系统动力学模型 (1)
系统动力学模型

系统动力学模型系统动力学模型是一种有效的分析运动系统结构和行为的有效方法,它提供了一种理解运动建模的方法。
它是由芬兰物理学家Leonhard Euler在18世纪初提出的,其理论至今仍然是解决运动系统结构和行为问题的基础神经科学工具。
它可以被用来模拟和描述在动力学控制领域中的各种机械系统,从基本到复杂。
系统动力学模型的基本概念是分析和解决时变系统中的问题,它将系统分解为不同的动态系统元素。
系统动力学模型利用方程组来相互连接元素,其中每个方程表示一个系统变量的变化情况,以便研究系统的行为和性能。
系统的行为可以分析并发现系统的特性,比如平衡点、温度和速度等。
这就构成了一个有力的工具,可以为复杂的运动系统提供可靠的模型。
另一个系统动力学模型的重要应用是仿真,该技术可以建立一套完整的模型来模拟真实系统的行为,这样就可以对真实系统进行测试和模拟,用于研究系统中发生的变化。
此外,系统动力学模型还可以应用于控制系统设计,如自动控制系统。
此外,系统动力学模型也用于生物动力学,用于研究人体活动和运动控制的各种因素,比如力学、器官位置、活动强度和时间等。
系统动力学模型的应用可以模拟和研究人体活动行为,帮助科学家发现人体活动的基本原理,并分析不同活动类型的控制和行为问题。
系统动力学模型的发展表明,它提供了一种可用于仿真和控制复杂运动系统的有效方案。
它可以用于模拟和分析许多不同的机械系统,包括多体系统和工程控制系统,以及生物动力学中的人体行为。
它也被广泛应用于航空航天、机械工程和机床制造领域,以提供更可靠的模拟和精确的控制策略。
总的来说,系统动力学模型是一种有效的研究运动系统结构和行为的有效工具。
它有助于开发出动力学建模、控制策略和分析工具,以便更好地理解和模拟运动系统的性能。
系统动力学模型的发展也为实现更有效的控制策略,以及运动系统更高效运行提供了有力的支持。
系统动力学模型SD1

系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学理论基本观念
(八)开放复杂系统的其他重要性质
(1)在非平衡状态下运动、发展、进化是开放复杂系统的一个重 要动态行为特征。系统动力学所研究的系统,诸如社会、经济、生 态系统,都具有这一特性。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学研究问题的过程
建立数学的规范的模型是第三个步骤。
主要任务:用系统动力学语言表述系统及其结构
1)建立L,R,A,C诸方程; 2)确定与估计参数; 3)给所有N方程,C方程与表函数赋值。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.1 系统动力学—学科基础
系统动力学的学科基础可划分为三个层次:
(1)方法论——系统方法论。即其基本原则是将所研究 对象置于系统的形式中加以考察。
(2)技术科学和基础理论——主要有反馈理论、控制论、 信息论、非线性系统理论,大系统理论和正在发展中的 系统学。 (3)应用技术——计算机模拟技术。为了使系统动力学 的理论与方法能真正用于分析研究实际系统,使系统动 力学模型成为实际系统的“实验室”,必须借助计算机 模拟技术。如:社会经济动力学:经济理论、决策理论 和组织理论等。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.2 系统动力学基ห้องสมุดไป่ตู้概念
模型:是客观存在的事物与系统的模仿、代表或替代物。 它描述客观事物与系统的内部结构、关系与法则。 如:脑力模型、物理模型、数学模型、计算机模型或者 前述模型的组合。
(完整版)第五章系统动力学模型

5.2 系统反馈结构
5.2.2 系统动力学流图
1. 变量与符号
(1)原件结构要素
原件结构要素
变量要素,它是由状态变量、速率变量、辅助变量 等组成。
关联要素,是信息链和物质链。
29
5.2 系统反馈结构
5.2.2 系统动力学流图
30
5.2 系统反馈结构
5.2.2 系统动力学流图
描述状态变量变 化快慢的变量
5.1.2 系统动力学发展历史
