空间是线性代数的中心内容,是几何空 间的抽象和推广,线性空间的概念具体展示了代 数理论的抽象性和应用的广泛性.
一、线性空间 1. 线性空间的概念 2. 线性空间的性质 (1) 线性空间的零元,每个元素的负元都是唯一的;
(2) (–1)α=-α,kα=0<=>k=0,或α=0
返回
上页 下页
返回
上页 下页
(3) 若在线性空间 V 中有 n 个线性无关的向量
α1,α2,…,αn,且V 中任意向量都可由它线性表示, 则V是n维的,而α1,α2,…,αn就是V的一个基.
(4) 设α1,α2,…,αn和β1,β2,…,βn是n维线性空间V的两 个基,A是由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩 阵,(x1,x2,…,xn)和(y1,y2,…,yn)分别是向量α在这两 个基下的坐标,则A是可逆的,且坐标关系为.
高等代数课件(北大版)第六章-线性空间§6.7

引入
设 V1,V2为线性空间V的两个子空间,由维数公式 dimV1 dimV2 dim(V1 V2 ) dim(V1 V2 )
有两种情形: 1) dim(V1 V2 ) dimV1 dimV2 此时 dim(V1 V2 ) 0, 即,V1 V2 必含非零向量.
2023/9/15§6.7 子空间的直和
2023/9/15§6.7 子空间的直和
而在和 V1 V3 中,向量 (2,2,2)的分解式是唯一的, (2,2,2) (2,2,0) (0,0,2)
事实上,对 (a1,a2 ,a3 ) V1 V3 , 都只有唯一分解式: (a1,a2 ,0) (0,0,a3 ).
故 V1 V2是直和.
j 1
i 1,2, , s
2023/9/15§6.7 子空间的直和
" " 假若V1 V2 Vs不是直和, 则零向量还有一个分解式
0 1 2 s , j Vj , j 1,2, , s (*)
在(*)式中,设最后一个不为0的向量是 i , (i s)
则(*)式变为 0 1 2 i ,
V1 V2 0
所以 Pn V1 V2 .
2023/9/15§6.7 子空间的直和
练习 1 设V1 、V2分别是齐次线性方程组① 与②的
解空间:
x1 x2
xn 0
①
x1 x2
xn
②
证明: Pn V1 V2
证:解齐次线性方程组①,得其一个基础解系
1 (1,0, ,0,1) 2 (0,1, ,0, 1)
1 2 , 1 V1,2 V
是唯一的,和 V1 V2就称为直和,记作 V1 V2 .
注: ① 分解式 1 2 唯一的,意即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α1 , α2 , … , α������ 线性无关 *.������ = ������ ⇐ { ������1 , ������2 , … , ������������ 线性无关 向量组等价 (4)向量组α1 , α2 , … , α������ 线性无关,α1 , α2 , … , α������ , ������线性相关,则������可由α1 , α2 , … , α������ 线性表出. 二、线性空间的维数、基与坐标: 1.维数: 定义 5 ①如果在线性空间������ 中有n个线性无关的向量,但任意n + 1个向量线性相关,定义������ 是一 个n维线性空间,记������������ ������(V) = ������. ②无限维线性空间; ③零空间维数为 0. 2.基与坐标: 定义 6 ①基:线性空间������ ,������������ ������(V) = ������,n个线性无关的向量组������1 , ������2 , … , ������������ 称为������ 的一组基; ②坐标:设������1 , ������2 , … , ������������ 称为������ 的一组基,α ∈ V, 若α = ������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ ,������1 , ������2 , … , ������������ ∈ ������,则数组������1 , ������2 , … , ������������ 就称为α在 基������1 , ������2 , … , ������������ 下的坐标,记为:(������1 , ������2 , … , ������������ ).
P245 P245
二、用定义证明线性空间: 例 1.用ℝ+ 表示全体正实数的集合,证明ℝ+ 关于下面定义的加法与数乘运算构成ℝ的线性空间. ������ ⊕ ������ = ������������, ∀������, ������ ∈ V; ������°������ = ������������ , ∀������ ∈ ℝ, ∀������ ∈ ℝ+ . 证:∀������, ������ ∈ ℝ+ , ������ ∈ ℝ有������°������ = ������������ , ������ ⊕ ������ = ������������ ∈ ℝ+ ,因此所定义的加法⊕、数乘°满足线性空间定义. ∀������, ������ ∈ ℝ+ , ������ ⊕ ������ = ������������ = ������������ = ������ ⊕ ������, ∀������ ∈ ℝ+ , ( ������ ⊕ ������) ⊕ ������ = (������������) ⊕ ������ = ������������������, ∃������ = 1 ∈ ℝ+ , ∀������ ∈ ℝ+ , ������ ⊕ 1 = ������ ∙ 1 = ������, ∀������ ∈ ℝ+ , ∃������的负元素 ,有������ ⊕ = ������ ∙ = 1,
第1页
补例 3
补例 4
高等代数
课堂笔记
第六章
上述四个补例共性:是它们都具有三个要素: (1)有两个非空集合:一个是数域P,一个是抽象的集合V; (2)有两种运算: VXV → V (加法) PV → V (数乘) (3)满足 8 条运算律. 一、线性空间的定义及简单性质: 定义 1 (P243 定义 1) 线性空间元素称为向量. 性质 1 性质 2 性质 3 性质 4 零元素是唯一的; P244 负元素是唯一的; P245 0 ∙ ������ = ������, ������ ∙ ������ = ������, (−1)������ = −������; 若������ ∙ ������ = ������,则������ = 0或������ = ������.
