独立性检验的思想方法
1.2独立性检验的基本思想

独立性检验的基本思想及其初步应用
在统计学中, 在统计学中,独立性检验就是检验两个分类变量是 否有关系的一种统计方法。 否有关系的一种统计方法。 所谓“分类变量” 就是指个体所属的类别不同, 所谓“分类变量”,就是指个体所属的类别不同,也 称为属性变量或定型变量。 称为属性变量或定型变量。 在日常生活中, 在日常生活中,我们常常关心两个分类变量之间是 否有关系,例如吸烟是否与患肺癌有关系? 否有关系,例如吸烟是否与患肺癌有关系?性别是否对 于喜欢数学课程有影响等等。 于喜欢数学课程有影响等等。
在吸烟与患肺病这两个分类变量的计算中,下列说法正确 在吸烟与患肺病这两个分类变量的计算中, 的是( 的是(
c
)
A、若K的观测值为 、 的观测值为k=6.635,我们有 我们有99%的把握认为吸烟与患 的观测值为 我们有 的把握认为吸烟与患 肺病有关系,那么在 个吸烟的人中必有99个患肺病 肺病有关系,那么在100个吸烟的人中必有 个患肺病 个吸烟的人中必有 B、从独立性检验可知有99%的把握认为吸烟与患肺病有关 、从独立性检验可知有 的把握认为吸烟与患肺病有关 系时,我们说某人吸烟,那么他有99%的可能患肺病 系时,我们说某人吸烟,那么他有 的可能患肺病 C、若从统计量中求出有95%的把握认为吸烟与患肺病有关 、若从统计量中求出有 的把握认为吸烟与患肺病有关 系,是指有5%的可能性使得推理出现错误 是指有 的可能性使得推理出现错误 D、以上三种说法都不对 、
列联表的条形图: 90% 列联表的条形图: 100%
80% 70% 60% 50% 40% 30% 20% 10% 0%
优秀 不优秀
由图及表直观判断,好像“成绩优秀与班级有关系”,由表中 由图及表直观判断,好像“成绩优秀与班级有关系” 数据计算, 数据计算,得 K 2 的观察值为 k ≈ 0.653 > 0.455。由教科书中表 11, 1-11,得
独立性检验思想及应用

独立性检验思想及应用独立性检验(Independence Test)是统计学中用于研究两个或多个分类变量之间是否存在关联的方法。
它基于假设显著性检验的思想,通过计算观察值与期望值之间的差异程度,来判断两个变量是否独立。
在实际应用中,独立性检验经常用于确定两个变量是否相互影响或存在某种联系,以及在实验设计、社会科学研究、生物学研究等领域中的数据分析。
独立性检验的基本思想是基于对观察样本的期望值进行比较,来推断两个或多个分类变量是否存在关联。
在进行独立性检验时,常用的统计方法包括卡方检验(Chi-square Test)、Fisher精确检验(Fisher's Exact Test)和logistic回归分析(Logistic Regression)等。
卡方检验是独立性检验中最常用的方法之一。
它基于卡方统计量的分布特性,通过计算观测频数与期望频数之间的差异,来判断两个或多个分类变量之间的关联性。
卡方检验的原理是比较观测频数与期望频数之间的差异是否显著,若差异显著,则表明两个变量之间存在关联。
Fisher精确检验是一种非参数的检验方法,用于较小样本量且存在预期频数很低的情况。
它通过穷举计算所有可能的观测结果,来计算出在给定的边际总和下,观测频数与期望频数之差异的概率。
Fisher精确检验在小样本研究中经常被使用,特别是用于研究罕见事件的相关性。
logistic回归分析是一种广义线性模型,可用于分析二分类变量的关联性。
它将自变量的线性组合通过logistic函数转换为估计概率,从而实现对二分类变量之间的关系进行研究。
logistic回归分析在独立性检验领域中常用的方法包括二分类变量的logistic回归、多分类变量的logistic回归和多项式logistic回归等。
独立性检验在很多领域都有广泛的应用。
在医学研究中,独立性检验可以用于分析某种疾病的发病率与多个危险因素之间的关联性,以及评估治疗方法对疾病预后的影响;在社会科学研究中,独立性检验可以用于分析社会经济因素与人群特征之间的关联,以及评估政策改革对社会发展的影响;在生物学研究中,独立性检验可以用于分析基因型与表型之间的关联,以及评估不同基因型对遗传疾病的易感性等。
1.2独立性检验的基本思想及其初步应用

试用图形判断服用药和患病之间是否有关系?
