复合式路面结构特点及应用
混凝土刚柔复合式沥青路面浅究

混凝土刚柔复合式沥青路面浅究从施工准备、钢筋网制作安装、混凝土滑模摊铺和沥青路面的摊铺等方面。
结合复合式连续配筋混凝土路面的施工技术要点和注意事项,共同为复合式连续配筋混凝土路面在我国高速公路中的推广应用提供了一定的理论和实践基础。
一、连续配筋混凝土复合式路面结构简介1.结构形式连续配筋混凝土刚性基层复合式路面(CRC +AC)是将连续配筋混凝土路面良好的整体强度与沥青混凝土路面良好的行车舒适性相结合的复合式路面,由于CRC没有接缝,所以因混凝土路面接缝而引起的唧泥、错台、断板等病害得到了一定的控制;而且大量配置的纵横向钢筋的强化作用限制了裂缝的宽度和发展,减少了加铺的沥青面层的发生反射裂缝的可能性;同时为沥青面层提供足够强大的荷载承重层。
而其上的沥青面层能缓冲汽车荷载对CRC板的冲击,降低CRC 板的温度应力,减少了CRC板产生裂缝、边缘冲裂等病害,同时也为行驶的车辆提供平坦、舒适的路面。
由此可见连续配筋混凝土刚性基层复合式路面是一种较为理想的刚柔相济的复合式路面结构形式。
2.结构特点CRC+AC复合式路面结构是在弹性半空间地基上,连续配筋混凝土弹性薄板上覆沥青混合料弹性层的复杂结构,承受交通荷载和环境温度变化多种因素的作用;连续配筋混凝土的刚度与其上的沥青混凝土层模量相差很多,收缩变形的累计差异效应也比普通混凝土路面大得多。
在连续配筋混凝土板中配置了连续的纵向钢筋和一定的横向钢筋,所以一般不设置胀缝和缩缝。
混凝土收缩所产生的横向裂缝,也会因为钢筋的作用而受到限制,不会发展过大,因此加铺沥青面层产生反射裂缝的可能性大大降低,反射裂缝不再是其主要的损害形式。
由于沥青混凝土面层摊铺在连续配筋混凝土层上,层间主要靠沥青结合料的粘结力、沥青的内聚力以及沥青混合料与水泥混凝土表层的摩擦力来抵抗层间界面水平剪力,而不像沥青混凝土层内部一样,大量存在集料的嵌挤作用,抗剪能力相对较弱。
二、采用CRCP對端部的处理方式1.关于端部的锚固结构在设置端部锚固过程中时,其所收到的约束连续配筋的混凝土板端部的膨胀在进行设置端部锚固结构时,其约束连续配筋混凝土板端部的膨胀与收缩位移。
复合式路面结构在重载交通道路中的应用

复合式路面结构在重载交通道路中的应用复合式路面结构是现代路面技术中的一种重要类型,它结合了多种材料的优势,具有较好的耐久性和承载力,能够适应重载交通道路的需求。
本文将介绍复合式路面结构在重载交通道路中的应用。
一、复合式路面结构的构成复合式路面结构是由多层材料组合而成的。
其中,基础层是由水泥混凝土或沥青混凝土铺设而成,承担着支撑和传递荷载的责任。
面层则是由更为柔韧的材料,如不锈钢板、优质沥青、合成材料等覆盖,起到承载车流,抗剪切、疲劳、龟裂和滑移的效果。
中间层则是由复合材料构成,可以起到缓冲、加强、隔潮等作用,如玻璃纤维增强有机复合材料、仿木材料、泡沫塑料等。
1. 增强路面的承载能力:复合式路面结构中的不同材料相互协作,能够共同承载更大的荷载。
2. 增强路面的耐久性:面层材料抗剪切、疲劳,中间层材料抗龟裂、滑移,基础层材料抗压、变形,这些作用共同承载,可以使路面的使用寿命大大延长。
3. 提高路面的防水性能:复合式路面结构的中间层可以起到隔潮效果,可以有效减少地下水位带来的影响,保证路面的稳定性。
