第六章自相关性详解

合集下载

第6章 自相关

第6章 自相关
28
et
t
图 6.4 et 的分布 如果 et 随着 t 的变化逐次变化并不频繁地改变符号,而是 几个正的 et后面跟着几个负的,则表明随机误差项 ut 存 在正自相关。 29
二、DW检验法
DW 检验是J.Durbin(杜宾)和G.S.Watson(沃特 森)于1951年提出的一种适用于小样本的检验方
27
et
t
二、对模型检验的影响
按照时间顺序绘制回归残差项 et 的图形。如果 et (t 1, 2, , n ) 随着 t 的变化逐次有规律地变化, et呈现锯齿形或循环形状的变化,就可断言 et存在相关, et 表明存在着自相关;如果 随着 的变化逐次变化并 t ut 不断地改变符号,那么随机误差项 存在负自相关
第六章 自相关
本章讨论四个问题:
●什么是自相关 ●自相关的后果 ●自相关的检验 ●自相关性的补救
1
第一节 什么是自相关
一、自相关的概念
自相关(auto correlation),又称序列相关( serial correlation)是指总体回归模型的随机 误差项之间存在相关关系。即不同观测点上的 误差项彼此相关。
体回归模型(PRF)的随机项为 u1 , u2 ,..., un, 如果自相关形式为
ut = u + vt t -1
2
- 1< < 1
其中 为自相关系数, v 为经典误差项,即 t
E(vt ) 0 , Var(vt ) , Cov(vt , vt+s ) 0 , s 0
误差项 u 1, u 2 , ..., u n 间存在 正相关 不能判定是否有自相关 误差项 u 1, u 2 , ..., u n 间 无自相关

最新-第六章自相关-PPT文档资料

最新-第六章自相关-PPT文档资料
第二、最小二乘估计量不具有最小方差性, 即不是最优的
第三、OLS估计量的方差是有偏的。 第四、T检验和F检验一般是不可靠的。 第五、计算得到的误差方差
2
RSS/d.f.
是真实的σ2有偏估计量,可能低估,也可能高估
第六、通常计算的R2也不能测度真实的R2
第七、预测的方差和标准差可能也是无效 的。
Q产出量 解释变量 资本(K)劳动(L) 技术(T)
注意:有些因素如政策因素对产出是有影响的但并没有 包含在解释变量中,所以应当包含在随机误差项中。
如果该影响构成随机误差项的的主要部分,则可能 出现序列相关
这是由于政策的影响是连续的。
而在做产出对劳力和资本投入的回 归中,我们用了季度时间序列数据。如 果某一季度的产出受到罢工的影响,却 没有理由认为这一生产中断会持续到下 一季度,就是说,即令本季度产出下降, 却没有理由预期下一季度的产出也下降。
表明干扰中的一个上升线性趋势
表明干扰中的一个下降线性趋势 表明干扰中兼有线性和二次趋势项
表示无系统性模样,符合于经典线性回归 模型的无相关假定。
§6.2 自相关产生的原因和后果
一、自相关产生的原因 1、被解释变量的自相关 • 滞后效应
在一个消费支出对收入的时间序列回归中, 人们常常发现当前时期的消费支出除了依赖于 其他变量外,还依赖于前期的消费支出,就是:
3、随机扰动项本身的特性所决定
• 惯性
在许多情况下,真实扰动项的逐次值是相关的。 例如干旱、暴风雨、地震、战争、罢工等纯随 机因素所产生的影响,将延续一个时期以上。 显然,在农业生产中,由于反常的天气所引起 的欠收,将会在几个时期内影响其他的经济变 量;还有,地震对于某个地区经济发展的影响, 也将持续若干年,等等。诸如此类的原因,导 致了扰动项的自相关。

第六章 自相关性

第六章 自相关性
估计值显著性,最终把本来重要的解释变量认为 是不重要的而删除掉,即显著性检验失效。
接前页
3、降低预测精度
由于参数估计值方差虚假增大,致使预测区间的 可信程度降低,预测结果将失去实际意义。
6.3自相关性检验方法