解析:相应的等高条形图如下:
从图形可以看出,服用药的样本中患病的比例明显低于 没有服用药的样本中患病的比例,因此可以认为:服用药和 患病之间有关系.
独立性检验方法——K2公式
在调查的480名男士中有38名患有色盲,520名女 士中有6名患有色盲,能否在犯错误的概率不超过0.001的前 提下认为性别与患色盲有关系? 分析:
4.下面是一个2×2列联表: x1 x2 总计 y1 a 2 b y2 21 25 46 总计 73 27 100
则表中a、b的值分别为( C ) A.94、96 C.52、54 B.52、50 D.54、52
5.性别与身高列联表如下: 男 女 总计 高(165 cm以上) 37 6 43 矮(165 cm以下) 4 13 17 总计 41 19 60
作出2×2列联表 → 计算随机变量K2的值 → 对照临界值作出结论 解析:根据题目所给的数据作出如下的列联表:
色盲 不色盲 总计
男
女 总计
38
6 44
442
514 956
480
520 1 000
根据列联表中所给的数据可以得: a=38,b=442,c=6,d=514,a+b=480,c+d= 520,a+c=44,b+d=956,n=1 000.
3.独立性检验. 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验.
nad-bc2 公式 K2=_____________________ a+bc+da+cb+d ,其中n=______________. a+b+c+d
①根据实际问题的需要确定容许推断“两个分类变量有 临界值 k0 .② 关系”犯错误概率的上界α,然后查表确定 ________ k________ ≥k0 利用公式计算随机变量K2的 ________ , 观测值 k .③如果 具体 就推断“X与Y有关系”,这种推断犯错误的概率不超过 步骤 α;否则,就认为在犯错误的概率不超过α的前提下不能 推断“X与Y有关系”,或者在样本数据中没有发现足够 证据支持结论“X与Y有关系”.
1.2独立性检验的基本思想及其初步应用课件人教新课标

类型二 由K2进行独立性检验 例2 对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病 人进行3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下 表所示.
心脏搭桥手术 血管清障手术
总计
又发作过心脏病 39 29 68
未发作过心脏病 总计
157
196
167
196
324
392
试根据上述数据比较这两种手术对病人又发作过心脏病的影响有没有差别. 解 假设病人又发作过心脏病与做过心脏搭桥手术还是血管清障手术没 有关系,由表中数据得a=39,b=157,c=29,d=167,a+b=196,c +d=196,a+c=68,b+d=324,n=392, 由公式得K2的观测值
解答
达标检测
1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下列
联表:
喜欢程度
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
nad-bc2 由 K2=a+bc+da+cb+d算得,
110×40×30-20×202 k= 60×50×60×50 ≈7.8,
12345
附表:
12345
解析 答案
5.“全国文明城市”称号是最有价值的城市品牌,某市为创建第五届“全 国文明城市”,开展了“创建文明城市人人有责”活动.为了了解哪些人 更关注“创城”活动,随机抽取了年龄在10~70岁之间的100人进行调 查,并按年龄绘制如下频数散布表.
