2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (19)
2019—2020年最新浙教版八年级数学上册《一次函数》单元测试卷及答案解析.doc

《一次函数》 第一学期初二数学测试卷(3)( 试卷满分100分,考试时间90分钟)班级 姓名 成绩一、 选择题:(每小题3分,共30分)1、直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2、已知一次函数y=x+b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.23、函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4、如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y > 时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >25、在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为(-1,1) 1y (2,2)2yx yOA .y=x+1 B.y=x-1 C.y=x D. y=x-26、已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<17、已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为A. -32 B. -92 C. -74 D. -728、在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 S (米)与所用时间 t (秒)之间的函数图象分别为线段OA 和折线OBCD . 下列说法正确的是( )A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后 180 秒时,两人相遇D.在起跑后 50 秒时,小梅在小莹的前面9、在平面直角坐标系中,已知直线y=-43x+3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 10、如图,已知A 点坐标为(5,0),直线y=x +b (b>0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为A.3B.335C.4D.435 二、填空题(每小题3分,共24分)11、写出一个具体的y 随x 的增大而减小的一次函数解析式____ 。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (399)

30.(1)y=15x+55;(2)145 元,l2 个月
23.(3 分)一个三角形的两边长分别为 2、3,第三边长为 x,则周长 y 与 x 之何的函数解析
式为
,自变量 x 的取值范围为
.
24.(3 分)音速表示声音在空气中传播的速度,实验测得音速与气温的一些数据如下表: 气温(℃) O 5 10 15 20 … 音速(m/s) 331 334 337 340 343 …
14.(3 分)在弹性限度内,一弹簧长度 y(cm)与所挂物体的质量 x(kg)之间的函数关系是
y = 2 x +10 ,如果该弹簧最长可以拉伸到 20cm,则它所挂物体的最大质量是__________. 5
15.(3 分)已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-
29.解:(1)设鞋子毫米数 y 与旧鞋号 x 之间的一次函数的关系式为 y=kx+b,由题意得:
36k+b=230,38k+b=240,解得 k=5,b=50.
∴换算关系式为 y=5x+50.
数学语言表示:旧鞋号的 5 倍加上 50 就是新标准毫米数.
(2)当 x=42 时,y=5×42+50=260,∴应买一双 260 毫米的新凉鞋.
A. 2
B.3
C. 3 2
8.(2 分)直线 y=-x+3 与 x 轴、y 轴所围成的三角形的面积为(
A.3
B.6
C. 3 4
D.0
)
D. 3 2
9.(2 分)下列函数中,其图象同时满足两个条件①y 随着 x 的增大而增大;②与 y 轴的正半
轴相交.则它的解析式为( )
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
第五章 一次函数单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。
浙教版一次函数单元测试卷

《一次函数》测试卷班级 姓名 成绩一、选择题(9×3=27分)1.已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( )A 、关于原点对称B 、关于y 轴对称C 、关于x 轴对称D 、不存在对称关系2.下列函数(1)y x π=(2)21y x =-(3)1y x= (4)2y x =中,是一次函数的有 ( )A 、4个B 、3 个C 、2 个D 、1个3.一次函数(21)y x x =--+的系数k 的值是 ( )A 、-2B 、-1C 、1D 、04.一次函数23y x =-+的图象与两坐标轴的交点是 ( )A 、(3,0)(0,32) B、(1,3)(32,1) C 、(0,3)(32,0) D 、(3,1)(1,32) 5.下列各函数中,x 逐渐增大y 反而减少的函数是 ( )A 、x y 31-=B 、x y 31= C 、14+=x y D 、14-=x y 6.已知一次函数3-=kx y 过点(2,1),k 的值是 ( )A 、 2B 、 -2C 、 1D 、 -17.已知点(-4,1y ),(2,2y )都在直线1y=- x+22上,则1y 和2y 大小关系是 A 、12y y > B 、12y y < C 、12y y = D 、不能判断 ( ) 8.2-=x y 的图象大致是( )A B C D9.一次函数32y x =+,当1y >-时,自变量x 的取值范围是 ( )A 、1->xB 、1-≥xC 、1-<xD 、1-≠x二、填空题(8×3=24分)10.圆的周长2c r π=(π表示圆周率,r 表示圆的半径,c 表示圆的周长)中,变量是 ,常量是 。