从上述内容的介绍我们可以发现,自相关对模型产生的 不良后果是比较严重的,因此,必须采取相应措施加以 修正或克服。但在修正或克服之前,应该对模型误差项 序列是否存在自相关进行判断,即自相关检验。其方 法主要有:
6.2自相关产生的后果
1、参数估计值非有效(即不再具有最小方差性) 根据前面学过的内容,我们知道,只有在符合同 方差和非自相关性假定条件下,OLS估计结果才 具有最小方差性。当模型存在自相关,参数估计 值方差不是最小(即估计结果不是最优)。
2、模型的显著检验(T检验)失效
标准差增大,导致t统计量变小,进而低估了参数

第二步,对原数据进行广义差分变换,得:
yt*= yt- ρ Yt-1 , xt*= xt- ρ xt-1,再对模型 yt*=A+b1 xt*+ vt*进行回归,并根据回归结果得到原模型 参数估计值b0= A/ (1- ρ ^)和b1
总结说明
迭代法: 是采用一系列迭代,而每一次迭代都 能得到比前一次更好的一阶自回归 系数ρ ^ 杜宾两步法: 也是获得比较准确的一阶自回归系数ρ ^的方法
t
关来判断随机项的自相关。


1、按时间顺序绘制残差分布图:
1.1 正自相关:残差e随时间t的变化并不频繁改变符号,而是几个正的 后面有几个负的。
e
O t
正自相关
接前页

1.2 负自相关:e随t变化依次改变正负符号

第六章 自相关 《计量经济学》PPT课件

第六章  自相关  《计量经济学》PPT课件

[(
1
ˆ
)
1
xt
ut
]2
(1 ˆ1)2 xt2 2(1 ˆ1) xt ut ut2
(6.2.11)
其中 xt ut xt ut (1 ˆ1) xt2
u
2 t
ut ut
ut2
1 n
ut ut
t t
(1
1 n
)
u
2 t
2 n
ut
t t
ut
所以
2 t
(1
ˆ 1 )2
xt2
第六章 自相关 【本章要点】(1)自相关的概念,自相关强度的 量度—自相关系数,了解经济现象中自相关产生 的原因;(2)自相关性对模型参数估计的影响; (3)检验自相关性的主要方法;(4)消除自相 关影响的方法。 §6.1 自相关 一、自相关的概念
如果经典回归的基本假定4遭到破坏,则
COV(ut ,us)=E(ut us)≠0 , t≠s , t,s=1,2, …,n,即u的取值与 它的前一期或前几期的取值相关,则称u存在序列相关 或自相关。 自相关有正自相关和负自相关之分,对随机项的时间 序列u1,u2,…,un,…,当ut > 0时,随后的若干个随机项 ut+1,u t+2,…都有大于0的倾向,当ut < 0时,随后若干个 随机项都有小于0的倾向,我们说u具有正相关性;而 负自相关则意味着两个相继的随机项ut和ut+1具有正负 号相反的倾向。在经济数据中,常见的是正自相关现象。
(4)根据样本容量n,自变量个数和显著水平0.05 (或0.01)从D-W检验临界值表中查出dL和du。 (5)将d 的现实值与临界值进行比较: ①若d < dL,则否定H0,即u存在一阶线性正自相关; ②若d > 4- dL,则否定H0,即u存在一阶线性负自相关; ③若du< d < 4- du,则不否定 H0,即u不存在(一阶)线 性自相关;