年龄(岁) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
独立性检验基本思想及应用

独立性检验基本思想及应用独立性检验是一种用于确定两个变量之间是否存在关联的统计方法。
其基本思想是通过比较观察到的数据与预期的数据之间的差异来推断这两个变量之间的关系。
独立性检验的应用非常广泛。
在社会科学中,独立性检验常被用于研究两个分类变量之间是否存在关联,例如性别和职业、教育水平和政治倾向等。
在医学研究中,独立性检验也可以用来检查某种治疗方法是否与疾病的发展有关,以及风险因素和某种疾病之间的关系。
此外,独立性检验还被广泛应用于市场调查、品牌定位以及质量控制等领域。
独立性检验的基本思想是建立一个零假设(H0)和一个备择假设(H1)。
零假设认为两个变量是独立的,即它们之间没有关联;备择假设则认为两个变量之间存在关联。
独立性检验的步骤可以分为以下几步:1. 收集数据:需要收集两个分类变量的数据,例如通过问卷调查或观察获得数据。
2. 建立列联表:将数据整理成列联表形式,列联表是一种用于描述两个或多个分类变量之间关系的矩阵。
表格的行表示一个变量的不同类别,列表示另一个变量的不同类别,表格中的每个单元格表示两个类别的交叉数量。
3. 计算期望频数:在独立性检验中,我们假设两个变量是独立的,因此可以基于各类别的边际总数以及样本总数来计算期望频数。
期望频数是在两个变量独立情况下,各个类别的交叉数量。
4. 计算卡方统计量:卡方统计量用于衡量观察到的数据与期望数据之间的差异程度。
计算公式为:χ2 = Σ((观察频数- 期望频数)^2 / 期望频数)。
其中,Σ表示对所有单元格进行求和。
5. 设定显著性水平:显著性水平α为决策的临界点,用于决定是否拒绝零假设。
通常,α的常见选择为0.05或0.01。
6. 判断和解释结果:根据计算出的卡方统计量与临界值进行比较,如果计算出的卡方值大于临界值,拒绝零假设,认为两个变量之间存在关联;反之,接受零假设,认为两个变量是独立的。
独立性检验的结果常常以卡方统计量和p值的形式呈现。
p值是在零假设成立的条件下,观察到的数据与期望数据之间差异的概率。
独立性检验的基本思想及其初步应用教学设计-【通用,经典教学资料】

3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
1.2独立性检验的基本思想及其初步应用课件人教新课标

因此,
|ad-bc|越小,说明吸烟与患肺癌之间关系越弱; |ad-bc|越大,说明吸烟与患肺癌之间关系越强.
为了使不同样本容量的数据有统一的评判 标准,基于上述分析,我们构造一个随机变量:
K2 =
n(ad - bc)n
(a + b)(c + d)(a + c)(b + d)
其中n=a+b+c+d为样本容量.
48 121 208 223 193 165 42
(I)将各组的频率填入表中;
(II)根据上述统计结果,计算灯管使用寿命不足 1500小时的频率.
解答
分组
频数 频率
[500,9 [900, 00) 1100)
48 121 0.048 0.121
[1100, 1300)
208 0.208
[1300, 1500)
P(k2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83
(2)利用K2公式,计算随机变量K2的观测值k.
(3)如果k>k0,就推断“X与Y有关系”,这 种推断犯错误的概率不超过a;否则,就认为在犯 错误的概率不超过a的前提下不能推断“X与Y有关 系”.
k=
16.373 > 6.635
3891048 665 772
所以有99%的把握认为”秃顶与患心脏病有关”.