11.已知一次函数2y x b =+的图象经过点(-1,2),则b = 。
12.点A在第二象限,它到x轴、y轴的距离分别是 、2,则坐标是 。
13.已知一个正比例函数y kx =的图象经过点(-2,4),则这个正比例函数的表达式是 。
浙教版八年级上册数学第5章 一次函数 含答案

浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、如图,函数y=3x和y=kx+3的图象相交于点A(m,2),则不等式3x<kx+3的解集为()A.xB.xC.xD.x2、在平面直角坐标系中,函数y=﹣3x+5的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限3、下列函数中,是一次函数的有()⑴y=πx;⑵y=2x﹣1;⑶y= ;⑷y=2﹣3x;⑸y=x2﹣1.A.4个B.3个C.2个D.1个4、若直线y=kx+3与y=3x﹣2b的交点在x轴上,当k=2时,b等于()A.9B.-3C.D.5、图中两直线L1、L2的交点坐标可以看作方程组()的解.A. B. C. D.6、将直线y=-2x向下平移两个单位,所得到的直线为()A.y=-2(x+2)B.y=-2(x-2)C.y=-2x-2D.y=-2x+27、把函数的图象向上平移2个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A. B. C. D.8、当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.9、若一次函数的图象经过点和点,其中,则下面满足条件的一对值是()A. 且B. 且C. 且D.且10、函数y= 中,自变量x的取值范围()A.x>4B.x<4C.x≥4D.x≤411、如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有( )(1)通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个12、已知,如果y是x的正比例函数,则m的值为()A.2B.-2C.2或-2D.013、函数y= 中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x≠214、如果点(a,b)为正比例函数y=(2m﹣1)x的图象上任意一点,且a+b=0,那么m的值是()A.m=1B.m=﹣1C.m=D.m=015、下列函数中,自变量x的取值范围是x≥3的是( )A.y=B.y=C.y=x-3D.y=二、填空题(共10题,共计30分)16、若与成反比例关系, 与成反比例关系,则与成________关系.17、函数,则当函数值y=8时,自变量x的值是________18、函数的自变量x的取值范围为________.19、如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组的解是________20、设0<k<1,关于x的一次函数y=kx+ (1-x),当1≤x≤2时y的最大值是________.21、如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图中信息可得二元一次方程组的解是________.22、一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为________ 元.型号 A B单个盒子容量(升)2 3单价(元) 5 623、下表为研究弹簧长度与所挂物体质量关系的实验表格.所挂物体质量1 2 3 4 5弹簧长度10 12 14 16 18则弹簧不挂物体时的长度为________ .当所挂物体质量为时,弹簧比原来伸长了________ .24、如图,正比例函数y=ax和一次函数y=kx+b的图象交于点A(2,3),则方程组的解是________.25、如图,将一块腰长为的等腰直角三角板放置在平面直角坐标系中,其直角顶点A落在x轴上,点B落在y轴上,点C落在第一象限内,且,连接交于点D,则点D的坐标为________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是多少千米/时,乙车行驶的时间t等于多少小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距8O千米.28、已知两个变量x、y满足关系2x﹣3y+1=0,试问:①y是x的函数吗?②x 是y的函数吗?若是,写出y与x的关系式,若不是,说明理由.29、老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=﹣x的图象,请同学们观察,并说出来.同学甲:与直线y=﹣x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.30、已知一函数的图象与坐标轴围成的三角形的面积为8,求此一函数表达式.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D5、B6、C7、C9、B10、D11、C12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版八年级上册数学第5章 一次函数含答案(各地真题)

浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、如图,A,B两地相距4千米,8∶00时甲从A地出发步行到B地,8:20时乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与所用的时间(分)之间的函数关系如图所示.由图中的信息可知乙到达A地的时刻为()A.8:30B.8:35C.8:40D.8:452、如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()①体育场离张强家3.5千米②张强在体育场锻炼了15分钟③体育场离早餐店1.5千米④张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个3、已知函数y=中,当x=a时的函数值为1,则a的值是()A.-1B.1C.-3D.34、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、如图已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.6、如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A. B. C. D.27、一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集在数轴上表示正确的是()A. B. C. D.8、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A. B. C. D.9、如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后原路返回家,其中x(分钟)表示时间,y(千米)表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )A.食堂离小明家2.4千米B.小明在图书馆的时间有17分钟C.小明从图书馆回家的平均速度是0.04千米/分钟D.图书馆在小明家和食堂之间10、如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B. C.D.11、下面哪个点不在函数y = -2x+3的图象上()A.(-5,13)B.(0.5,2)C.(3,0)D.(1,1)12、已知函数:①y=2x;②y=﹣(x<0);③y=3﹣2x;④y=2x2+x(x≥0),其中,y随x增大而增大的函数有()A.1个B.2个C.3个D.4个13、已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14、函数y=中,自变量x的取值范围是()A.x>3B.x<3C. x≥-2且x≠3D.x≠315、函数y=中,自变量x的取值范围是()A.x≠0B.x≥﹣1C.x≠﹣1D.x≤﹣1二、填空题(共10题,共计30分)16、如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线 BD与x轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C 点,则直线BD对应的函数关系式为________ .17、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)18、已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x 必定经过第________ 象限.19、点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为________.20、函数的自变量x的取值范围是________.21、函数是一次函数,则________.22、如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y 的值随x的增大而________.(填“增大”或“减小”)23、点P(-1,m)、Q(2,n)是直线y=-2x上的两点,则m与n的大小关系是________.24、已知直线,若,且,那么该直线不经过第________象限.25、如图所示的折线为某地向香港地区打电话需付的通话费y(元)与通话时间之间的函数关系,则通话应付通话费________元.三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.28、已知函数,与x成正比例,与x成反比例,且当时,;当时,.求y与x的函数表达式.29、某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?30、近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每kg售价(元)40 39 38 37 (30)每天销量(kg)60 65 70 75 (110)设当单价从40元/kg下调了x元时,销售量为ykg;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/kg,若不考虑其他情况,那么单价从40元/kg 下调多少元时,当天的销售利润W最大?利润最大是多少?参考答案一、单选题(共15题,共计45分)2、A3、D4、B5、C6、B7、C8、C9、D10、B11、C12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版八年级上册数学第5章 一次函数含答案(考点梳理)

浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、在同一平面内,不重合的两条直线的位置关系是( )。
A.平行B.相交C.平行或相交D.平行、相交或垂直2、已知函数,当自变量x增加m时,相应函数值增加( )A.3m+1B.3mC.mD.3m-13、某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12xB.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x4、若函数的解析式为y= ,则当x=2时对应的函数值是()A.4B.3C.2D.05、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量6、一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2xB.y=2xC.D.7、一次函数y=kx+b与y=x+2的图象相交于如图点P(m, 4),则关于x,y的二元一次方程组的解是()A. B. C. D.8、为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为( )A. B. C. D.9、一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<210、在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn﹣1,使得点A1、A2、A 3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是()A.