4. 提升路面的安全性能:复合式路面结构中面层材料应用铁路领域多种高强度钢铁,可以减少路面的滑动和打滑发生,并且减少起伏变化,加强反光作用,大大提高路面的安全性能。
复合式路面结构的应用范围非常广泛,特别是在重载交通道路中的应用效果显著。
例如大型港口、机场的跑道和车辆道路、铁路枢纽周边的公路、高速公路、国道等。
这些区域由于重载运输和频繁行车,对路面的要求十分严格。
而复合式路面结构恰能满足这些需求,大大提高了这些区域的通行效率和安全性。
此外,复合式路面结构还逐渐应用于各种城市道路、桥梁、隧道、地下车库等交通场所。
目前,复合式路面结构的应用已经得到了广泛的推广和应用,而未来的发展方向将会更多地关注绿色、可持续和节能低碳等方面,例如在使用过程中可以更有效地储存太阳能、应用再生材料、进行浅色路面设计等。
这些改进都将进一步提高复合式路面结构的性能和经济效益。
复合式高速公路路面养护技术分析

复合式高速公路路面养护技术分析复合式高速公路是一种由不同材料组成的路面结构,它包括胶结层、水泥混凝土层和沥青混凝土层。
这种结构设计能够提供良好的抗裂性能、抗水解性能和耐久性。
然而,复合式高速公路路面养护仍然是一个重要的问题,因为其路面在长期使用和各种环境条件下都会受到损坏。
首先,复合式高速公路的胶结层是路面的主要组成部分之一、胶结层是由水泥胶结材料和填料混合而成的,主要用于增强路面的强度和稳定性。
在长期使用过程中,胶结层可能会遇到裂缝、变形等问题。
为了保持胶结层的完整性和稳定性,养护人员应该定期巡视路面,及时发现并修复胶结层的损坏。
其次,水泥混凝土层是复合式高速公路路面的重要组成部分。
水泥混凝土层是由水泥、砂、石料和水混合而成的,具有优良的硬度和耐久性。
然而,水泥混凝土层在长时间使用过程中可能会出现开裂、剥落等问题。
为了保持水泥混凝土层的正常使用,养护人员应该定期进行养护,包括及时修复裂缝和补充缺陷。
最后,沥青混凝土层是复合式高速公路路面的最外层。
沥青混凝土层具有良好的防水、防滑和减震性能。
然而,在长期使用和各种天气条件下,沥青混凝土层可能会发生老化、破损等问题。
为了保持沥青混凝土层的功能,养护人员应该及时进行表面修补和重新铺装。
此外,针对复合式高速公路路面养护,还可以采用其他一些技术手段。
例如,可以利用养护车辆进行路面养护,包括定期清理、破损修补等。
同时,还可以利用抗裂剂、抗水解剂等添加剂来提高路面的抗裂性能和耐久性。
另外,定期监测路面的质量和状况,以便及时发现并处理问题。
综上所述,复合式高速公路路面养护是确保公路安全运行和延长使用寿命的重要措施。
通过定期巡视、修补和使用一些辅助手段,可以有效地减少路面损坏和延长其使用寿命。
因此,养护人员应该加强对复合式高速公路路面养护技术的学习和应用,以确保公路的正常运行和安全性。
复合式路面结构在重载交通道路中的应用

复合式路面结构在重载交通道路中的应用【摘要】复合式路面结构在重载交通道路中的应用已成为当前道路建设领域的热点话题。
本文将首先介绍复合式路面结构的概念,探讨其优势所在。
随后将通过实际应用案例展示其在重载交通道路中的应用效果,并讨论其设计原则和施工方法。
结合未来发展趋势,进一步总结复合式路面结构在重载交通道路中的应用,并展望其未来发展前景。
通过本文的研究,有望为道路建设领域的相关从业者提供有益参考,推动复合式路面结构在重载交通道路中的更广泛应用和发展。