J.W.Forrester等在系统动力学方面的主要成果 1958年 发表著名论文《工业动力学——决策的一个重要突破口》 1961年 出版《工业动力学》(Industrial Dynamics) 1968年 出版《系统原理》(Principles of Systems) 1969年 出版《城市动力学》(Urban Dynamics) 1971年 出版《世界动力学》(World Dynamics) 1972年 学生梅多斯教授等出版《增长的极限》(The Limits to Grow2.2 系统动力学流图
出生系数是常数
32
5.2 系统反馈结构
5.2.2 系统动力学流图
辅助 变量
33
5.2 系统反馈结构
5.2.2 系统动力学流图
34
5.2 系统反馈结构
5.2.2 系统动力学流图
35
5.2 系统反馈结构
5.2.2 系统动力学流图
当模型用于经济政策分析时,通常 采用对模型施加外部干扰的办法, 以研究和揭示内部结构与其动态行 为之间的关系。
第五章 系统动力学模型
System Dynamics Model
1
目录
5.1 系统动力学学科简述 5.2 系统反馈结构 5.3 系统动力学方程基础 5.4 DYNAMO语言 5.5 典型反馈结构 5.6 系统动力学模型 5.7 仿真软件Vensim
系统动力学模型

如:
用
表示。
系统动力学的建模步骤
例1:建立“一阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
例2,: 建立“二阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
思考题
• 物流系统的系统动力学模型构建
• 决策变量(又称流率)(r):
描述系统物质流动或信息流动积累效应变化快慢的变 量,其具有瞬时性的特征。
——反映单位时间内物质流动或信息流量的增加或 减少的量
——相对量、速度、微积分中的变化率等
决策变量符号表示:
注 意:
(3) 常数:描述系统中不随时间而变化的量,
用
表示。
如:
(4) 辅助变量:从信息源到决策变量之间,起到辅助表达信息反 馈决策作用的变量。
——流图能反映出物质ห้องสมุดไป่ตู้积累值和积累效应变化快慢的区别
2. 流图 :
流图确定反馈回路中变量状态发生变化的机制,明确表 示系统各元素间的数量关系,反映物质链与信息链的区 别,能够反映物质的积累值及积累效应变化快慢的区别。
(1). 物质链与信息链
物质链:系统中流动的实体,连接状态变量 是不使状态值变化的守恒流。
物质链符号表示:要素A→要素B
• 信息链:连接状态和变化率的信息通道,是与因果关系相连 的信息传输线路。
信息链符号表示:A O···→B
(2)状态变量与决策变量
• 状态变量(又称流位)(x):
描述系统物质流动或信息流动积累效应的变量,表 征系统的某种属性,有积累或积分过程的量
—— 绝对量、位移、微积分中的积分量等
1. 因果关系图: 2. 因果链:
3. 反馈回路:
综合“因果关系图”:
机械系统的动力学模型和方程

机械系统的动力学模型和方程动力学是研究物体运动的规律和原因的科学分支,而机械系统的动力学则是指研究机械系统中各个部件之间相互作用的力学原理和运动规律。
机械系统的动力学模型和方程是描述机械系统运动的数学表示,对于系统的分析和设计有着重要的意义。
一、机械系统的动力学模型机械系统是由各种不同的部件组成的,这些部件之间通过力进行相互作用。
为了研究和描述机械系统的运动规律,我们需要建立相应的动力学模型。
1. 质点模型当机械系统中的部件趋于无限小,可以视为质点时,可以采用质点模型进行描述。
质点模型忽略了物体的形状和结构,只考虑其质量和质心位置。
通过对质点所受外力和力矩进行求解,可以得到系统的运动方程。
2. 刚体模型当机械系统中的部件可以看作刚体时,可以采用刚体模型进行描述。
刚体模型考虑了物体的形状和结构,将其视为不会发生形变的固体。
通过对刚体受力和力矩的分析,可以得到系统的运动方程。
3. 柔性体模型当机械系统中的部件存在形变和弹性时,需要采用柔性体模型进行描述。
柔性体模型考虑了物体的弹性变形和振动,通过弹性力和振动方程的求解,可以得到系统的运动方程。
二、机械系统的动力学方程机械系统的动力学方程是描述系统运动规律的数学方程。
根据牛顿第二定律,可以得到机械系统的动力学方程。
