第六章 自相关性
第6章 自相关

2、序列相关性的后果 、
计量经济学模型一旦出现序列相关性,如果仍 采用OLS法估计模型参数,会产生下列不良后果:
(1)参数估计量非有效 (1)参数估计量非有效
因为,在有效性证明中利用了 E(UU’)=σ2I 即同方差性和互相独立性条件 同方差性和互相独立性条件。 同方差性和互相独立性条件 而且,在大样本情况下,参数估计量虽然具有 参数估计量虽然具有 一致性,但仍然不具有渐近有效性。 一致性,但仍然不具有渐近有效性。
例如,绝对收入假设 居民总消费函数模型 居民总消费函数模型: 例如,绝对收入假设下居民总消费函数模型 Ct=β0+β1Yt+µt t=1,2,…,n
由于消费习惯 消费习惯的影响被包含在随机误差项中, 消费习惯 则可能出现序列相关性(往往是正相关 )。
• (3) 回归模型中略去了带有自相关的重要解释变量。 回归模型中略去了带有自相关的重要解释变量。 • 若丢掉了应该列入模型的带有自相关的重要解 释变量,那么它的影响必然归并到误差项ut中 释变量,那么它的影响必然归并到误差项 中,从 而使误差项呈现自相关。 而使误差项呈现自相关。当然略去多个带有自相关 的解释变量, 的解释变量,也许因互相抵消并不使误差项呈现自 相关。 相关。
6.2 自相关的来源和后果
1、自相关的来源 、 1)模型设定的偏误 (1)模型设定的偏误 所谓模型设定偏误 设定偏误(Specification error)是指 设定偏误 所设定的模型“不正确”。主要表现在模型中丢掉 了重要的解释变量或模型函数形式有偏误。 例如,本来应该估计的模型为 例如 Yt=β0+β1X1t+ β2X2t + β3X3t + µt
Yi=β0+β1X1i+…βkXki+γYi-1+µi β β …β γ µ
第六章 自相关性

接前页
3、降低预测精度
由于参数估计值方差虚假增大,致使预测区间的 可信程度降低,预测结果将失去实际意义。
6.3自相关性检验方法
从上述内容的介绍我们可以发现,自相关对模型产生的 不良后果是比较严重的,因此,必须采取相应措施加以 修正或克服。但在修正或克服之前,应该对模型误差项 序列是否存在自相关进行判断,即自相关检验。其方 法主要有:
6.2自相关产生的后果
1、参数估计值非有效(即不再具有最小方差性) 根据前面学过的内容,我们知道,只有在符合同 方差和非自相关性假定条件下,OLS估计结果才 具有最小方差性。当模型存在自相关,参数估计 值方差不是最小(即估计结果不是最优)。
2、模型的显著检验(T检验)失效
标准差增大,导致t统计量变小,进而低估了参数
第二步,对原数据进行广义差分变换,得:
yt*= yt- ρ Yt-1 , xt*= xt- ρ xt-1,再对模型 yt*=A+b1 xt*+ vt*进行回归,并根据回归结果得到原模型 参数估计值b0= A/ (1- ρ ^)和b1
总结说明
迭代法: 是采用一系列迭代,而每一次迭代都 能得到比前一次更好的一阶自回归 系数ρ ^ 杜宾两步法: 也是获得比较准确的一阶自回归系数ρ ^的方法
t
关来判断随机项的自相关。
1、按时间顺序绘制残差分布图:
1.1 正自相关:残差e随时间t的变化并不频繁改变符号,而是几个正的 后面有几个负的。
e
O t
正自相关
接前页
1.2 负自相关:e随t变化依次改变正负符号
第六章 自相关 《计量经济学》PPT课件

[(
1
ˆ
)
1
xt
ut
]2
(1 ˆ1)2 xt2 2(1 ˆ1) xt ut ut2
(6.2.11)
其中 xt ut xt ut (1 ˆ1) xt2
u
2 t
ut ut
ut2
1 n
ut ut
t t
(1
1 n
)
u
2 t
2 n
ut
t t
ut
所以
2 t
(1
ˆ 1 )2
xt2
第六章 自相关 【本章要点】(1)自相关的概念,自相关强度的 量度—自相关系数,了解经济现象中自相关产生 的原因;(2)自相关性对模型参数估计的影响; (3)检验自相关性的主要方法;(4)消除自相 关影响的方法。 §6.1 自相关 一、自相关的概念
如果经典回归的基本假定4遭到破坏,则
COV(ut ,us)=E(ut us)≠0 , t≠s , t,s=1,2, …,n,即u的取值与 它的前一期或前几期的取值相关,则称u存在序列相关 或自相关。 自相关有正自相关和负自相关之分,对随机项的时间 序列u1,u2,…,un,…,当ut > 0时,随后的若干个随机项 ut+1,u t+2,…都有大于0的倾向,当ut < 0时,随后若干个 随机项都有小于0的倾向,我们说u具有正相关性;而 负自相关则意味着两个相继的随机项ut和ut+1具有正负 号相反的倾向。在经济数据中,常见的是正自相关现象。
(4)根据样本容量n,自变量个数和显著水平0.05 (或0.01)从D-W检验临界值表中查出dL和du。 (5)将d 的现实值与临界值进行比较: ①若d < dL,则否定H0,即u存在一阶线性正自相关; ②若d > 4- dL,则否定H0,即u存在一阶线性负自相关; ③若du< d < 4- du,则不否定 H0,即u不存在(一阶)线 性自相关;
计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。
自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。
1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。
自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。
因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。
2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。
假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。
自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。
数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。
3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。
一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。
若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。
3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。
高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。
通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。
3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。
异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。
因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。
4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。
第六章 自相关