(2 n﹣1, 2 n﹣1)B.(2 n, 2 n﹣1)C.(2 n﹣1, 2 n+1)D.(2 n﹣1, 2 n)11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B. C.D.13、一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<014、正比例函数y=x的大致图象是()A. B. C.D.15、已知y与x+1成正比,当x=2时,y=9;那么当y=-15时,x的值为().A.4B.-4C.6D.-6二、填空题(共10题,共计30分)16、已知正比例函数的函数值y随着自变量的值增大而减小,那么符合条件的正比例函数可以是________.(只需写出一个)17、已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________.18、若函数是一次函数,则m=________,且随的增大而________19、函数的自变量x的取值范围是________.20、如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C (﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是________,旋转角是________度.21、一个阳光明媚的上午,小明和小兰相约从鲁能巴蜀中学沿相同的路线去龙头寺公园写生,小明出发5分钟后小兰才出发,此时小明发现忘记带颜料,立即按原速原路回学校拿颜料,小明拿到颜料后,以比原速提髙20%的速度赶去公园,结果还是比小兰晚2分钟到公园(小明拿颜料的时间忽略不计).在整个过程中,小兰保持匀速运动,小明提速前后也分别保持匀速运动,如图所示是小明与小兰之间的距离(米)与小明出发的时间(分钟)之间的函数图象,则学校到公园的距离为________米.22、当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.已知点A(1,6)与点B的坐标满足y=﹣x+b,且点B是“完美点”.则点B的坐标是________.23、声音在空气中的传播速度与温度的关系如表:温度(℃)0 5 10 15 20速度331 336 341 346 351若声音在空气中的传播速度是温度的一次函数;当时,声音的传播速度为________ .24、如图,在平面直角坐标系中,,,经过两点的圆交轴于点(在上方),则四边形面积的最小值为________.25、如图,一次函数与的图象相交于点,则关于x的不等式的解集是________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.28、游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?29、如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.30、如图,正方形ABCD的边长为2,P为DC上的点(不与C,D点重合).设线段DP的长为x,求梯形ABCP的面积y关于x的函数关系式,并写出自变量x 的取值范围.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、A6、C7、D8、D9、C10、A11、C12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学试卷
2019-2020年八年级数学上册《一次函数》测试卷
学校:__________
题号 一 二 三 总分 得分
评卷人 得分
一、选择题
1.(2分)若正比例函数(21)y m x =-的图象经过点A (1x ,1y )和点B (2x ,2y ),当12x x <时,12y y >,则m 的取值范围是( )
A .0m <
B .0m >
C .12
m <
D .12
m >
2.(2分)下列一次函数中,y 随x 的增大而减小的有( ) ①21y x =-+;②6y x =-;③13
x
y +=-;④(12)y x =- . A .1个
B .2个
C .3个
D . 4个
3.(2分)直线4
43
y x =--与两坐标轴围成的三角形面积是( )
A .3
B . 4
C . 6
D . 12
4.(2分)直线1
42
y x =-与x 轴的交点坐标为( ) A .(0,一4)
B .(一4,0)
C .(0,8)
D .(8,O )
5.(2分)“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s (km )与所走的时间t (min )之间的函数关系如图所示,那么这天小明到家的时间为( ) A .17 h15 min
B .17 h14 min
C .17 h12 min
D .17 h11 min
6.(2分)弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( )
A.7 cm B.8 cm C.9 cm D.10 cm
7.(2分)如图,直线
12
x
y=
与
2
3
y
x
=
-+相交于点A,若
12
y y
<,那么()
A.2
x>B.2
x<C.1
x>D.1
x<
8.(2分)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()
9
4x
y
O
P
D C
A
A.10 B.16 C.18 D.20
9.(2分)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()
A.B.C.D.
10.(2分)下列函数中,自变量x的取值范围是x≥2的是()
A.2
y x
=--B.
2x
y
-
=C.
2
y
x
=
-
D.2
4
y x
=-
评卷人得分
二、填空题
11.(3分)两直线3
y x
=-、5
y x
=-+与y轴围成的三角形的面积是 .
12.(3分)已知直线y=kx+2(k为常数,且k≠0),则k= 时,该直线与坐标轴所围成的三角形的面积等于1.