计量经济学第六章自相关

计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。

自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。

1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。

自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。

因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。

2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。

假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。

自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。

数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。

3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。

一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。

若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。

3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。

高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。

通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。

3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。

异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。

因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。

4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。

第六章 自相关性

第六章 自相关性
例如,将月度数据调整为季度数据,由于 采用了加合处理,修匀了月度数据的波动,使 季度数据具有平滑性,这种平滑性产生自相关。 对缺失的历史资料,采用特定统计方法进行内 插处理,使得数据前后期相关,产生了自相关。
10
原因4-蛛网现象
蛛网现象是微观经济学中的一个概念。它表 示某种商品的供给量受前一期价格影响而表现出 来的某种规律性,即呈蛛网状收敛或发散于供需 的均衡点。
xt xs xt2 xs2
0
若为负自相关,则E(ut us) < 0,而回归模型中的解
释变量在不同时期通常也负相关,从而
kt ks
xt xs xt2 xs2
0
总之,一般有
ts
kt
ks
E
(
ut
us
)
0
19
从而
Var(ˆ2 )
2
xt2
即如果仍用不存在自相关时的OLS估计参数的方差, 将会低估存在自相关时参数估计值的真实方差。
13
自相关主要存在于时间序列数据中,但是在 横截面数据中,也可能会出现自相关,通常称其 为空间自相关(Spatial auto correlation)。
14Βιβλιοθήκη 第二节 自相关的后果一、对参数估计式统计特性的影响 (1)如果随机误差项具有自相关性,当我们
仍用OLS进行参数估计时,估计式仍具有线性性和 无偏性。
E(ˆ1) E(Y ˆ2 X ) E(Y ) XE(ˆ2 )
(1 2 X ) X2 1
推导也仅用到零均值假定,表明无偏性也成立。
17
(2)不再具有最小方差性。
Var(ˆ2 ) E[ˆ2 E(ˆ2 )]2 E(ˆ2 2 )2
E(kt ut
)2

第六章 自相关

第六章 自相关

第六章 自相关§6.1 自相关一. 概念:经典假定4 cov(,)0,()i j u u i j =≠,不被满足,称i u 存在自相关或序列相关。

自 相关主要存在于时间序列中。

自相关又分为正自相关和负自相关,其主要表现是: 正自相关:当某个0t u >时,随后若干项12,,t t u u ++⋅⋅⋅⋅⋅⋅都有大于零的倾向; 当某个0t u <时,随后若干项12,,t t u u ++⋅⋅⋅⋅⋅⋅都有小于零的倾向。

负自项关:相邻两项的符号有相反的倾向。

在时间序列中,t u 的符号信息对以后各期都有一定的影响,即跨期的扰动项序列相关(经济数据中居多)。

所以在实际工作中,以正自相关较为常见。

二. 产生自相关的原因:1. 许多经济变量是时间序列,此时不能认为u 无自相关;2. 非重要因素归入随机误差项,而这些因素又有自相关的情况;3. 一些重大偶然事件对经济的冲击,往往要延续一段时间;4. 模型本身设置的不正确。

三. 自相关强度的度量------自相关系数1. 自相关的阶:一阶自相关:t u 只与1t u -(之前一期)有关,1()t t u f u -=; 二阶自相关:t u 与12,t t u u --(之前两期)有关,12(,)t t t u f u u --= s 阶自相关:t u 与之前s 期有关,12(,,,)t t t t s u f u u u ---=⋅⋅⋅⋅⋅⋅一般情况下,以研究一阶自相关为主。

因为相邻两期的影响最强且一阶的形式也比较简单。

这时通常假定是一阶线性自相关。

2. 自相关系数:若假定是一阶线性自相关,则自相关形式为1t t t u u v ρ-=+且11ρ-<<ρ是常数,可称为(一阶)自相关系数;t v 是一个新的随机项且满足所有经典假定,即 2~(0,)t v v N σ ()0t t E v v '= ()t t '≠()0s t E u v = ()t s >这样自相关形式就是一个不含常数项的线性模型,ρ就是回归参数,可用OLS 法估计ρ:12212nt t t nt t u uuρ-∧=-==∑∑1nt t u u-≈∑ (当n 很大时,22122n nt t t t u u-==≈∑∑)这完全符合相关系数的计算表达,所以称ρ为自相关系数是合理的。

