用MATLAB解线性规划
用MATLAB优化工具箱解线性规划

用MATLAB优化工具箱解线性规划线性规划是运筹学中的一个研究对象,它通常是以线性方程组的形式来描述数学模型,极大(或极小)化线性函数,同时满足一定的线性限制条件。
而MATLAB是一种十分流行的数学计算软件,其优化工具箱提供了一些功能强大的优化算法,可以用来解决一些复杂的优化问题,包括线性规划问题。
一、线性规划问题的定义线性规划问题的一般形式可以描述为:$min/max$ $c^Tx$$subject$ $to$:$Ax \le b$$x \ge 0$其中,$c^Tx$是一个线性函数,称为线性目标函数,$A$是一个$m\times n$的系数矩阵,$b$是一个$m\times1$的列向量,$x$是一个$n\times1$的列向量,是待求解的变量,我们称之为决策变量。
$x_j$表示变量$x$的第$j$个分量,$m$和$n$分别是限制条件数目和变量数目。
$Ax \le b$是一个线性等式系统,约束了$x$的取值范围,$x \ge0$要求$x$的分量非负,这被称为非负约束条件。
二、使用MATLAB函数求解线性规划问题MATLAB中的优化工具箱提供了一些函数,可以用来求解线性规划问题,其中最常用的函数是“linprog”。
linprog函数是求解线性规划问题的标准函数,在使用之前需要做一些准备工作:(1)确定目标函数和约束条件:目标函数和约束条件应该以线性方程组的形式表达。
(2)将方程组转换为标准形式:标准形式是指将约束条件转换为$Ax \le b$的形式,且决策变量的非负约束被包含在这个矩阵中。
(3)定义参数:包括目标函数和约束条件中的系数矩阵和向量。
(4)运行函数:使用linprog函数求解。
下面是linprog函数的语法格式:[x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,ub,x 0,options)linprog函数的参数解释如下:(1)f:目标函数的系数向量。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。
整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。
在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。
1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。
目标函数可以是最小化或最大化某个线性表达式。
b. 定义约束条件:其次,需要定义线性规划问题的约束条件。
约束条件可以是等式或不等式形式的线性表达式。
c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。
d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。
e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。
b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。
c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。
d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。
例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为200元。
生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。
工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。
求解如何安排生产,使得利润最大化。
1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。
用MATLAB解线性规划

用MATLAB 优化工具箱解线性规划命令:x=linprog (c ,A ,b )2、模型:beqAeqX b AX ..min =≤=t s cX z命令:x=linprog (c ,A ,b ,Aeq,beq )注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ]. 3、模型:VUBX VLB beq AeqX b AX ..min ≤≤=≤=t s cX z命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X0)注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10=≥j x j解 编写M 文件小xxgh1.m 如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)min z=cXb AX t s≤..1、模型:例2 321436m in x x x z ++= 120..321=++x x x t s301≥x 5002≤≤x 203≥x解: 编写M 文件xxgh2.m 如下: c=[6 3 4]; A=[0 1 0]; b=[50];Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一种强大的数值计算和科学计算软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab来求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划是一种优化问题,旨在找到一组变量的最佳值,以使线性目标函数在一组线性约束条件下最大或者最小化。
下面以一个简单的线性规划问题为例来说明如何使用Matlab求解。
假设有以下线性规划问题:最大化目标函数:Z = 3x + 5y约束条件:2x + y ≤ 10x + 3y ≤ 15x, y ≥ 01. 创建线性规划模型在Matlab中,可以使用linprog函数来创建线性规划模型。
首先,定义目标函数的系数向量c和不等式约束条件的系数矩阵A以及不等式约束条件的右侧常数向量b。
c = [-3; -5];A = [2, 1; 1, 3];b = [10; 15];2. 求解线性规划问题然后,使用linprog函数求解线性规划问题。
该函数的输入参数为目标函数的系数向量c、不等式约束条件的系数矩阵A、不等式约束条件的右侧常数向量b以及变量的下界和上界。
lb = [0; 0];ub = [];[x, fval, exitflag] = linprog(c, A, b, [], [], lb, ub);其中,x是最优解向量,fval是最优解对应的目标函数值,exitflag是求解器的退出标志。
3. 结果分析最后,打印出最优解向量x和最优解对应的目标函数值fval。
disp('最优解向量x:');disp(x);disp('最优解对应的目标函数值fval:');disp(fval);二、整数规划问题的求解整数规划是一种优化问题,与线性规划类似,但是变量的取值限制为整数。
Matlab提供了intlinprog函数来求解整数规划问题。
下面以一个简单的整数规划问题为例来说明如何使用Matlab求解。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
应用MATLAB求解线性规划