【关键词】复合式路面结构、重载交通道路、应用、概念、优势、案例、设计原则、施工方法、未来发展、总结、发展前景。
1. 引言1.1 复合式路面结构在重载交通道路中的应用复合式路面结构是一种在重载交通道路中应用广泛的路面结构,其特点是由不同材料层组成,以提高路面的承载能力和耐久性。
复合式路面结构在重载交通道路中的应用具有重要意义,可以有效解决道路承载能力不足、路面破损严重等问题,提高道路的使用寿命和安全性。
复合式路面结构的优势主要体现在以下几个方面:一是提高了路面的承载能力,可以满足重载交通道路的需要;二是延长了路面的使用寿命,减少了路面维护和修复的频率;三是提高了路面的耐磨性和抗压能力,增强了路面的稳定性和安全性。
在重载交通道路中,复合式路面结构已经得到广泛应用,例如高速公路、重型货运车道等。
这些应用案例表明,复合式路面结构可以有效减轻交通道路的日常损耗,提高路面的承载能力,保障交通安全。
复合式路面结构在重载交通道路中的应用具有重要意义和广阔前景。
随着技术的不断发展和完善,复合式路面结构将会在重载交通道路中发挥越来越重要的作用,为交通运输领域的发展做出更大贡献。
2. 正文2.1 复合式路面结构的概念复合式路面结构是指在道路表面上采用两种或两种以上不同性质的路面材料进行叠合或混合铺设,从而形成一种具有综合性能的路面结构。
复合式路面结构通常由基层、中间层和面层组成,每一层的材料和厚度均有设计要求,以确保整体结构的稳定性和耐久性。
复合式路面施工技术在公路施工中的应用探讨

【 关键 词】复合式路面 粘结层 施工技术
2 . 搅 拌 与 运 输 搅 拌 机 应 进 行 标 定 ,搅 拌 过 程 中 注 意 控 制 搅 拌
一
、
工 程 概 况
时间 。搅拌过程 中应对各种原材 料进 行准确称量 , 确保配合 比准确 。 搅拌机 的容量与运输设备的数量、
层应采用洒布的方式 ,并应有 效控制 其洒 布量。粘 层油洒布 过少,会影响层 间的结合 ,导致后期病害 。 粘层油洒布量过多 ,会使层 间存在 自由沥 青,容易
引 起 泛油 。
( 3 )模板准备 模板应采用稳 定不 易变形 的钢模,安装牢 固, 接缝处应进行填充 ,防止漏将 。模板和基层之间的 空隙应采用混凝土进行填 充,当模板嵌入基层 内部 时,应确定面层厚度是 否满足 要求。为方便拆模 , 采用肥皂水、废 机油或 脱模剂 涂抹模 板内部 。
进 行,防止 中断 ,避免停机 。混凝土应 充分振捣, 排出其 内部的空气和多余水分 ,保证 混凝 土的密实
度 。 局 部 摊 铺 机 摊 铺 不 均 匀处 , 可采 用 人 工 进 行 找 补 , 摊 铺 完 成 后 应 及 时 检 测 横 坡 度 、 宽度 和 平 整 度 等尺 寸 。 4 . 接 缝 施 工 与养 生 按 照 设 计 要 求 ,在 对 应 位 置 设置 横 缝 和 纵 缝 。 其施 工 技 术 要 求 与 普 通 水 泥 混 凝 土路 面 相 同 , 在 这 里 不 再赘 述 。
摊 铺 设备 的生 产 能 力相 协 调 。
某道路施工项 目拟 设计采 用复合式路面结构 , 为水 泥混凝土一 沥青混凝土 ( C C — A C )结构。路面结
旧路改造中复合式路面的运用