13.(3分)若一次函数y x a =+与一次函数y x b =-+的图象的交点坐标为(m ,4),则a b += .
14.(3分)已知一个正比例函数的图象经过点(-4,12
),则这个正比例函数的解析式是 . 15.(3分)直线23y x =-+关于y 轴对称的图象的函数解析式是 .
16.(3分)如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于
y ax b
y kx =+⎧⎨
=⎩
的二元一次方程组的解是 .
17.(3分)在函数1
1
y x =
-中,自变量x 的取值范围是 . 18.(3分)地面气温是20℃,若每升高100 m ,气温下降6℃,则气温t(℃)与高度h(m)的函数解析式是 .
19.(3分)已知m 是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,那么m= .
20.(3分)已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是 .
21.(3分)已知铁的质量m 与体积V 成正比例,已知当V=5cm 3时,m=39g ,则铁的质量m 关于体积V 的函数解析式是 .
22.(3分)仓库里现有粮食l200 t ,每天运出60 t ,x 天后仓库里剩余粮食y(t),则y 与x 之间的函数解析式为 ,自变量x 的取值范围是 .
23.(3分)多边形的内角和的度数y 与边数n 之间的关系为y=(n-2)·180°,其中常量为 ,变量为 .
24.(3分)平行四边形的面积为S ,边长为5,该边上的高为h ,则S 与h 的关系为 ;当h=2时,S= ;当S=40时,h= . 25.(3分)弧长的计算公式180
n r
l π=中,常量是 ,变量是 . 评卷人 得分
三、解答题
26.(6分)“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母
亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.
(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;
(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)
27.(6分)某学校要印刷一批资料,甲印刷公司提出收制版费900元,另外每份材料收印刷费0.5元;乙印刷公司提出不收制版费,每从头材料收印刷费0.8元.
(1)分别写出两家印刷公司的收费y(元)与印刷材料x(份)之间的函数解析式;
(2)若学校预计要印刷2500份宣传材料,请问学校应选择哪一家印刷公司更合算?
28.(6分)若y是x的一次函数,当x=2时,y=2,当x=一6时,y=6.
(1)求这个一次函数的关系式;
(2)当x=8时,函数y的值;
(3)当函数y的值为零时,x的值;
(4)当1≤y<4时,自变量x的取值范围.
29.(6分)分别写出下列函数解析式,并指出式中的常量与变量:
(1)居民用电平均每度0.52元,则电费y(元)与用电量x(度)之间的函数解析式;
(2)小昕用50元钱购买6元/件的某种商品,则剩余的钱y(元)与购买这种商品x(件)之间的函数解析式.
30.(6分)已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.
(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;
(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 2.D 3.C 4.D 5.C 6.D 7.B 8.A 9.C 10.B
二、填空题
11.16 12.±2 13.8
14.18
y x =- 15.23y x =+
16.42x y =-⎧⎨=-⎩
17.1x ≠ 18.200.06t h =-
19.-3或-2 20.y=6x-2 21.M=7.8v
22.y=1200-60x ,0≤x ≤20 23.2、180°;y 、n 24.S=5h ,10,8 25.180、π;l 、n 、r
三、解答题
26.解:(1)3y x =;
(2)3 1.240w x x =-- 1.840x =-
∴所筹集的慰问金w (元)与销售量x (支)之间的函数关系式为 1.840w x =-
解法一:当500w ≥时,1.840500x -≥,解得300x ≥
∴若要筹集不少于500元的慰问金,至少要售出鲜花300支
27.(1)0.5900y x =+甲,0.8y x =乙;(2)选择乙印刷公司 28.(1)132
y x =-+;(2)-1;(3)6;(4)-2<x ≤4
29.(1)y=0.52x ;常量0.52;变量x 、y ;(2)y=50-6x ;常量:50,6;变量:x 、y 30.(1)y=15x+55;(2)145元,l2个月。