独立性检验基本思想及其初步应用说课稿

合集下载

独立性检验的基本思想及其初步应用说课稿 教案 教学设计

独立性检验的基本思想及其初步应用说课稿 教案 教学设计

独立性检验的基本思想及其初步应用教材整理 独立性检验 1.卡方统计量 χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2,用χ2的大小可以决定是否拒绝原来的统计假设H 0.如果算出的χ2值较大,就拒绝H 0,也就是拒绝“事件A 与B 无关”,从而就认为它们是有关的了.2.两个临界值(1)当根据具体的数据算出的χ2>3.841时,有95%的把握说事件A 与B 有关; (2)当χ2>6.635时,有99%的把握说事件A 与B 有关,当χ2≤3.841时,认为事件A 与B 是无关的.1.判断(正确的打“√”,错误的打“×”)(1)分类变量中的变量与函数中的变量是同一概念.(×) (2)独立性检验的方法就是反证法.(×)(3)独立性检验中可通过统计表从数据上说明两分类变量的相关性的大小.(√) 2.考察棉花种子经过处理与生病之间的关系,得到下表中的数据:种子处理 种子未处理合计 得病 32 101 133 不得病 61 213 274 合计93314407A.种子是否经过处理与是否生病有关B.种子是否经过处理与是否生病无关C.种子是否经过处理决定是否生病D.有90%的把握认为种子经过处理与生病有关 【解析】χ2=407×(32×213-61×101)293×314×133×274≈0.164<0.455,即没有充足的理由认为种子是否经过处理跟生病有关. 【答案】 B3.若由一个2×2列联表中的数据计算得χ2=4.013,那么有__________的把握认为两个变量之间有关系.【解析】查阅χ2表知有95%的把握认为两个变量之间有关系.【答案】95%用2×2列联表分析两变量间的关系在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人的饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用n11n1+与n21n2+判断二者是否有关系.【自主解答】饮食习惯与年龄2×2列联表如下:年龄在六十岁以上年龄在六十岁以下合计饮食以蔬菜为主432164饮食以肉类为主273360合计7054124 将表中数据代入公式得n11 n1+=4364≈0.67,n21 n2+=2760=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,注意应该是4行4列,计算时要准确无误.2.作2×2列联表时,关键是对涉及的变量分清类别.[再练一题]1.上例中条件不变,尝试用|n11n22-n12n21|的大小判断饮食习惯与年龄是否有关.【解】将本例2×2列联表中的数据代入可得|n11n22-n12n21|=|43×33-21×27|=852.相差较大,可在某种程度上认为饮食习惯与年龄有关系.由χ2进行独立性检验某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分也为优秀的人数如下表所示,则我们能否在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学优秀有关系?物理优秀 化学优秀 总分优秀 数学优秀 228 225 267 数学非优秀14315699注:该年级此次考试中数学成绩优秀的有360人,非优秀的有880人.【精彩点拨】 首先分别列出数学成绩与物理、化学、总分的2×2列联表,再正确计算χ2的观测值,然后由χ2的值作出判断.【自主解答】 (1)根据已知数据列出数学与物理优秀的2×2列联表如下:物理优秀 物理非优秀合计 数学优秀 228 b 360 数学非优秀 143 d 880 合计371b +d1 240∴b =360-228=132,d =880-143=737,b +d =132+737=869. 代入公式可得χ2≈270.114.(2)按照上述方法列出数学与化学优秀的2×2列联表如下:化学优秀 化学非优秀合计 数学优秀 225 135 360 数学非优秀 156 724 880 合计3818591 240代入公式可得χ2≈240.611.综上,由于χ2的观测值都大于10.828,因此说明都能在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学优秀有关系.1.独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足n 11n 22-n 12n 21≈0,因此|n 11n 22-n 12n 21|越小,关系越弱;|n 11n 22-n 12n 21|越大,关系越强.2.独立性检验的具体做法(1)根据实际问题的需要确定允许推断“事件A 与B 有关系”犯错误的概率的上界α,然后查表确定临界值k 0.(2)利用公式χ2=n (n 11n 22-n 12n 221)n 1+n 2+n +1n +2计算随机变量χ2.(3)如果χ2≥k 0,推断“X 与Y 有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够的证据支持结论“X 与Y 有关系”.[再练一题]2.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人的调查结果如下:患胃病 未患胃病 合计 生活不规律 60 260 320 生活有规律 20 200 220 合计80460540根据以上数据判断40岁以上的人患胃病与生活规律有关吗? 【解】 由公式得χ2=540(60×200-260×20)2320×220×80×460≈9.638.∵9.638>6.635,∴有99%的把握说40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.独立性检验的综合应用探究1 利用χ2进行独立性检验,估计值的准确度与样本容量有关吗?【提示】 利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.探究2 在χ2运算后,得到χ2的值为29.78,在判断变量相关时,P (χ2≥6.635)≈0.01和P (χ2≥7.879)≈0.005,哪种说法是正确的?【提示】 两种说法均正确.P (χ2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两个变量相关;而P (χ2≥7.879)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两个变量相关.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:男 女 需要 40 30 不需要160270(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.【精彩点拨】 题中给出了2×2列联表,从而可通过求χ2的值进行判定.对于(1)(3)可依据古典概率及抽样方法分析求解.【自主解答】 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)χ2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法进行抽样,这比采用简单随机抽样方法更好.1.检验两个变量是否相互独立,主要依据是利用χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2公式计算χ2的值,再利用该值与3.841,6.635两个值进行比较作出判断.2.χ2计算公式较复杂,一是公式要清楚;二是代入数值时不能张冠李戴;三是计算时要细心.3.统计的基本思维模式是归纳,它的特征之一是通过部分数据的性质来推测全部数据的性质.因此,统计推断是可能犯错误的,即从数据上体现的只是统计关系,而不是因果关系.[再练一题]3.若两个分类变量x 和y 的列联表为:y x y 1 y 2 x 1 5 15 x 24010则x 与y 【解析】 χ2=(5+15+40+10)(5×10-40×15)2(5+15)(40+10)(5+40)(15+10)≈18.822. ∵18.822>6.635,∴x 与y 之间有关系的概率约为1-0.01=0.99. 【答案】 0.99。