旧路改造中复合式路面的运用伴随中国的社会经济逐渐发展和科学技术提升,城市化的进程逐渐加快,造成现阶段交通压力慢慢增大,而且于一定程度之上对群众学习、生活以及工作产生严重作用,为可以对于交通压力进行有效缓解,需对于城市的旧路面实施相应改建,使得新路面可以与车流量较大应用需要想满足,从而推进当地国民的经济发展进步,所以,该篇文章对于旧路改造当中常见施工措施——复合式的路面运用工艺实施介绍和分析,进而对相应研究学者和道路改建的施工人员供给一定借鉴参考价值,从而使得现阶段城市的交通压力状况得到有效缓解,推进当地的国民经济得到进一步发展。
标签:旧路改造;复合式路面;运用现阶段,众多修建时间较长的混凝土路面出现严重损坏问题,路况比较恶化,所以面临修复的工作。
而常见城市的旧路面翻新工艺包含很多种类,像是:旧路面上加铺沥青砼、路面补强以及翻挖新建等,而其中城市的旧路面中加铺沥青砼比较常见,也是运用比较广泛道路改造工艺之一,这类复合式的路面构造存在实用性强以及成本低特征,所以,这类施工工艺获得广泛运用,该篇文章对于这类道路改建工艺实施相应介绍和分析,从而对施工工艺水平的进一步提升提供相应借鉴参考,从而进一步推进交通事业发展。
1、复合式路面复合式的路面为一类新型的路面设计观念,关键是把不一样路面性能和力学性能路面进行组合应用,能够有效运用着不一样路面优势与性能。
摆脱原始纯粹式的柔性路面、刚性路面以及半刚性路面等种类。
复合式的路面能够兼具两类路面优势,像是刚性基层与柔性面层结合应用的时候,即能够确保运用年限内的刚性路面承载力需要,还能够具有柔性路面的降低行车噪音、加大路面和车轮间粘结力优点,从而对于路面使用性能进行完善以及延长应用寿命。
下面介绍两类常见的复合式路面,而两类复合式的路面能够广泛运用在旧路改造项目当中,直接使旧路改造的造价成本下降,有效运用着原路面的材料而且能够比较快速的使得路面运用性能得到提升。
这两类复合式的路面分别为水泥混凝土和沥青混凝土复合路面,还有聚合物水泥混凝土复合式路面,下面是对于两类路面的优缺点实施评价分析。
复合式路面结构在重载交通道路中的应用

复合式路面结构在重载交通道路中的应用复合式路面结构是指两层或以上不同材料组成的路面结构,主要由上层面层和下层基层组成。
这种路面结构具有较好的路面稳定性、减小路面压力、降低路面噪音、提高路面耐久性等优点,因此在重载交通道路中得到了广泛的应用。
复合式路面结构的上层面层材料可通过改变沥青粘合剂、矿物骨料、添加剂的含量、种类、配比等进行调整,以达到不同的路面性能要求。
下层基层由碎石、砾石或水泥混凝土等硬质材料组成,能够有效承受车辆荷载并分散荷载压力。
一、减小路面压力重载车辆通行时,由于车轮荷载较大,在路面上形成强烈的压力,容易导致路面损坏和车辆运行不稳定。
采用复合式路面结构,上层面层材料采用高弹性模量的沥青混合料,可以在一定程度上减小路面压力,提高路面对车辆荷载的承载能力,延长路面使用寿命。
二、降低路面噪音砂浆路面和水泥路面等硬质路面材料容易产生噪音,而采用复合式路面结构,上层面层材料可以加入隔音材料,如聚乙烯丁基橡胶、橡胶粉等,有效减少路面噪音的产生。
尤其在城市的繁华商业区、住宅区等靠近居民区域的道路上,采用该结构的路面能够显著降低周边噪音污染的影响,提高居民的生活质量。
三、提高路面耐久性由于复合式路面结构中的上层面层材料具有较好的弹性模量、柔韧性和抗裂性等特点,能够有效抵抗路面开裂、车辙等问题的发生。