1. 线性动力学方程对于线性系统,动力学方程可以表示为:F = m*a其中,F是物体所受的合外力,m是物体的质量,a是物体的加速度。
2. 旋转动力学方程对于旋转系统,动力学方程可以表示为:M = I*α其中,M是物体所受的合外力矩,I是物体的转动惯量,α是物体的角加速度。
3. 耦合动力学方程对于复杂的机械系统,可以通过将线性动力学方程和旋转动力学方程耦合起来,得到系统的动力学方程。
通过建立机械系统的动力学模型和方程,可以对系统的运动进行研究和分析。
得到系统的运动规律和动态响应,为系统的设计和控制提供依据。
总结:机械系统的动力学模型和方程是研究机械系统运动规律的重要工具。
系统动力学模型

系统动力学模型系统动力学模型是指它是一种分析和模拟物理系统及其动力学过程的数学技术。
它可以用来研究运动学,控制系统,流体动力学,形式力学,电学,冲击学和弹性动力学等领域的数学模型,并可用于实际的工程问题的解决。
系统动力学模型基于物理系统的动力学处理和控制问题,用来研究物体的运动行为。
例如,系统动力学模型可以用来探讨汽车的运动性,即汽车在不同条件下的行驶特性,以确定汽车行驶性能的最佳状态。
此外,系统动力学模型还可以模拟任意静力学,力学,流体力学或热力学系统的运动模式。
系统动力学模型的建立要求具备完备的物理基础知识,形成一个系统模型的首要任务是了解物理系统的特性和行为,因此必须确定物理系统的运动方程和力学特征,物理量的表达式在构建模型时必须明确。
模式构建完成后,需要求解模型,并将模型运用到实际问题中,用以求解物理过程及其动力学运行状态。
为此,我们可以使用计算机模拟技术来求解模型,用以检验结果的正确性和准确性。
系统动力学模型在很多领域中都发挥着重要的作用,例如机械系统的设计,控制系统的调整,电子电气系统的设计,机器人的控制,航空航天技术,建筑工程设计等。
例如,在机器人技术中,系统动力学模型可以模拟机器人的运动特性,帮助机器人决定如何完成任务。
此外,系统动力学模型在工程设计中也有广泛应用,可用于分析和解决工程设计问题,以便改善工程性能。
例如,系统动力学模型可以帮助分析和解决结构物振动问题,提高结构物的稳定性和耐久性,以及改善系统的可靠性。
此外,系统动力学模型也可以帮助优化控制系统的性能,以提高系统的功率和可靠性。
综上所述,系统动力学模型是一个强大的工具,可以帮助我们研究和分析物理系统及其动力学过程,从而有效地改善工程性能。
它在机械,控制,电子,航空航天等各个领域都有广泛的应用,并被广泛用来分析和解决工程设计问题。
(完整版)系统动力学模型案例分析

系统动力学模型介绍1.系统动力学的思想、方法系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。
系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。
而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。
所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。
系统动力学方法从构造系统最基本的微观结构入手构造系统模型。
其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。
模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。
因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。
2.建模原理与步骤(1)建模原理用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。
系统动力学认为系统具有整体性、相关性、等级性和相似性。
系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。
系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。
系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。