独立性检验的基本思想及初步应用教案

独立性检验的基本思想及初步应用教案

独立性检验的基本思想及初步应用教案第一章:独立性检验简介1.1 学习目标:(1)理解独立性检验的定义及作用;(2)了解独立性检验在实际应用中的重要性;(3)掌握独立性检验的基本步骤。

1.2 教学内容:(1)独立性检验的定义;(2)独立性检验的实际应用案例;(3)独立性检验的基本步骤。

1.3 教学活动:(1)介绍独立性检验的概念;(2)通过实际案例让学生了解独立性检验的应用;(3)引导学生掌握独立性检验的基本步骤。

第二章:卡方检验2.1 学习目标:(1)理解卡方检验的原理;(2)掌握卡方检验的计算方法;(3)学会判断卡方检验的结果。

2.2 教学内容:(1)卡方检验的原理;(2)卡方检验的计算方法;(3)卡方检验的结果判断。

2.3 教学活动:(1)讲解卡方检验的原理;(2)通过示例让学生掌握卡方检验的计算方法;(3)引导学生学会判断卡方检验的结果。

第三章:列联表与独立性检验3.1 学习目标:(1)了解列联表的概念;(2)掌握列联表的绘制方法;(3)学会利用列联表进行独立性检验。

3.2 教学内容:(1)列联表的概念;(2)列联表的绘制方法;(3)利用列联表进行独立性检验。

3.3 教学活动:(1)介绍列联表的概念;(2)通过示例让学生掌握列联表的绘制方法;(3)引导学生学会利用列联表进行独立性检验。

第四章:独立性检验的应用4.1 学习目标:(1)学会运用独立性检验解决实际问题;(2)掌握独立性检验在调查分析中的作用;(3)了解独立性检验在实际应用中的局限性。