此外,上层材料的耐久性也较好,能够经受住不同气候条件、地区环境的考验,减少路面维修和重铺的需求,节约了路面养护成本。
复合式路面结构能够提高路面摩擦系数和抗滑性能,有利于车辆在滑冰、雨雪等恶劣路况下的行驶稳定性。
此外,该结构还可以分散车轮荷载,减小车辆制动距离,提高车辆的制动效果和行驶安全性。
综上所述,复合式路面结构在重载交通道路中得到广泛应用,并发挥了重要作用。
不仅提高了路面的稳定性、降低了路面噪音,还具有耐久性好、安全性高等优点,为交通事业的发展做出了贡献。
复合式路面结构在重载交通道路中的应用

复合式路面结构在重载交通道路中的应用在重载交通道路中,为了能够承载大型车辆的重量和提高道路的使用寿命,必须采用一种能够满足大负荷要求的路面结构。
复合式路面结构是一种比较理想的选择,其由多层不同材料组成,能够在不同层次上承担不同的力学作用,提高道路的承载能力和耐久性。
复合式路面结构主要由基层、底层、面层三个层次组成。
基层通常采用混凝土或沥青混凝土铺设,因其具有较高的抗压强度和较好的稳定性,可以给复合式路面提供坚固的基础支撑。
底层使用的是改性沥青混凝土或碎石等材料,其主要作用是承受车辆荷载并分散到基层,同时可以提供良好的排水性能,防止水分对路面结构的侵蚀。
面层通常采用耐磨层材料,如石砟、沥青等,以保证道路平整度和舒适性。
复合式路面结构还可以根据实际情况进行适当调整和改变,以满足不同道路的需求。
在高速公路等需求较高的地区,可以增加基层和底层的厚度,以提高路面的抗压能力和稳定性。
而在一些轻型车辆行驶频率较高的地区,可以减少基层和底层的厚度,以提高路面的舒适性和经济性。
相比于传统的单层路面结构,复合式路面结构具有以下优点:1. 承载能力强:由于采用了多层结构,每个层次都可以承担一部分荷载,从而提高了整体的承载能力。
2. 耐久性好:不同材料的组合和叠加使得路面结构更加耐久,能够经受长期的重型车辆行驶而不容易损坏。
3. 抗水湿和排水性能好:复合式路面结构中的底层材料具有良好的排水性能,能够迅速排走路面上的水分,防止水分对路面结构的影响。
4. 维护成本低:由于复合式路面结构更加坚固和耐用,其维护成本相对较低,可以降低道路维护和修复的频率和费用。
复合式路面结构在重载交通道路中的应用具有重要的意义,能够提高道路的使用寿命和承载能力,减少维护和修复的成本。
随着交通运输业的不断发展,复合式路面结构的应用将会越来越广泛,为交通道路的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合式路面结构特点及应用1、复合式路面1.1无论从经济、技术、使用性能方面都优于单一柔性或刚性路面结构。
规范定义:面层由两层不同材料类型和力学性质的结构层复合而成的路面1.2种类:1)水泥复合式路面:碾压砼—普通砼(RCC—PCC)、贫砼—普通砼(EPCC—PCC)、2)水泥混凝土加铺沥青混凝土复合路面:碾压混凝土—沥青面层(RCC—AC)、普通混凝土—沥青面层(PCC—AC)、钢筋混凝土—沥青面层(JRC—AC)、连续配筋混凝土—沥青面层(CRC—AC)。
1.3 水泥混凝土——沥青混凝土(CC-AC)复合路面特点:1)结构组成特点在水泥混凝土路面上加铺沥青层,即修筑水泥混凝土与沥青混凝土复合式路面结构,不仅可减少沥青用量(与柔性路面相比),而且可弥补刚性路面的不足(行车舒适性差、养护难度大等)。