第六章 自相关

第六章 自相关
误差项 u1, u2 ,..., un 间存在 正相关
不能判定是否有自相关
d L DW dU
dU DW 4 - dU
4 - dU DW 4 - d L
误差项 u1, u2 ,..., un 间 无自相关
不能判定是否有自相关 误差项 u1, u2 ,..., un 间存在 负相关
16
一、一阶自回归形式的性质
一元线性回归模型:
Y = 1 + 2 X + u
假定随机误差项 u 存在一阶自相关
ut = ut -1 + vt
其中,ut为现期随机误差, ut -1 为t-1期随机误差。 是经典误差项,满足零均值假定 E(vt ) = 0 和同方差假定 Var(vt ) = v 、无自相关假定 E(vt vs ) 0 (t s) 。
Cov ut , us 0t s
Cov ut , ut 1 0
自相关
一阶自相关
ut ut 1 t 为一阶自相关系数
一阶线性自相关
6
二、自相关产生的原因 自 相 关 产 生 的 原 因
经济系统的惯性
经济活动的滞后效应 数据处理造成的相关
2,400 2,000 1,600 1,200
EOLS
800 400 0 -400 -800 -1,200 -1,200
结论: 一阶正自相关
-800 -400 0 400 800 EOLS(-1)
30
再来看看另一幅图
结论: 无一阶自相关
残差的散点图
31
二、DW检验法
DW 检验是J.Durbin(杜宾)和G.S. Watson (沃特森)于1951年提出的一种适用于小样本的检 验方法。DW检验只能用于检验随机误差项具有 一阶自回归形式的自相关问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y A bx vt
* t * t
其中,A=a(1- ρ )。
ˆ /(1 利用OLS法估计A、b,进而得到: a ˆA
若ρ =1,则可得到一阶差分模型 yt-yt-1=b(xt-xt-1) +υ 如果为高阶自回归形式: ε t=ρ 1ε t-1+ρ 2ε t-2+…+ρ pε
(2)构造检验统计量:
DW
(e
2
n
t
et 1 )
2
2 e t 1
n
DW统计量与ρ 之间的关系: 因为对于大样本,
2 2 e e t et 1 2 t 1 2 2 n n n
所以:
DW
2
2 2 ( e 2 e e e t t t 1 t 1 )
e
2 t

2 2 e 2 e e e t t t 1 t 1 ) 2 e t

2( e t et et 1 )
2 e t
et et 1 21 2 2 1 et
Байду номын сангаас
e
et et 1
2 t
ˆ) S (b
2
( xt x )
2