第六章 自相关§6.1 自相关一. 概念:经典假定4 cov(,)0,()i j u u i j =≠,不被满足,称i u 存在自相关或序列相关。
自 相关主要存在于时间序列中。
自相关又分为正自相关和负自相关,其主要表现是: 正自相关:当某个0t u >时,随后若干项12,,t t u u ++⋅⋅⋅⋅⋅⋅都有大于零的倾向; 当某个0t u <时,随后若干项12,,t t u u ++⋅⋅⋅⋅⋅⋅都有小于零的倾向。
负自项关:相邻两项的符号有相反的倾向。
在时间序列中,t u 的符号信息对以后各期都有一定的影响,即跨期的扰动项序列相关(经济数据中居多)。
所以在实际工作中,以正自相关较为常见。
二. 产生自相关的原因:1. 许多经济变量是时间序列,此时不能认为u 无自相关;2. 非重要因素归入随机误差项,而这些因素又有自相关的情况;3. 一些重大偶然事件对经济的冲击,往往要延续一段时间;4. 模型本身设置的不正确。
三. 自相关强度的度量------自相关系数1. 自相关的阶:一阶自相关:t u 只与1t u -(之前一期)有关,1()t t u f u -=; 二阶自相关:t u 与12,t t u u --(之前两期)有关,12(,)t t t u f u u --= s 阶自相关:t u 与之前s 期有关,12(,,,)t t t t s u f u u u ---=⋅⋅⋅⋅⋅⋅一般情况下,以研究一阶自相关为主。
因为相邻两期的影响最强且一阶的形式也比较简单。
这时通常假定是一阶线性自相关。
2. 自相关系数:若假定是一阶线性自相关,则自相关形式为1t t t u u v ρ-=+且11ρ-<<ρ是常数,可称为(一阶)自相关系数;t v 是一个新的随机项且满足所有经典假定,即 2~(0,)t v v N σ ()0t t E v v '= ()t t '≠()0s t E u v = ()t s >这样自相关形式就是一个不含常数项的线性模型,ρ就是回归参数,可用OLS 法估计ρ:12212nt t t nt t u uuρ-∧=-==∑∑1nt t u u-≈∑ (当n 很大时,22122n nt t t t u u-==≈∑∑)这完全符合相关系数的计算表达,所以称ρ为自相关系数是合理的。
自相关(序列相关性)

i
β X
1
β
=
1
∑ x y ∑ x
=
β
1
+
∑k u
i
i
所以,E (
Var( β ) = + 2σ ∑ x x ρ σ 2 ∑x (∑ xt )
1
2 2 t s 1 2 u u t s<t 2
)=β β
1
其中,
k
i
=
x ∑x
i
2 i
1
t s
即 Var(
β)
1
>
1
∑x
2 t
σu2
(一) OLS估计值方差增大 估计值方差增大
k ≠s k ≠s
检验, 检验失效 (二) t检验, F检验失效 检验
(三)预测精度降低
第二节 自相关的检验
一、图示法
通过et的变化来推断ut的变化规律 1.估计模型,求出 2.作 断
et
et 与 t
或
et 与et-1等的相关图,进行判
瓦特森( 二、杜宾--瓦特森(Durbin--Waston)检验 杜宾 瓦特森 ) 简称, 简称, D--W检验 检验
2.自相关产生的原因 自相关产生的原因 (1)随机项 ui 本身的自相关——“真自相关” 例如,一些随机因素:自然灾害、经济政策、战争 等的影响往往会持续若干时期,造成随机项自相关 (2)模型设定不当,包括遗漏重要解释变量或错误确 定模型的数学形式——“拟自相关” ( 3)数据处理不当造成的自相关 例如,对数据进行差分等变换,就可能产生自相关。
,直到其收敛为止。一般,迭代两步就可以
了,所以,又叫科克兰内--奥克特两步法。 杜宾两步法可以推广到高阶自相关的情况。 利用 d=2(1-
第六章 自相关性