路面整体刚度大,稳定性好,行驶舒适性好。
路面结构组成为:基层+水泥混凝土板+界面层+沥青面层。
沥青路面界面层(连接层)水泥砼路面弹性模量----1200----30000----5000基层界面层的材料通常采用的是改性沥青同步碎石或砂粒式沥青混凝土等,厚度5~20毫米,主要起到粘结和防水和防裂作用。
界面层材料模量小,具有高粘度,弹性恢复性能好,能够很好的吸收水泥混凝土板由于形变而产生的应力,能够有效的抑制反射裂缝的传播。
刚柔性路面最大的特点是组成面层结构的材料的模量不一样,刚度相差很大。
水泥混凝土板具有强度高、刚度大、温度敏感性小,材料模量相对比较稳定,属脆性材料。
沥青面层材料模量小,温度敏感性大,材料模量随温度变化,呈现明显的黏-弹-塑性。
正是由于材料模量的差异较大,从而导致刚柔性路面在车辆荷载及温度应力作用下,呈现明显的变形不协调性(模量——受力状态下应力和应变之比;弹性模量——在弹性阶段应力和应变之比,符合胡克定律)刚度——抵抗弹性变形的能力;劲度——抵抗弹性位移的能力强度——经受外力或其它作用时,抵抗破坏的能力;黏性——流体在运动状态中抵抗剪切变形速率能力的性质;弹性——受外力发生形态变化,除去作用力后能恢复原来状态的性质;塑性——给定荷载下,材料发生永久变形的特性。
)2)力学行为特点。
路面结构的组成和各组成材料的力学性质决定了路面的力学行为特点。
刚柔性路面的面层材料由刚性的水泥混凝土板和柔性的沥青混合料组成,其受力呈现以下几个方面的特点:(1)当面层沥青混合料厚度较小时,路面呈现出刚性路面特点,水泥混凝土板承受较大的竖向应力和水平应力。
此时的沥青面层主要是起到改善路面行驶的舒适性,减小行驶噪音等功能性作用。
沥青面层薄时的应力分布沥青面层厚时的应力分布(2)当沥青面层较厚时,此时沥青面层具有明显的抗剪效应,也就是说,沥青面层承受了主要的水平应力。
同时,对竖向应力也起到了很好的扩散作用。
(3)在刚柔性复合路面结构中,无论面层沥青混合料厚度如何,刚柔性界面层所受到的剪应力都是不能忽视的。
另一方面,由于界面层处在刚柔过度的特殊位置,存在许多的不利的受力环境。
连接层的应力分布(4)除厚度外,面层混合料模量对结构的受力也有较大影响。
沥青混合料的级配、沥青的劲度等直接影响其扩散荷载的能力。
2、沥青混凝土路面几种结构形态的应力特点2.1 沥青路面路用性能(1)足够的力学强度,能承受车辆荷载施加到路面上的各种作用力;(2)一定的弹塑性变形能力,能承受应变而不破坏;(3)与汽车轮胎附着力较好,可保证行车安全;(4)有高度的减震性,可使汽车快速行驶,平稳而低噪音;(5)不扬尘,且容易清扫和冲洗;(6)维修工作比较简单,且沥青路面可再生利用。
2.2 沥青路面不同于其他路面的使用性能1)沥青路面高温性能沥青路面高温性能习惯上是指沥青混合料在荷载作用下抵抗永久变形的能力。
稳定性不足,一般出现在高温、低加荷速率以及抗剪切能力不足时,也既沥青路面的劲度较低情况下(劲度——一定温度条件下的应力)对于渠化交通的沥青路面,高温稳定性问题主要表现为车辙;推移、拥包、波浪等类损坏,主要是由于沥青路面在水平荷载作用下抗剪强度不足所引起的。
2)沥青路面的低温稳定性沥青路面在低温环境下,失去柔性,变现出一定程度的脆性,并出现各种形式的低温裂缝。