在Matlab优化工具箱(Optimization Toolbox)中,求解(1.5.1)的程序如下:[x,fval,exitflag,output,lambda] = linprog (c,A,b,Aeq,beq,lb,ub,x0,options)注意关键标识符意义:1)x0是线性规划的初始解,这种设计仅对中规模算法有效,通常可以缺省。
2)输出是最优解,fval是最优值3)输出exitflag描述了程序的运行情况,若其值大于零,表示程序收敛到最优解;若其值等于零,表示计算达到了最大次数;若其值小于零,表示问题无可行解,或程序运行失败。
4)输出output表示程序运行的某些信息,如迭代次数(iterations)、所用算法(algorithm)、共轭梯度(cgiterations)等。
5)lambda表示解处的拉格朗日乘子,其中lower,upper,ineqlin,eqlin分别对应于下界、上界、不等式约束与等式约束。
解 Matlab 程序如下:c=[-2,-1,1]; 求解目标函数的系数矩阵 A=[1,4,-1;2,-2,1]; A 是不等式约束的系数矩阵 b=[4;12]; b 是不等式约束相应的常数列向量Aeq=[1,1,2]; Aeq 是等式约束的系数矩阵beq=6; beq 是等式约束相应的常数列向量,若没有等式约束,则均用[]代替;lb=[0,0,-inf];ub=[inf,inf,5]; 如果某个变量无下界,则用-inf 表示;如果某个变量无上界,则用inf 表示,若决策变量 无下界,则lb 用[]代替;若决策变量 无上界,则ub 用[]代替;[x,z]=linprog(c,A,b,Aeq,beq,lb,ub) 123123123123123226442212005min z x x x x x x x x x s.t.x x x x ,x ,x =--+++=⎧⎪+-≤⎪⎨-+≤⎪⎪≥≥≤⎩运行后得到输出Optimization terminated successfully. x=4.66670.00000.6667z=-8.6667。
运用Matlab进行线性规划求解

线性规划线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理线性规划问题的标准形式是:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 或⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j jj ,,2,1,0,,2,1,min 11ΛΛ写成矩阵形式为:⎪⎩⎪⎨⎧≥==O X b AX CX z min线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用MATLAB 优化工具箱解线性规划
命令:x=linprog (c ,A ,b )
2、模型: beq
AeqX b
AX ..min =≤=t s cX
z 命令:x=linprog (c ,A ,b ,Aeq,beq )
注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].
3、模型:
VUB
X VLB beq
AeqX b AX ..min ≤≤=≤=t s cX
z 命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )
[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X0)
注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点
4、命令:[x,fval]=linprog(…)
返回最优解x及x处的目标函数值fval.
例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++=
85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s
70005.002.041≤+x x
10005.002.052≤+x x
90008.003.063≤+x x
6,2,10 =≥j x j
解 编写M 文件小xxgh1.m 如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900];
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
min z=cX
b AX t s
≤..1、模型:
例2 321436min x x x z ++=
120..321=++x x x t s
301≥x
5002≤≤x
203≥x
解: 编写M 文件xxgh2.m 如下:
c=[6 3 4];
A=[0 1 0];
b=[50];
Aeq=[1 1 1];
beq=[120];
vlb=[30,0,20];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub
例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、 600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工 费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使
加工费用最低?
解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上 加工工件1、2、3的数量分别为x4、x5、x6。
可建立以下线性规划模型:
6543218121110913min x x x x x x z +++++=
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≤++≤++=+=+=+6
,,2,1,09003.12.15.08001.14.0500600400x ..6543216352
41 i x x x x x x x x x x x x t s i 编写M 文件xxgh3.m 如下:
f = [13 9 10 11 12 8];
A = [0.4 1.1 1 0 0 0
0 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1];
beq=[400 600 500];
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
例4.某厂每日8小时的产量不低于1800件。
为了进行质量控制,计划聘请两种不同水平的检验员。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。
检验员每错检一次,工厂要损失2元。
为使总检验费用最省,该工厂应聘一级、二级检验员各几名? 解 设需要一级和二级检验员的人数分别为x1、x2人,
则应付检验员的工资为:
因检验员错检而造成的损失为:
故目标函数为:
约束条件为:
线性规划模型:
编写M 文件xxgh4.m 如下:
c = [40;36];
A=[-5 -3];
b=[-45];
Aeq=[];
beq=[];
2
12124323848x x x x +=⨯⨯+⨯⨯21211282)%5158%2258(x x x x +=⨯⨯⨯⨯+⨯⨯⨯2121213640)128()2432(min x x x x x x z +=+++=⎪⎪⎩⎪⎪⎨⎧≥≥≤⨯⨯≤⨯⨯≥⨯⨯+⨯⨯0,0180015818002581800
15825821
2121x x x x x x 213640min x x z +=⎪⎪⎩⎪⎪⎨⎧≥≥≤≤≥+0,01594535 ..212121x x x x x x t s
vlb = zeros(2,1);
vub=[9;15];
%调用linprog函数:
[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
结果为:
x =
9.0000
0.0000
fval =360
即只需聘用9个一级检验员。