进一步,如果
ut ut 1 t
其中
1,t满足E(t ) 0,Var(t )
2
,
cov(t , s ) 0, (t s)
则称ut是一阶线性自相关。
二、自相关性产生的原因
1、经济变量惯性的作用 2、经济行为的滞后性 3、一些随机偶然因素的干扰或影响 4、模型设定的偏误 5、蛛网现象模型
例如:“真实”的边际成本与产量之间的函数关
系式应为:
Yt
1
2 X t
3 X
2 t
ut
其中Yt表示边际成本,X t表示产量,由于认识上的偏
误可能建立如下模型: Yt 1 2 X t vt
其中vt
3
X
2 t
ut,这时由于vt中包含了带有X
2对边
t
际成本的系统影响,使得vt很有可能出现自相关性。
3、一些随机偶然因素的干扰或影响 通常偶然因素是指战争、自然灾害、政策制定
的错误后果、面对一些现象人们的心理因素等等, 这些因素可能影响若干时期,反映在模型中很容 易形成随机误差序列的自相关。
4、设定偏误:
所谓设定偏误是指所建模型“不真实”或“不正 确”。引起设定偏误的主要原因有:模型函数的形式 不正确或遗漏了主要变量。
1、经济变量惯性的作用 大多数经济时间数据都有一个明显的特点,就是
它的惯性,表现在时间序列数据不同时间的前后关联 上。
例如,绝对收入假设下居民总消费函数模型:
Ct=0+1Yt+t
t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中, 则可能出现序列相关性(往往是正相关 )。
第六章第三节 自相关性检验