路面上出现的各种裂缝,包括纵向裂缝、横向裂缝、龟裂、网裂等多与沥青路面低温下的脆性有关。
从国内路面裂缝的调查结果可知,由于路面设计不周或施工原因,而导致结构层本身强度不足,不能适应日益增长的交通量及轴载作用而产生的开裂,最初一般表现为纵向开裂,然后发展为网裂,这一类由荷载引起的裂缝,在中、低级道路及一些超载严重的高等级道路车道轮迹处常见。
对于大多数高等级公路来说,由于普遍采用了半刚性基层,有足够的强度,因此这一类荷载裂缝并不是主要的。
相反另一类裂缝即非荷载裂缝(低温裂缝)则普遍存在。
非荷载裂缝大部分为横向裂缝,主要为:①由于降温及温度循环反复作用,在离去路面产生的温度收缩裂缝;②由于半刚性基层收缩开裂产生的反射裂缝。
但是许多裂缝是多方面原因共同作用而产生的。
沥青路面的低温性能与沥青混凝土的低温变形能力有关,在很大程度上取决于沥青材料的低温性质、沥青与矿料的黏结强度、级级配类型以及沥青混合料的均匀性。
从低温抗裂性能要求出发,沥青混合料在低温时应具有良好的低温松弛性能,有较低的劲度和较大的变形适应能力,在降温收缩过程中不产生大的应力积聚,在行车荷载和其他因素的反复作用下不致产生疲劳开裂。
3)沥青路面水稳定性在沥青混合料和沥青结构内部有水的情况下,沥青路面会发生水损害,而水损害是沥青路面的主要病害之一。
行驶在沥青路面的汽车车轮动载荷载,在水分或冻融循环的综合作用下,使进入路面空隙中的水不断产生动水压力,从而在形成的真空负压抽吸的反复循环作用下,水分逐渐渗入沥青与集料的界面上,使沥青黏附性降低,并逐渐散失黏结力,沥青膜从石料表面脱落(剥离),沥青混合料掉粒、松散,继而形成沥青路面的松散、剥落和坑槽等损坏现象。
除了荷载及水分供给条件等外在因素外,沥青混合料的抗水损害能力时决定路面水稳定性的根本性因素。
它主要取决于矿料的性质,沥青与矿料之间相互作用的性质,沥青混合料的空隙率,以及沥青膜的厚度等。
4) 沥青路面疲劳特性随着公路交通量日益增长,汽车轴重不断增大,汽车对路面的破坏作用越来越明显,路面试用期间经受车轮荷载的反复作用,长期处于应力应变交叠变化状态,致使路面结构强度逐渐下降。
当荷载重复作用超过一定次数以后,在荷载作用下路面内产生的应力就会超过强度下降后的结构抗力,使路面出现裂纹,产生疲劳破坏。
5)沥青路面老化性能沥青材料在沥青混合料的拌合、摊铺、碾压过程及以后的沥青路面使用过程中都存在老化问题。
老化过程一般分为两个阶段,即施工过程中的热老化和路面使用过程中的长期老化(氧化)。
沥青混合料在拌合过程中的老化程度主要与温度有关,同时与沥青升温、存储的时间,脱水搅拌的程度及光、氧等因素密切有关外。
也与沥青在混合料中所处的形态有关,如混合料的空隙率、沥青用量等。
6)沥青路面抗滑性能沥青路面应有足够的抗滑能力,以保证在路面潮湿是,车辆能够高速安全行驶,而且在外界因素的作用下其抗滑能力不致很快降低。
沥青路面的抗滑性能取决于沥青路面的微观构造和宏观构造,而沥青混合料在很大程度上决定着沥青路面的特征,良好的路面构造能提高潮湿状态下路面—车轮间的排水能力,减少容易引起滑溜事故的弹性水动力润滑性摩擦的发生。
粗糙度与矿料的微表面性质、混合料的级配组成,以及沥青用量等因素有关。
7)沥青路面平整度路面表面平整度是影响行车安全、行车舒适性以及运输效益的重要使用性能。