4.2 教学内容:(1)独立性检验在实际问题中的应用;(2)独立性检验在调查分析中的作用;(3)独立性检验的局限性。

4.3 教学活动:(1)讲解独立性检验在实际问题中的应用;(2)通过案例分析让学生了解独立性检验在调查分析中的作用;(3)引导学生认识独立性检验的局限性。

第五章:练习与拓展5.1 学习目标:(1)巩固所学独立性检验知识;(2)提高运用独立性检验解决实际问题的能力;(3)培养学生的创新意识和拓展能力。

1.2独立性检验的基本思想及其应用,安徽省定远中学 赵艳丽说课稿

1.2独立性检验的基本思想及其应用,安徽省定远中学  赵艳丽说课稿

1.2独立性检验的基本思想及其应用(第1课时)说课稿定远中学赵艳丽各位老师:你们好!我今天说的课题是《1.2独立性检验的基本思想及其应用(第1课时)》,下面我从教材、教学目标、教学重点、教学难点、教学方法、学生学法、教学过程等几个方面说说我对这堂课的设计:一、说教材:《1.2独立性检验的基本思想及其应用(第1课时)》是人教A版高中数学选修1-2第一章的内容,本属大学《数理统计》里的内容,难度较大。

本节内容只是力求让学生对独立性检验思想有个初步了解,并会简单应用。

二、说教学目标:根据这部分内容的特征,制定本课的教学目标是:(1)知识与技能:理解分类变量的含义;会根据收集的数据列出2×2列联表,并会阅读三维柱形图和二维条形图,并粗略判断两个分类变量是否有关系;理解假设检验思想,会利用独立性检验精确判断两个分类变量是否有关系;(2)过程与方法:利用学生身边熟悉的问题引入分类变量是否相关的问题;运用统计学解决问题的一般思路引导学生;让学生经历假设检验思想的形成及运用过程,领会分析、总结的方法;(3)情感态度与价值观:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。

三、说教学重点:根据本节的教学目标、学习重点,并结合学生实际,确定本节课的教学重点是独立性检验思想的初步认识和其简单应用。

四、说教学方法:为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导,学生参与其中的原则,再结合本节内容的实际特点,确定本节课教学方法。