t 1
2 d
et
2 1
2
et
2 1
etet1 21
etet 1
et
2 1
定义
ˆ
et et 1
et
2 1
为样本的一阶自相关系数,为ρ的估计量。
所以 d 21 ˆ
为什么可以作为ρ的估计量 ?
1 1
对于原假设H0给定显著性水平α,查d统计量分布表, 得到上限临界值du和下限临界值dL,确定判断一阶自 相关的区域:
对于假设: H0 : 0 H1 : 0 给定显著水平α=0.05,依据样本容量n和解释变量 个数k’,查D.W.表得d统计量的上界du和下界dL。
当0<d<dL时,表明存在一阶正自相关,而且正自相 关的程度随d向0的靠近而增强。
2 1
)
E (et et 1 )
E
(et
2 1
)
n e2
t 1
n
et et 1 e2
t 1
则:
若ˆ 0,则d 2,表明ut无一阶自相关; 若ˆ 1,则d 0,表明ut存在完全一阶正自相关; 若ˆ 1,则d 4,表明ut存在完全一阶负自相关;
当dL<d<du时,表明为不能确定存在自相关。 当du<d<4-du时,表明不存在一阶自相关。 当4-du<d<4-dL时,表明不能确定存在自相关。 当4-dL<d<4时,表明存在一阶负自相关,而且负自 相关的程度随d向4的靠近而增强。
不
不
确
确
正相关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
原因4-蛛网现象
蛛网现象是微观经济学中的一个概念。它表 示某种商品的供给量受前一期价格影响而表现出 来的某种规律性,即呈蛛网状收敛或发散于供需 的均衡点。
xt xs xt2 xs2
0
若为负自相关,则E(ut us) < 0,而回归模型中的解
释变量在不同时期通常也负相关,从而
kt ks
xt xs xt2 xs2
0
总之,一般有
ts
kt
ks
E
(
ut
us
)
0
19
从而
Var(ˆ2 )
2
xt2
即如果仍用不存在自相关时的OLS估计参数的方差, 将会低估存在自相关时参数估计值的真实方差。
13
自相关主要存在于时间序列数据中,但是在 横截面数据中,也可能会出现自相关,通常称其 为空间自相关(Spatial auto correlation)。
14Βιβλιοθήκη 第二节 自相关的后果一、对参数估计式统计特性的影响 (1)如果随机误差项具有自相关性,当我们
仍用OLS进行参数估计时,估计式仍具有线性性和 无偏性。
E(ˆ1) E(Y ˆ2 X ) E(Y ) XE(ˆ2 )
(1 2 X ) X2 1
推导也仅用到零均值假定,表明无偏性也成立。
17
(2)不再具有最小方差性。
Var(ˆ2 ) E[ˆ2 E(ˆ2 )]2 E(ˆ2 2 )2
E(kt ut
)2
E[kt2ut2
ts
kt
k
s
ut
12
例如,假设正确的模型应该用两个解释变量: Yt 1 2 X 2t 3 X 3t ut
而建立模型时,模型设定为: Yt 1 2 X 2t ut
则X3对Y的影响便归入随机误差项 u 中,由于X3在不 同观测点上是相关的,这就造成了u在不同观测点是 相关的,呈现出系统模式,此时u是自相关的。
许多农产品的供给呈现为蛛网现象,供给对 价格的反应要滞后一段时间,因为供给需要经过 一定的时间才能实现。如果本期的价格低于上一 期的价格,农民就会减少本期的生产量。如此则 形成蛛网现象。
11
原因5-模型设定误差
如果模型中省略了某些重要的解释变量或者 模型函数形式不正确,都会产生系统误差,这种 误差存在于随机误差项中,从而带来了自相关。 由于该现象是由于设定失误造成的自相关,因此, 也称其为虚假自相关。
如GDP、价格、就业等经济指标都会随经济 系统的周期而波动。例如,在经济高涨时期,较 高的经济增长率会持续一段时间,而在经济衰退 期,较高的失业率也会持续一段时间,这种现象 就会表现为经济指标的自相关现象。
8
原因2- 经济活动的滞后效应
滞后效应是指某一指标对另一指标的影响 不仅限于当期而是延续若干期。由此带来变量 的自相关。
us
]
kt2
E(ut2
)
2
ts
kt
ks
E(ut
us
)
2
xt2
2
ts
kt
ks
E
(ut
us
)
18
Var(ˆ2 )
2
xt2
2
ts
kt
ks
E
(ut
us
)
当ut已存在自相关时,E(ut us) ≠0。 若为正自相关,则E(ut us) > 0,而回归模型中的解 释变量在不同时期通常也正相关,从而
kt ks
第六章 自相关
1
本章讨论四个问题:
●什么是自相关 ●自相关的后果 ●自相关的检验 ●自相关性的补救
2
第一节 什么是自相关
一、自相关的概念
由于自相关性较多地表现在时间序列中,所以 考虑模型:
Yt 1 2 X 2t k X kt ut
如果随机误差项的各期值之间存在相关关系,即
Cov(ut , us ) E[ut E(ut )][ us E(us )] E(utus ) 0 (t s)
15
设回归模型为 Yt 1 2 Xt ut 因为用OLS估计
ˆ2
xt yt xt2
xt xt2
ktYt
ˆ1
( 1 n
Xkt
)Yt
与无自相关假定无关,所以存在自相关时仍能保持 线性性。
16
E(ˆ1) 1 E(ˆ2 ) 2
ˆ2 2 ktut
E(ˆ2 ) 2 kt E(ut ) 2
则称随机误差项之间自相关(auto correlation), 又称序列相关(serial correlation)。
3
自相关性有多种形式,最常见的形式有:
(1)一阶自相关,即随机扰动项只与它的前一期值
相关,可用一阶自相关系数判断。
n
r
ut ut1
t2
Cov(ut , ut1 )
n
n
ut2
ut21
于是 E(ut ut1 ) E(ut21 ) E(ut1vt ) E(ut21 )
所以
E(ut ut1 ) E(ut21 )
Cov(ut , ut1 ) Var(ut1 )
Cov(ut , ut1 ) r
Var(ut ) Var(ut1 )
5
(2)p阶自相关
ut r1ut1 r2ut2 r put p vt
Var(ut ) Var(ut1 )
t2
t2
当r<0时,则ut与ut-1为负自相关;当r>0时,正自 相关;当r 0时,不相关。
一阶自相关可表示为 ut rut1 vt
其中vt为满足古典假定的误差项。
4
一阶自相关 ut rut1 vt
也称一阶自回归形式的自相关。
设 ut ut1 vt , 则 ut ut1 ut21 ut1vt ,
例如,居民当期可支配收入的增加,不会 使居民的消费水平在当期就达到应有水平,而 是要经过若干期才能达到。因为人的消费观念 的改变客观上存在自适应期。再如,一个企业 的生产能力取决于当期和前若干期固定资产的 累积。
9
原因3-数据处理造成的相关
因为某些原因需对缺陷或缺失数据进行了 修整和内插处理,在这样的数据序列中可能产 生自相关。
其中vt为满足古典假定的误差项。 也称p阶自回归形式的自相关。记为AR(p) (3)其他形式
6
二、自相关产生的原因
经济系统的惯性
自
相
经济活动的滞后效应
关
产 生
数据处理造成的相关
的
原
蛛网现象
因
模型设定误差
7
原因1-经济系统的惯性
任何一种经济现象都有其历史的延续性和发 展的继承性,也就是具有时间上的惯性。