路面不平整会引起车辆振动,从而对车辆磨耗、燃油消耗、行车舒适、路面损坏和交通安全等会产生直接的影响。
因此,平整度是度量路面使用性能的一项重要指标。
优良的路面平整度,要依靠优良的施工装备、精细的施工工艺、严格的施工质量控制以及经常和及时的养护来保证。
同时路面的平整度砼整个路面的结构,路基顶面的强度和抗变形能力,结构层所用材料的强度、抗变形能力以及均匀性有很大关系。
强度和抗变形能力差的路基路面结构和面层混合料,经不起车轮荷载的反复作用,极易出现沉陷、车辙和推挤破坏,从而形成不平整的路面。
8) 沥青路面防渗能力当沥青路面的防渗能力较差使,不仅影响沥青面层本身的水稳定性,而且还会影响到基层的稳定性。
停留在基层表层的水将使基层表面材料产生唧浆、软化,并导致承载能力降低。
沥青路面的抗渗能力主要取决于沥青混合料的水密性,沥青混合料的空隙率越大,其抗渗能力就越差。
为了防止水分渗入沥青路面结构内部,路面结构设计时,沥青面层至少有一层密集配沥青混凝土,其沥青混合料的现场空隙率应控制在8%以下,也可根据需要作封层结构。
2.3 沥青路面分类(6)按混合料的结构组成特点划分沥青混合料是由粗集料、细集料、矿粉和沥青以及外加剂所组成的一种复合材料。
粗集料分布在沥青与细集料形成的沥青胶砂中,细集料又分布在沥青与矿粉构成的沥青胶浆中,形成具有一定内摩阻力和黏结力的多级网络结构。
由于各组成材料用量比例不同,压实后沥青混合料内部矿料矿料分布状态、剩余空隙率也呈现出不同的特征,形成不同的组成结构,而具有不同组成结构特征的沥青混合料在使用时则表现出不同的性能。
按照沥青混合料的结构组成特点,将沥青混合料分为悬浮密实结构、骨架空隙结构和骨架密实结构。
①悬浮密实结构:配制的沥青混合料中,矿料颗粒由大到小连续存在,粒径较大的颗粒被较小一档的颗粒挤开,不能直接接触形成嵌挤骨架结构,彼此分离悬浮于较小颗粒和沥青胶浆之间,而较小矿料与沥青胶浆较为密实,形成了所谓悬浮式密实结构。
我国传统的AC-I就是典型的悬浮式密实结构。
悬浮式密实结构的沥青混合料经压实后,密实度较大,水稳定性、低温抗裂性和耐久性较好,是使用较为广泛的沥青混合料。
但这种沥青混合料结构强度受沥青性质及其状态影响较大,在高温条件使用时,由于沥青黏度降低,可能导致沥青混合料强度和稳定性下降。
②骨架空隙结构:当采用连续式开级配矿料与沥青组成沥青混合料时,较粗的集料颗粒彼此接触,形成互相嵌挤的骨架,但较细的粒料数量较少,不足以充填骨架空隙,以至压实后混合料中空隙较大,形成所谓的骨架空隙结构。
沥青碎石混合料(AM)和开级配磨耗层沥青混合料(OGFC)是典型的骨架空隙结构。
在形成骨架空隙结构的沥青混合料中,粗集料之间的嵌挤力对沥青混合料的强度和稳定性起着重要作用,结构强度受沥青性质和物理状态的影响较小,因而高温稳定性较好。
但由于压实后的沥青空隙率大,空气和水分等容易进入沥青混合料内部,引发沥青老化或将沥青从表面剥落,因此这种结构沥青混合料的耐久性值得关注。
通过百分率三种类型矿物质混合料级配曲线连续型密集配;连续型开级配;间断型密集配③骨架密实结构当采用间断型密集配矿料时,在沥青混合料中既有足够数量的粗集料形成骨架,又根据粗集料骨架空隙率的大小加入了足够的细集料和沥青胶浆,使之填满骨架空隙,形成较高密实度的骨架结构,这种结构兼具上述两种结构的优点,是一种较为理想的结构类型。