这些教学方法想方设法引起学生注意,引导他们积极思考,热情参与,独立自主地解决问题。

具体做法如下:1、情景设置法——激发感情,引起兴趣。

2、提问法——逐步引导,逐渐深入。

3、点拨法——展开联想,拓展思路。

4、讲授法——讲授法教师可以系统的传授知识,充分发挥教师的主导作用。

5、多媒体辅助教学。

其中点拨法是最基本的方法。

独立性检验的基本思想及其初步应用-说课稿

独立性检验的基本思想及其初步应用-说课稿

五、教法、学法 教法、
2、学法 、 (1)自主学习:引导学生通过亲身经历,动手、 )自主学习:引导学生通过亲身经历,动手、 动脑参与数学活动。 动脑参与数学活动。 (2)合作探究:充分发挥主观能动性,引导学生 )合作探究:充分发挥主观能动性, 分组讨论,学会合作,共同探讨问题。 分组讨论,学会合作,共同探讨问题。 (3)展示交流:小组内展示交流和班级中展示交 )展示交流: 在展示中得到乐趣,在交流中提升。 流,在展示中得到乐趣,在交流中提升。 说明:预设56人分成 个学习小组, 人分成8个学习小组 说明:预设 人分成 个学习小组,每小组一名 组长六名组员,小组内分工合作, 组长六名组员,小组内分工合作,小组间竞争展 力争人人有事做。 示,力争人人有事做。
二、教材分析
本节课是人教A版 选修) 本节课是人教 版(选修)2—3第三章第二节第 第三章第二节第 一课时的内容. 一课时的内容.是在学习了回归分析的基本思想 及初步应用后,( ,(回归分析是对具有相关关系的 及初步应用后,(回归分析是对具有相关关系的 两个变量进行统计分析的一种常用方法), ),利用 两个变量进行统计分析的一种常用方法),利用 独立性检验进一步分析两个分类变量之间是否有 关系,为以后学习统计理论奠定基础。本节课计 关系,为以后学习统计理论奠定基础。 划用两个课时完成, 划用两个课时完成,本说课是针对第一课时即了 解独立性检验的基本思想, 解独立性检验的基本思想,初步学会对两个分类 变量进行独立性检验的方法。 变量进行独立性检验的方法。
三、教学目标
1、知识与技能: 、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想, 通过典型案例的探究,了解独立性检验的基本思想,初 步学会对两个分类变量进行独立性检验的方法。 步学会对两个分类变量进行独立性检验的方法。 2、过程与方法: 、过程与方法: 通过探究“吸烟是否与患肺癌有关系” 通过探究“吸烟是否与患肺癌有关系”引出独立性检验 的问题, 的问题,借助样本数据的列独立性检验的实施步骤与必要 培养学生在直联表、柱形图和条形图,使学生直观感 性,培养学生在直联表、柱形图和条形图 使学生直观感 觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据 这一直觉来自于观测数据, 觉到吸烟和患肺癌可能有关系 这一直觉来自于观测数据, 即样本.问题是这种来自于样本的印象能够在多大程度上 即样本 问题是这种来自于样本的印象能够在多大程度上 代表总体,这节课就是为了解决这个问题, 代表总体,这节课就是为了解决这个问题,让学生亲身体 验观感受的基础上,提高学生的数据分析能力. 验观感受的基础上,提高学生的数据分析能力 3、情感态度价值观: 、情感态度价值观: 通过对问题的自主探究,提高学生独立思考问题的能力; 通过对问题的自主探究,提高学生独立思考问题的能力; 通过小组交流,加强学生合作意识;通过实例,培养学生 通过小组交流,加强学生合作意识;通过实例 培养学生 的数据分析能力。 的数据分析能力。

《独立性检验的基本思想及其初步应用》说课稿

《独立性检验的基本思想及其初步应用》说课稿

《独立性检验的基本思想及其初步应用》说课稿各位专家、老师,大家好。

我叫***,来自***中学,今天我说课的内容是《独立性检验的基本思想及其初步应用》。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、学情分析、目标分析、教法设计、教学过程、教学反思这六个方面来阐述我对本节课的构思。

一、教材分析本节课是人教A版选修2-3第三章第二节第一课时,通过对典型案例的探究,了解独立性检验的基本思想、方法及其初步应用。

学生学习了利用回归分析研究两个变量间的相关关系,本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要内容。

学生是教学的主体,只有了解学情,才能有效的进行课堂教学。

二、学情分析知识上:学生已经学习过统计、变量回归分析等知识,这为本节课的学习提供了知识基础。

能力方面:学生具备了一定的认知、分析、归纳能力;能够进行小组活动。

学生缺少深入探究问题的方法;运算能力和语言表达能力有待提高。

针对这个问题,课堂上我通过适时引导学生探究,鼓励学生积极展示来解决。

三、目标分析根据新课标对本节课的教学要求以及本节课教学内容特点,结合学情,我制定以下教学目标:知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。

过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。

情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。

基于以上分析,我确立本节课的:教学重点:了解独立性检验的基本思想及实施步骤。

教学难点:独立性检验的基本思想;随机变量K2的含义。

为了突出重点、突破难点,在教法和学法上我是这样设计的:四、教法设计结合本节课的教学内容和学生的认知水平,在教法上:我坚持以学生为主体,教师为主导的原则,采用“合作探究”的教学模式。