与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。
系统动力学9种模型

系统动力学9种模型系统动力学是一种系统分析和建模方法,通过对系统的结构和行为进行建模,研究系统内部的相互作用和反馈机制,从而预测其未来的发展趋势。
在系统动力学中,有9种常见的模型,分别是增长模型、衰退模型、饱和模型、振荡模型、周期性波动模型、滞后效应模型、优化模型、风险分析模型和政策评估模型。
1. 增长模型增长模型是最基本的系统动力学模型之一。
它描述了一个系统在没有外界干扰的情况下,如何随着时间推移而不断增长。
这种增长可以是线性的也可以是非线性的。
例如,在经济领域中,GDP随着时间推移而不断增加。
2. 衰退模型衰退模型与增长模型相反,它描述了一个系统在没有外界干扰的情况下如何随着时间推移而逐渐减少。
例如,在生态学领域中,物种数量会随着时间推移而逐渐减少。
3. 饱和模型饱和模型描述了一个系统在达到某个极限之后停止增长或减少。
例如,在市场经济学中,销售量可能会在达到一定数量之后停止增长。
4. 振荡模型振荡模型描述了一个系统在内部反馈机制的作用下如何产生周期性变化。
例如,在经济领域中,经济周期的波动就是一种典型的振荡模型。
5. 周期性波动模型周期性波动模型是振荡模型的一种特殊形式,它描述了一个系统在内部反馈机制的作用下如何产生固定频率的周期性变化。
例如,在天文学中,月相变化就是一种周期性波动模型。
6. 滞后效应模型滞后效应模型描述了一个系统在外界干扰下,其响应速度比干扰发生速度慢的现象。
例如,在宏观经济学中,货币政策对经济增长的影响可能需要几个季度或几年才能显现出来。
7. 优化模型优化模型描述了一个系统如何通过最大化或最小化某个目标函数来达到最佳状态。
例如,在工业领域中,企业可能会通过优化生产流程和降低成本来提高利润率。
8. 风险分析模型风险分析模型描述了一个系统在面临不确定性和风险的情况下如何进行决策。
例如,在金融领域中,投资者可能会使用风险分析模型来评估不同投资方案的风险和回报。
9. 政策评估模型政策评估模型描述了一个系统在政策干预下如何变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章系统动力学模型系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。
1 系统动力学概述2 系统动力学的基础知识3 系统动力学模型第1节系统动力学概述概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。
系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下:1 系统动力学模型的理论基础是系统动力学的理论和方法;2 系统动力学模型的研究对象是复杂反馈大系统;3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”;4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;5 系统动力学模型的关键任务是建立系统动力学模型体系;6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表;系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。
地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。
发展概况系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特()提出来的。
目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。
福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等着作,引起了世界各国政府和科学家的普遍关注。
在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下:1)人才培养自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。