解答
根据题目所得数据得到列联表:
秃顶 不秃顶
总计
患心脏病 214 451 665
人教版高中选修2-33.2独立性检验的基本思想及其初步课程设计

人教版高中选修2-33.2独立性检验的基本思想及其初步课程设计一、独立性检验概述在概率论和数理统计中,独立性检验是指检验两个离散随机变量之间是否独立的方法。
在实际问题中,常常需要研究两个随机变量之间的关系,是否存在关联。
例如,对于一个大学招生的案例,一个人的高中成绩和大学录取情况可以是两个随机变量,我们需要使用独立性检验来判断这两个随机变量是否有关联。
二、独立性检验方法独立性检验方法有很多种,其中最常用的是卡方检验。
2.1 卡方检验卡方检验是一种统计检验方法,用于检验分类资料之间的独立性。
它的基本思想是,将观察结果与理论期望作比较,确定两者之间是否有显著差异来判断两个随机变量之间是否独立。
卡方检验的基本步骤包括:1.假设零假设为两个随机变量独立,对这个假设建立尽可能充分的理论模型。
2.将实际观察值与理论值进行比较,计算出统计量。
3.利用卡方分布表来获得临界值,以判断是否拒绝零假设。
2.2 其他方法在实际应用中,除了卡方检验,还有很多独立性检验的方法。
例如,t检验中的独立样本t检验,ANOVA中的多元卡方检验等等。
这些方法在不同的领域和场合有不同的应用。
三、课程设计建议针对高中选修2-33.2独立性检验,可以设计以下课程教学内容:3.1 概念讲解在课程开头,可以先为学生介绍独立性检验的基本概念,包括随机变量、独立性、检验方法等。
这部分内容可以通过举例子、讲解理论、使用模拟仿真等方式进行,让学生对独立性检验有一个初步的认识。
3.2 卡方检验的具体操作在学生掌握了基本概念之后,可以进一步教授卡方检验的具体操作方法。
在讲解过程中,教师可采取课堂讲解方式,为学生演示计算过程和判断方法。
并且可以为学生演示如何使用统计软件完成卡方检验。
同时,为了让学生更好的掌握卡方检验的操作,可以设计一些实际案例,让学生进行计算和判断实验。
3.3 讨论与总结在课程结束时,可以组织学生进行小组讨论和总结。
讨论的主题可以是卡方检验的应用与展望,或是针对课程内容的总结与反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立性检验的思想方法
独立性检验实际上是检验两个分类变量是否相关,相关的程度有多大.在进行独位性检验时,应注意给定的可靠性的要求,不同的可靠性要求可能会导致得出完全不同的结论.在断言正确时很少发生的结果若发生了,就是断言不正确的证据.一般地,对分类变量的相关
关系的判断方法有:2×2列联表、二维条形图、三维柱形图和利用随机变量K 2来确定,与表
格相比,三维柱形图和二维条形图能够更直观地反映出相关数据的总体状况.并能从中清晰地看出各个频数的相对大小关系.三维柱形图和二维条形图因为所表示的关系只是一种粗略的估计,不能够精确地反应有关的两个分类变量的可信程度,因而不常用,并且在实际问题
的解决中也较为烦琐,故在判断两个分类变量的关系的可靠性时,一般利用随机变量K 2来
确定的.下面举例说明.
一.二维条形图
在二维条形图中,可以估计满足条件X=x 1的个体中具有Y= y 1的个体所占的比例b a a +,也可以估计满足条件X=x 2的个体中具有Y= y 2的个体所占的比例d c c +,两个比例的值相差越大,H 1成立的可能性就越大.
例 1.有甲、乙两个班级进行一门课程的考试,按照学生的考试成绩优秀和不优秀统计人数后,得到下面的列联表:
请画出列联表的二维条形图,并通过图形判断成绩与班级是否有关,利用列联表的独立性假设检验估计判断成绩是否优秀与所在班级是否有关.
分析:本题应首先作出调查数据的列联表,再根据列联表画出二维条形图或三维柱形图,并进行分析,最后利用独立性检验作出判断.
解:根据列联表的数据,作出二维条形图,如图.
从条形图中可以看出,甲班学生中优秀的人数的比例数为
4510,乙班学生中优秀的人数的比例为45
7,二者差别不是很大,因此我们认为成绩是否优秀与所在的班级没有关系,用独立性假设检验来判断,由题意知a =10,b=35,c=7,d=38,a+b=45,c+d=45,a+c=17,b+d=73,n=90.
代入公式
))()()(()(2
2
d c c a d b b a bc ad n K ++++-=
.
65.073174545)3573810(902
≈⨯⨯⨯⨯-⨯⨯=k
由于0.65<2.706,所以我们没有充足的理由认为成绩优秀与班级有关系.
点拨:在列联表中注意事件的对应关系及有关值的确定,避免混乱.利用图形来判断两个变量之间是否有关系,可以画出三维柱形图,也可以画出二维条形图,仅从图形上只可以作两个分类变量关系的粗略的估计,可以结合所求的数值来进行比较.
练习:
1.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关,你所得到的结论在什么范围内有效?
解:根据题目所给的数据作出如下的列联表:
图形法:根据列联表作出相应的二维条形图,如图
从二维条形图来看,在男人中患色盲的比例为480
38,在女人中患色盲的比例为5206.又48038>5206,其差值为|48038-520
6|≈0.068,差值较大,因而我们可认为性别与患色盲是有关的.