ˆ2 ( xt x ) 2
三、t检验失效。 四、模型的预测精度降低。
第三节 自相关性的检验
一、残差图检验 二、德宾-沃森(Durbin-Watson,DW)检验 适用条件:随机项一阶自相关性;解释变量 与随机项不相关;不含有滞后的被解释变量, 截距项不为零;样本容量较大。 基本原理和步骤: (1) 提出假设 H0: ρ =0一
③在大样本情况下,有 nR2~χ 2(p) 给定α ,若nR2大于临界值,拒绝H0。 EViews软件操作:在方程窗口中点击View\ Residual Test \Serial Correlation LM Test。
滞后期的长度确定:一般是从低阶的 p(p=1) 开始,直到p=10左右,若未能得到显著的检验结果, 可以认为不存在自相关性。
DW的概率分布很难确定,实际检验过程为(见下图):
正自 相关 dL
无法 判定 dU
无自相关 2
无法 判定 4-dU
负自 相关 4
4-dL
①0≤DW≤dL时,拒绝H0,存在(正)自相关性。 ②4-dU≤DW≤4时,拒绝H0,存在(负)自相关性。 ③dU≤DW≤4-dU时,接受H0,不存在自相关性。
④dL<DW<dU,或4-dU<DW<4-dL时,无法判定是否存在 自相关性。
注意问题:
(1)D-W检验只能判断是否存在一阶自相关性,不能 判定是否存在高阶自相关。 (2)D-W检验有两个无法判定的区域。 ( 3 )如果模型的解释变量中间含有滞后的被解释变 量, 此时D-W检验失效。 对此类模型Durbin又提出了一个新的检验统计量, 称为Durbin-h统计量:
DW n h (1 ) ˆ) 2 1 nD(b 1
三、自相关的表现形式
ρ 为自回归系数(数值上等于自相关系 数,证明略)
ε t=ρ 1ε
t-1+ρ 2ε t-2+…+ρ pε t-p+ν t
称之为 p 阶自回归形式,或模型存在 p 阶自 相关。 记为AR(P).
ν t是满足回归模型基 本假定的随机误差项。
第二节 自相关性的后果
一、最小二乘估计仍是无偏估计, 但不再是有效估计。 二、低估OLS估计的标准误差。
第一节
什么是自相关性
一、自相关性的概念
1.概念 对于模型 yt=b0+b1x1t+b2x2t+…+bkxkt+ε 如果:Cov(ε t,ε
t-i)=E(ε tε t-i)≠0 t
(i=1,2,…,s) 则称模型存在着自相关性(Autocorrelation)。
二、自相关性产生的原因 1.经济系统的惯性。 2.模型中遗漏了重要的解释变量(如滞后 效应、蛛网现象)。 3.模型形式设定不当。 4.随机因素的影响。 5.数据处理造成的自相关。
三、高阶自相关性检验 (1)偏相关系数检验 【命令方式】IDENT RESID 【菜单方式】在方程窗口中点击 View\Residual Test\Correlogram-Q-statistics 屏幕将直接输出 et 与 et-1, et-2 … et-p ( p 是 事先指定的滞后期长度)的相关系数和偏相关系数。
2 et 1
所以有:
ˆ) DW 2(1
此式为自相关 系数ρ 的估计
因为 -1≤ρ ≤1,所以 (3)检验自相关性: 若 DW=0
0 ≤DW ≤4。
DW=4
DW=2
ˆ 1 即存在完全正自相关性 ˆ 1即存在负自相关性 ˆ 0 即不存在(一阶)自相关性
(2)布罗斯—戈弗雷(Breusch—Godfrey)检验 对于模型 yt=b0+b1x1t+b2x2t+…+bkxkt+ε
t
设自相关形式为:
ε t=ρ 1ε
假设H0: ρ
1
t-1+ρ 2ε t-2+…+ρ pε t-p+ν t
= ρ
2
= … = ρ
p
=0
①利用OLS法估计模型,得到et;
②将 et 关于所有解释变量和残差的滞后值 et-1, et2; … e 进行回归,并计算出其 R 2 t-p
第六章 自相关性
【教学目的及要求】 一、自相关性及其产生的原因 二、自相关性产生的后果 三、自相关性的检验 四、自相关性的修正方法 课外练习 参考文献
教学目的及要求



理解自相关性的含义和产生原因,认识自相关性产 生的严重后果; 掌握D-W检验、偏相关系数检验、B-G检验等自相关 性检验;掌握自相关性检验的EViews软件实现。 掌握广义差分法的基本原理和EViews软件实现; 了解广义最小二乘法的基本思想; 通过上机实践掌握自相关性的检验及解决方法,熟 悉EViews软件的相关应用。
第四节 自相关性的补救方法
一、广义差分法 设 yt=a+bxt+ε t,ε t=ρ ε t-1+υ t 模型滞后一期: yt-1=a+bxt-1+ε t-1 两边同乘以ρ ,与原模型相减: yt-ρ yt-1=a(1-ρ )+b(xt-ρ xt-1)+(ε t-ρ ε
t-1)
yt* yt yt 1 作广义差分变换: * xt xt xt 1
相关文档
最新文档