请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。
2)编译编写专着组织专家编译了《工业动力学》,《城市动力学》等。
编写专着有:王其藩着《系统动力学》,《高级系统动力学》;胡玉奎着《系统动力学》,王洪斌着《系统动力学教程》,贾仁安着《系统动力学教程》等。
3)引进专业软件引进的软件有:MICRO-DYNAMO,DYNAMAP2,DYNAMO I∏∏,STELLA,⋅PD PLUS等,近几年又引进的最先进实用的VENSIM专业软件。
并自行研制了一些专用软件。
4)新设课程新开设了系统动力学专业课程。
在几十所大学的管理系或管理学院以及科研单位的研究生开设了系统动力学课程。
5)组织机构与学术会议于19 年成立了全国系统动力学委员会。
组建了一些专门研究机构和教学机构。
开展了许多专项研究工作。
建立了国家总体系统动力学模型,省和地区的发展战略研究系统动力学模型,省级能源,环境预测系统动力学模型及科技,工业,农业林业等行业发展战略研究系统动力学模型等。
1986年8月,在上海召开的“全国系统动力学学术研讨会“上,140多名代表提交了95篇有关系统动力学理论和应用研究方面的论文。
1987年6月,在上海召开的国际学术会议上我国代表交流了29篇论文,占会议论文数的45%。
1988年7月,美国圣迭戈召开了国际学术年会,我国有十名代表参加,交流论文十多篇。
1989年7月,在西德斯图加特召开的国际学术年会上,我国学者交流论文14篇,有4人参加会议。
目前,在我国系统动力学已经发展成熟,并正向深入和全面应用延伸,形成了一支强大的研究力量,发展趋势看好,有理由相信,系统动力学必将在我国社会,经济,科技,管理和生态等领域的研究中发挥更大作用。
第2节系统动力学的基础知识系统动力学模型建立的基本知识,基本原理主要有:因果关系图,模型流图及模型的组成等。
现分别介绍。
因果关系1 因果关系因果关系是指由原因产生某结果的相互关系。
从哲学角度讲,原因和结果是揭示客观事物的因果联系的重要哲学概念,它们是客观事物普遍联系和相互作用的表现形式之一。
原因是某种事物或现象,是造成某种结果的条件;结果是原因所造成的事物或现象,是在一定阶段上事物发展所达到的目标状态。
通常用箭头线来表示,它有正因果关系和负因果关系两种,如图9—1。
P169原因结果+ 就业机会E 迁入人口数I- 死亡率R 总人口数P 正因果关系:两个变量呈同方向变化趋势,如:E增加,I增加;E减少,I减少。
负因果关系:两个变量呈异方向变化趋势,如:R增加,P减少;R减少,P增加。
2)因果关系环图因果关系环图是指由两个或两个以上的因果关系连接而成的闭合回路图示。
它定性描述了系统中变量之间的因果关系。
它有正负因果关系环图两种,如图9—3,图9--4所示:P169正因果关系环图:它会引起系统内部活动加强。
准则:若各因果关系均为正,则该环为正因果关系环;若各因果关系为负的个数是偶数时,则该环也为正因果关系环。
负因果关系环图:它会引起系统内部活动减弱。
准则:若各因果关系均为负,则该环为负因果关系环;若因果关系为负的个数是奇数,则该环为负因果关系环。
再如:生态学人口增长因果关系环图,如图9—5,图9--6 所示:P170系统动力学模型流图系统动力学模型流图简称SD流图,是指由专用符号组成用以表示因果关系环中各个变量之间相互关系的图示。
它能表示出更多系统结构和系统行为的信息,是建立SD模型必不可少的环节,对建立SD 模型起着重要作用。
其专用符号主要有八个:1)水平变量水平变量符号是表示水平变量的积累状态的符号,它是SD模型中最主要的变量。
它由五部分组成,即:输入速率,输出速率,流线,变量名称及方程代码(L),如图所示。
2)速率变量速率变量符号是表示水平变量变化速率的变量。
它能控制水平变量的变化速度,是可控变量。
它由三部分组成,即:输入信息变量,变量名称及方程代码(R)。
如图所示。
3)辅助变量辅助变量符号是辅助水平变量等的变量。
如图所示。
4)外生变量外生变量符号如图所示。
5)表函数表函数符号如图所示。
6)常数常数符号如图所示。
流线符号又有物质流线,信息流线,资金流线,及订货流线四种:物质流线符号是表示系统中流动着的实体,如图 所示。