根据列联表中所给的数据可以有a =38,b=442,c=6,d=514,a+b =480,c+d =520,a+c =44,b+d=956,n=1000,代入公式
,))()()(()(2
2
d c d b d a c a bc ad n K ++++-= 得14.27956
44520480)442651438(10002
≈⨯⨯⨯⨯-⨯⨯=k ,由于K ≈27.14 4>10.828, 所以我们有99.9%的把握认为性别与患色盲有关系.
二. 三维柱形图
在三维柱形图中,主对角线上两个柱形高度的乘积ad 与副对角线上的两个柱形高度的乘积bc 相差越大,H 1成立的可能性就越大,
例2.为考察某种药物预防疾病的效果,进行动物试验,得到如下的列联表:
试用三维柱形图分析服用药和患病之间是否有关系.
分析:若要推断的论述为H0:X与Y有关系,可以用三维柱形图来粗略地判断两个分类变量X与Y是否有关系.
解:根据列联表所给的数据作出三维柱形图如图,
主对角线上两个柱形的高度a与d的乘积ad=10×30=300,与副对角线上两个柱形高度的乘积bc=20×45=900相差很大,因而服用药与未患病之间有关的程度很大.点拨:在三维柱形图中,应对主对角线上两个柱形的高度的乘积ad与副对角线上两个柱形高度的乘积bc作比较,两个乘积相差越大,H0成立的可能性就越大.练习:
2.研究人员选取170名青年大学生的样本,对他们进行一项心理测验,发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定回答的有22名,否定回答的有38名;男生110名在相同的题目上作肯定回答的有22名,否定回答的有88名.问:性别与态度之间是否存在某种关系?分别用图形和独立性检验的方法判断.
解:根据题目所给数据建立如下列联表:
性别与态度的关系列联表
相应的三维柱形图如图,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“性别与态度有关”.
根据列联表中的数据得到
.024.5622.5126
4460110)88223822(1702
>≈⨯⨯⨯⨯-⨯⨯=k 所以有97.5%的把握认为性别与态度有关.
三. 利用随机变量K 2来确定
解独立性检验问题的基本步骤是:①找出相关数据,作列联表;②求统计量K 2的观测
值;③判断可能性,注意与临界值作比较,得出事件有关的可能性大小.
例 3.运动员参加比赛前往往做热身运动,下表是一体育运动的研究机构通过考察160位专业运动员运动前是否做热身运动而得到的数据,试问:由此数据,你认为运动员受伤与不做热身运动有关吗?
解:由))()()(()(2
2
d b d c b a c a bc ad n K ++++-= .94.3896
646595)45762019(1602
≈⨯⨯⨯⨯-⨯⨯=k 因为38.974>10.828,所以有99.9%的把握认为运动员受伤与不做热身运动有关. 点拨:独立性检验是用来考查两个分类变量是否具有相关关系,并且能较精确地给出这
种判断的可靠程度的一种统计方法.利用这一方法,可以直接用K 2的观测值解决实际问题.这
里需特别说明的是:K 2与k 的关系并不是k=2K ,K 2
是一个随机变量,它在a,b,c,d 取不同的值时,K 2可能不同;而k 是K 2
的观测值,是取定一组数a 、b 、c 、d 后的一个确定的值.
练习:
3.某些行为在运动员的比赛之中往往被赋予很强的神秘色彩,如有一种说法认为,在进入某乒乓球场比赛时先迈入左脚的运动员就会赢得比赛的胜利.某记者为此追踪了某著名乒乓球运动员在该球场中的308场比赛.获得数据如下表:
据此资料,你能得出什么结论? 解:由))()()(()(2
2
d c d b b a c a bc ad n K ++++-= , 得.502.146
262103205)278419178(3082
≈⨯⨯⨯⨯-⨯⨯=k 因为1.502<2.706,所以我们认为先迈进哪只脚跟比赛的胜负是无关的.
在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能错误,这是数学中的统计思维与确定性思维差异的反映,但我们可以利用统计分析的结果去预测实际问题的结果.。