������ ������ ������ 1 1 1
∀������, ������ ∈ ℝ+ , ������, ������ ∈ ℝ, (������������)°������ = ������������������ = (������������ )������ = ������°������������ = ������°(������°������), 有1°������ = ������1 = ������, (������ + ������)°������ = ������������+������ = ������������ ∙ ������������ = (������°������) ⊕ (������°������), ������°(������ ⊕ ������) = ������°(������������) = (������������)������ = ������������ ∙ ������ ������ = (������°������) ⊕ (������°������), 综上,ℝ+ 关于所定义的加法和数乘,构成ℝ的线性空间 例 2.设V为实数域ℝ上所有������ × ������可逆矩阵的集合. 定义:A ⊕ B = AB, ∀A, B ∈ V, ������°A = A������ , ∀A ∈ V, ������ ∈ ℝ. 解:因为矩阵乘法不满足交换律,因而A ⊕ B = AB ≠ AB = B ⊕ A, 据线性空间定义,V对于所定义的运算不构成ℝ上的线性空间. 习题:Ex.3/(5).(6) 三、常用线性空间: P ������ 为P上的线性空间; P ������×������ 为P上的线性空间; P,������-为P上的线性空间;(P244) C,������,������- 为ℝ上的线性空间. 2011-03-10
第2页
高等代数
课堂笔记
第六章
§6.3 维数·基与坐标
������ 线性空间 ������, ������, ������ 两种运算:加法、数乘 ������ 的元素运算 一、线性空间的向量之间的线性关系: 1.线性组合和线性表出: (1)α1 , α2 , … , α������ ∈ ������, ������1 , ������2 , … , ������������ ∈ ������, 则������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ 称为向量组α1 , α2 , … , α������ 的线性 组合; (2) ������ = ������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ ,称������可由向量组α1 , α2 , … , α������ 线性表出. 2.向量组的线性: 向量组������1 , ������2 , … , ������������ ,可由向量组表出和等价: ������������ 可由向量组α1 , α2 , … , α������ 线性标出⇒ 向量组������1 , ������2 , … , ������������ ,可由向量组α1 , α2 , … , α������ 线性表出; 向量组等价:可以相互线性表出. 3.线性相关性: (1) α1 , α2 , … , α������ ∈ ������ ,存在一组不全为 0 的数������1 , ������2 , … , ������������ ∈ ������,使������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ = 0, 则称向量组α1 , α2 , … , α������ 线性相关; (2)否则称向量组α1 , α2 , … , α������ 线性无关. 由������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ = 0 ⇒ ������1 = ������2 = ⋯ = ������������ = 0. 4.常用的一些结论: (1) α线性相关⟺ α = 0; 无关⟺ α ≠ 0. (2) α1 , α2 , … , α������ 线性相关⟺ ∃α������ 可由其余向量线性表出; (3) α ⏟ 1 , α2 , … , α������ 可由α1 , α2 , … , α������ 线性表示⇒ ������ ≤ ������
高等代数
课堂笔记
第六章
第六章 线性空间 §6.1 集合与映射
集合:用A, B, …表示,刻划。 映射: S→ℝ S → ������ S→S 运算:
������ ������ ������
函数 映射,∀������ ∈ S, ������(������) = ������ ∈ T. 变换
A ∪ B = {������|������ ∈ A 或������ ∈ B} A ∩ B = {������|������ ∈ A 且������ ∈ B} ������: A → B, ������: B → C, ������ ∙ ������: A → C. ������ *. ������ ↦ ������
映射分:单射、满射、双射. 2011-03-07
§6.2 线性空间定义
补例 1 数域P上的n维列向量全体P ������ ,在第三章中我们定义了两种运算: (1). P ������ 中向量的加法,满足运算律: ①������ + ������ = ������ + ������; ②������ + ������ + ������ = (������ + ������) + ������ = ������ + (������ + ������); ③∃0 ∈ P ������ , ������. ������. ∀������ ∈ P ������ 有������ + 0 = 0 + ������ = ������; ④∀������ ∈ P ������ , ∃������, ������. ������. ������ + ������ = ������ + ������ = 0,称������为������的负向量,记作:−������. (2). P中数������ 与P ������ 中向量的数乘,满足四条运算律: ①������(������ + ������) = ������������ + ������������; ②(������ + ������)������ = ������������ + ������������ ; ③(������ ∙ ������)������ = ������ ∙ (������ ∙ ������); ④1 ∙ ������ = ������. 补例 2 用P ������×������ 表示数域P上所有������ × ������的矩阵集合,在第四章中我们定义了两种运算: (1). P ������×������ 中矩阵加法,满足类似于P ������ 中向量加法的四条性质; (2). P中数与P ������×������ 中矩阵的数乘,满足类似于上面的四条性质. 用P,������-表示数域P上一元多项式的集合,在第一章中我们定义了两种运算: (1). P,������-中多项式加法,满足上述四条运算律; (2). P中的数与P,������-中矩阵的数乘,含四条性质. 用C,������,������- 表示闭区间,������, ������-上所有连续函数的集合,分析中我们定义了两种运算: (1).C,������,������- 中函数加法,满足类似于P ������ 中向量加法的四条性质; (2). ℝ中实数与C,������,������- 中函数满足类似于上面的四条性质.