数学教案:独立性检验的基本思想及其初步应用第三课时

数学教案:独立性检验的基本思想及其初步应用第三课时

第三课时教学目标知识与技能理解独立性检验的基本思想,会根据K2的观测值的大小判断两个分类变量有关的可信度,培养学生的自主探究的学习能力,并能应用数学知识解决实际问题.过程与方法通过主动探究、自主合作、相互交流,从具体实例中归纳出进行独立性检验的基本步骤,使学生充分体会知识的发现过程,并渗透统计的基本思想和方法.情感、态度与价值观使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神.重点难点教学重点:利用独立性检验的基本思想解决实际问题以及处理步骤;教学难点:对独立性检验思想的理解.错误!错误!提出问题:在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶.(1)利用图形判断秃顶与患心脏病是否有关系;(2)能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?学生活动:小组合作完成.活动结果:根据题目所给的数据画出列联表:相应的等高条形图如图所示:比较来说,秃顶的病人中患心脏病的比例大一些,可以在某种程度上认为“秃顶与患心脏病有关”.根据列联表中的数据,得到 k =错误!≈16.373>6。

635,因此,在犯错误的概率不超过0。

01的前提下认为秃顶与患心脏病有关系.设计目的:以实际问题创建情境,引起学生的好奇,激发学习和探究知识的兴趣,从而也引起学生的无意注意,在不知不觉中进入教师设计的教学情境中,为本节课的学习做有利的准备.错误!提出问题:上述解法中,用到了等高条形图和独立性检验两种方法来判断“秃顶与患心脏病是否有关系”,试比较两种方法的关系和各自的特点.学生活动:学生先自由发言,大胆描述.学情预测:独立性检验能精确判断可靠程度,而等高条形图的优点是直观,但只可以粗略判断两个分类变量是否有关系,一般在通过图表判断后还需要用独立性检验来确认,这主要是因为列联表中的数据来源于样本数据,它们反映出来的这种相关性的特征能够在多大程度上代表总体,则需要用独立性检验来确认.提出问题:试总结独立性检验的基本步骤.学生活动:思考总结,然后回答.活动结果:①根据数据画出列联表;②计算随机变量K2的观测值;③与已知数据对照下结论.设计目的:比较判断分类变量相关性方法的优缺点,并在解决问题的基础上将独立性检验的具体步骤模式化.错误!提出问题:你所得的结论在什么范围内有效?学生活动:学生先自由发言,教师逐步引导学生.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于完善.活动结果:“样本只能代表相应总体",这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其他的证据表明可以进行这种推广.设计意图:让学生充分体会用样本估计总体的思想.提出问题:两个分类变量X和Y的2×2列联表如下若令W=错误!,试结合前面的学习,分析W的大小与“X与Y 有关系"的联系.学生活动:分组讨论,通过协作交流来解决问题,教师进行适当的引导.学情预测:W越大,越有利于结论“X与Y有关系”,它越小,越有利于结论“X与Y没有关系”.提出问题:类似于通过K2的构造判断规则,我们也可以用W 构造一个判断“X与Y有关系”的规则,即当W的观测值w〉w0时,就判断“X与Y有关系”;否则,判断“X与Y没有关系”.那么,在“X与Y没有关系”的前提下P(W≥w0)=0。

《独立性检验的基本思想及其初步应用》PPT课件

《独立性检验的基本思想及其初步应用》PPT课件

0.05 3.841
0.025 5.024
0.010 0.005 6.635 7.879
0.001 10.828
K2的观测值为k
如果 k k0,就以 (1 P(K 2 k0 )) 100%的把握
认为“X与Y有关系”;而这种判断有可能出错,出
错的概率不会超过 P(K 2 k0 )。
7
例如 :
1如果k 10.828,就有99.9%把握认为" X与Y有
❖ 试用你所学过的知识进行分析,能否在犯错 误的概率不超过0.005的前提下,认为“喜欢 体育还是文娱与性别有关系”?
体育 文娱 总计
男生 21 23 44
女生 6 29 35
总计 27 52 79
16
[思路探索] 可用数据计算 K2,再确定其中的具体关系. 解 判断方法如下: 假设 H0“喜欢体育还是喜欢文娱与性别没有关系”,若 H0 成立, 则 K2 应该很小. ∵a=21,b=23,c=6,d=29,n=79, ∴k=a+bcn+add-ab+cc2b+d =21+237×9×6+212×9×29-212+3×66×223+29≈8.106.
12
例4:为研究不同的给药方式(口服与注射)和药的效果(有效 与无效)是否有关,进行了相应的抽样调查,调查的结果列 在表中,根据所选择的193个病人的数据,能否作出药的效果 和给药方式有关的结论?
口服 注射 合计
有效 58 64 122
无效 40 31 71
合计 98 95 193
P(k≥k0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