信息流线符号是表示联接积累与流速的信息通道,如图 所示。
资金流线符号是表示资金,存款及货币的流向,如图 所示。
订货流线符号是表示订货量与需求量的流向,如图 所示。
8)源与沟源符号与沟符号如图 所示。
系统动力学模型系统动力学模型是由六种基本方程和专门的输出语句组成。
其六种方程的标志符号分别为:L :水平变量方程; R :速率变量方程;A :辅助变量方程; N :计算初始值方程;C :赋值予常数方程; T :赋值予表函数中Y坐标值。
L 方程是积累方程;R ,A 方程是代数运算方程;C ,T ,N 方程是提供参数值方程,并在同一次模拟中其值保持不变。
1)L 方程L 方程是计算水平变量积累值的方程,其一般表示形式为:L K J JKJK POP POP DT (BR DR )鬃鬃=+?L :水平变量方程代码,表示方程性质。
DT :时间间隔,即时间增量。
.J :表示前一刻。
.K :现在时刻。
.L :未来一时刻。
J POP ⋅:过去一时刻人口数。
K POP ⋅:现在时刻人口数。
L POP ⋅:未来一时刻人口数。
JK BR ⋅:过去至现在该段时刻的人口出生率。
JK DR ⋅:过去至现在该时刻段的人口死亡率。
积累是系统内部流的堆积量,它等于过去一时刻的积累加上积累变动量,即变动增量。
积累变动量是时间间隔与输入流速和输出流速之差的乘积。
2)R 方程R 方程是计算单位时间流量的方程,即流速或速率。
其一般表示形式为:R J JK POP BRF BR ⋅⋅⨯= R J JK POP DRF DR ⋅⋅⨯=R K KL POP BRF BR ⋅⋅⨯= R K KL POP DRF DR ⋅⋅⨯=其中,JK BR ⋅:过去至现在时刻的出生率,单位(人/年);JK DR ⋅:过去至现在时刻的死亡率,单位(人/年);KL BR ⋅:现在至未来时刻的出生率;单位(人/年);KL DR ⋅:现在至未来时刻的死亡率,单位(人/年);BRF : 出生系数,单位(人/年.人);DRF : 死亡系数,单位(人/年.人);J POP ⋅:过去时刻人口总数;K POP ⋅:现在时刻人口总数。
3)A 方程A 方程是辅助变量方程,用于对辅助变量赋值,其一般表示形式为:A ),22(k K pop sum TPOP ⋅⋅=其中,K TPOP ⋅:表示现在人口总数。
),22(k pop SUM ⋅:求和函数,表示求算现在22个年龄组的总和。
4)N 方程N 方程是变量初始值方程,表示对变量赋初始值,起一般表示形式为:N )1()1(AGE IPOP AGE POP =其中,)1(AGE POP :表示各年龄组人口初始值。
)1(AGE IPOP :是表函数,表示存储22个年龄组的初始值。
5)T 方程T 方程是表函数方程,表示对相应的纵坐标Y 赋值。
6)C方程C方程是常数方程,表示对常数变量赋值。
第3节系统动力学模型系统动力学模型应用分析的一般步骤为:1 明确问题明确的问题是:系统的范围:空间范围,如安徽省区域;时间范围,如1961年 --- 2050年;时间间隔,DT=1年,等等。
解决途径:计算机仿真实验。
数据资料:人口总数,出生率,死亡率,自然增长率等。
2 明确目标人口总数变化趋势;自然增长率控制目标;出生率控制目标;死亡率控制目标等。
3 绘制系统流图1)因果关系环图主要变量清单,即列出主要变量的清单,以利于因果关系环流图的绘制。
如:总人口数,出生率,死亡率,出生系数,死亡系数。
很容易绘制出下图:2)SD 模型流图在因果关系环图的基础上可得SD 模型流图如图 所示。
4 SD 模型的建立根据上述介绍知识和分析步骤,可得简单的安徽省人口SD 模型如下:* POPULAYION SD MODEL OF ANHUIL )(K J K J J K DR BR DT POP POP ⋅⋅⋅⋅-*+=R K L K POP BRF BR ⋅⋅*=R )K L K POP DRF DR ⋅⋅*=N 60000000=POPC 005.0=BRFC 003.0=DRFSPEC DT=1/PRINT 1)POP ,2)BR ,3)DR ,PLOT POP ,BR ,DRPLOT POP说明:1)人口数分22个年龄组,即:1岁,2 — 4,5 — 9,10 — 14,。