独立性检验说课稿

独立性检验说课稿

独立性检验说课稿一、教学目标在本次说课中,我们将学习独立性检验的基本概念、原理和应用。

通过本课的学习,希望学生能够:1. 理解独立性检验的概念和目的;2. 掌握独立性检验的基本步骤和技巧;3. 能够进行独立性检验的实操;4. 了解独立性检验在实际问题中的应用。

二、教学内容本课主要涵盖以下几个方面的内容:1. 独立性检验的基本概念和定义;2. 独立性检验的原理和假设检验方法;3. 独立性检验的应用范围和实际案例;4. 独立性检验的计算实例和数据分析。

三、教学过程1. 导入和引入(5分钟)通过提问和例子引入独立性检验的概念和背景,让学生了解独立性检验的重要性和作用。

2. 理论讲解(20分钟)介绍独立性检验的基本概念和定义,详细讲解独立性检验的原理和假设检验方法。

通过教师讲解和示意图的展示,帮助学生理解和掌握独立性检验的基本步骤和技巧。

3. 实例分析(30分钟)选取一个具体的案例,将其转化为适合进行独立性检验的问题,引导学生运用所学知识进行数据分析和独立性检验的计算。

通过实例分析的方式,帮助学生巩固所学理论,并培养学生应用知识解决实际问题的能力。

4. 练习和讨论(20分钟)提供若干道练习题,让学生独立完成并讨论解题思路和结果。

鼓励学生互相合作,加深对独立性检验的理解和运用能力。

5. 总结和拓展(10分钟)对本节课的知识点进行总结归纳,并引导学生进一步思考和拓展。

可以提出一些扩展问题,让学生主动学习和研究相关的理论和应用。

四、教学评估1. 课堂表现评估:观察学生的课堂参与、提问和回答问题的能力;2. 作业评估:布置相应的作业,考察学生对独立性检验的理解和应用能力;3. 实际案例评估:在课外提供一个真实的案例,要求学生独立运用独立性检验进行分析和解决问题。

五、教学资源本节课所需的教学资源包括:1. PowerPoint 讲义,用于教师的课堂讲解;2. 示例数据集,用于案例分析和实操练习;3. 教学参考书,用于学生的进一步阅读和学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《独立性检验的基本思想及其初步应用》教学设计说明一、教学内容与内容解析1.内容:独立性检验的基本思想及实施步骤2.内容解析:本节课是人教A版(选修)2—3第三章第二单元第二课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。

本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。

在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。

在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。

独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。

因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。

学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。

这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。

教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:①知识与技能目标通过生活中典型案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。

②过程与方法目标通过探究“吸烟与患肺癌是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。

利用课下预习已经由数据直观判断出吸烟与患肺癌可能有关系,这一直觉来自于观测数据,即样本。

问题是这种来自于样本的印象能够在多大程度上代表总体。

这节课就是为了解决这个问题,在学生亲身体验感受的基础上,提高学生的数据分析能力。

③情感态度价值观目标通过本节课的学习,加强数学与现实生活的联系。

以科学的态度评价两个分类变量有关系的可能性。

培养学生运用所学知识,解决实际问题的能力。

教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。

2.目标解析:独立性检验是考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度的一种重要的统计方法.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.因此,在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力.新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。

从心理学的角度看,青少年有一种好奇的心态、探究的心理。

因此,紧紧地抓住学生的这一特征,引导学生搜集感兴趣的案例数据,利用学生身边的问题如“玩电脑游戏与注意力集中是否有关系”,感悟知识的应用性,使学生在观察、讨论等活动中,逐步提高数据分析能力。

三、教学问题诊断分析1.本节课学习的必要性本节课的内容独立性检验对学生来说是全新的内容,为什么有这么一个方法?为什么要学习这个方法?通过课前的预习,搜集身边的案例数据,可以让学生体会到本节课知识的应用性。

2.独立性检验原理的理解独立性检验相当于建立一个判别“两个分类变量之间有关系”这一结论是否成立的规则,并且给出该规则把“两个分类变量之间没有有关系”错判成“两个分类变量之间有关系”的概率。

所以首先要教会学生的是了解并初步理解这个规则,而后才是会用这个规则解决问题。

为此我用“必修三小概率原理检验产品和数学家庞加莱买面包”的两个引例,前置铺垫,让学生先初步了解这一原理的推理方法。

这对学生理解检验原理及规则有着极大的帮助,化解了本节课的教学难点。

3.卡方统计量公式的接受和领会独立性检验难于理解的一个主要之处在于凭空出现一个卡方统计量,这个随机变量K2是怎样构造出来的,为什么如此构造?课标对这一部分的要求及教学建议,要求学生领会统计思想在分析和认识客观现象中的重要作用,要求学生从直观上感受方法的合理性,但不要求从数学上给出严格的论证,对于统计案例的教学形式,主要是鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法应用的广泛性、合理性,理解其方法中蘊涵的思想,对于统计案例的内容,只要求学生了解两种统计方法的基本思想及其初步应用,对于其理论基础不做要求,避免学生单纯记忆和机械地套用公式进行计算。

数学课程要讲逻辑推理,但对有些公式、定理不能用高中知识作严格论证。

此时,作为老师,应激发学生去感受公式、定理的合理性,而不应只限于接受、记忆、模仿和练习,应力争揭示数学概念、法则、结论的发展过程和本质,使学生的学习过程成为在教师引导下的“再认识”“再创造”过程,从而追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。

为了让学生在统计性思维的统领下,更直观地感知这个公式的合理性,进而将本节所介绍的思想方法和谐地同化到学生原有的认知结构中去,不妨用统计性思维,从多个角度探讨公式的合理性,进而达到和谐本节教学的课堂氛围。

为此,我对卡方统计量公式教学的相关细节做了如下设计:预设问题:问题 1 2 2列联表中的2、3行或第2、3列能交换吗?问题 2 你能联想随机事件概率的定义来感受卡方统计量公式的来之不易吗?问题 3 你能类比方差公式理解卡方统计量公式结构的合理之处吗?对于以上三个问题,经过学生的积极探讨、打磨后,我用以下三种方式引导启发学生直观而又合理地解决问题。

方式1 回忆随机事件A ::掷一枚硬币,正面向上,类比,联想21)(=A p 的确定过程。

通过大量的重复试验,事件A 发生的频率在常数21附近摆动并趋于稳定,所以可得21)(=A p 。

对于此处,卡方统计量公式应该是通过大量的观察试验并结合我们现在未知的理论研究得来的。

方式2 利用类比方差公式的结构特征理解卡方统计量公式。

方差公式中取每个样本数据与样本平均数差的平方即2)(x x i -,这是为防止正负抵消,掩盖真像,公式中的n1主要是协调作用:因样本容量的不同而使方差的值差异太大,意在取平均。

此处,在假设患肺癌与吸烟没有关系的情形之下,易得0≈-bc ad ,而此处取平方是为了公式的结果是正值,与查对临界值表有关。

公式中的))()()((d c b a d b c a n++++是因为考虑到抽取样本的不同而的2K 值差异太大,这与协调样本容量的大小有关。

方式 3 通过列联表直接计算或等高条形图发现ba a +和c c d +相差很大,就判断两个分类变量之间有关系。

()()a c ad bc a b c d a b c d --=++++ (1) 将上式等号右边的式子乘以常数因子平方得:22()()()()()n ad bc K a b c d a c b d -=++++ (2) (1)(2)是吻合的,(1)越大,(2)2K 也越大,(1)越小(2)2K 也越小说明:这个环节如果嵌套在案例的探究独立性检验原理的建构过程中会影响整个教学过程的流畅性,又有冲淡本节教学内容主题之嫌,故我设计安排在探究建构之后,作为反思和补遗也可作为课下思考灵活处理。

4,临界值表的教学处理教材在这一部分处理上,是引出卡方统计量,结合案例数据利用公式计算得到2K 的观测值,先进行相应的一个临界值的讲解,而后再给出卡方临界值表,这对于学生是比较难于理解的,为什么就给出这么一个临界值呢?有这个问题的存在,学生对接下来所谈到的内容会有所怀疑,不一定十分认同。

为了突破这个难点,我采用“先入为主”的思想,把教材后面介绍的卡方临界值表提前讲解,用概率知识解读临界值表的含义,让学生先接受统计学上的知识,而后在应用过程中进一步理解,这样进行调整后,学生临界值表的领会就更容易一些,突破难点。

5.为什么在最后表达结论的时候要出现“在犯错误的概率不超过XX的前提下”这样的术语.这也是初学者较难理解的问题,原因就在于独立性检验的过程中存在一个小小的漏洞,就是假设“在一次实验中,小概率事件不发生”,而事实上,小概率事件是可能发生的(用反证法,如果始终不发生,就是不可能事件了),而正是因为这一点点漏洞,导致独立性检验的结果可能是错误的,但是犯错误的概率不会太大,我们就把犯错误的最大概率等同于小概率事件发生的概率了。

至于小概率事件所对应的临界值,则属于大学的研究范畴,在此不必做过多解释.教学难点:①了解独立性检验的基本思想;②了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。

四、教学特点与预期效果分析1. 教法特点①课前预习,用学案辅助教学由于本节内容较散,理论部分较难,故需教师精心设计学案,提前发放给学生,以提高学生的预习效率.引导学生搜集身边感兴趣的案例数据,激发学习兴趣。

②“问题串”的组织形式,“讲授式”的教学方法在最初定夺本节课教学模式时比较为难,一方面,按照新课标的理念,注重学生自主探究为主,教师仅仅是引导者(实践证明这有利于学生学会“学习”,尤其是提高自学能力和合作学习能力),然而另一方面,本节内容理论难度较大,而且涉及到很多大学数学的内容,凭高中学生的数学水平难以完成自主探究.因此,在理论部分,还得需要教师讲,教师的“讲授”成为了无奈的选择.不过好在《课程标准》中,不要求学生掌握这部分深奥的理论,只要体会独立性检验的思想,掌握独立性检验的操作步骤.因此,最终定下来的教学模式是“‘问题串’的形式,‘讲授式’的方法”的教学模式.在“问题串”的指引下,学生研究出解决问题所需要收集的数据,探究课本上案例的分析过程,提炼出解决问题的操作步骤,然后再由教师讲解操作规程背后的理论依据.③充满生活气息的数学课堂在《课程标准》理念下,“数学在生活中的应用”地位空前提高,教材中引入、例题甚至是课后习题的编写,都有大量生活的影子.而本节课《独立性检验》正是一个贴近生活的数学范畴,它可以解决两件扑朔迷离事情之间到底有关还是无关的问题.因此本课从引入(吸烟与患肺癌)到例题(秃顶与心脏病;高中生性别与是否喜欢数学课程之间的关系)到练习(玩电脑游戏与注意力是否集中)再到课后作业题,全部都有着实际生活的影子.2.预期效果分析通过本节课的教学,学生应能掌握独立性检验的操作步骤,并能够解决相关的实际问题,同时也可以初步体会到独立性检验的大致思想.而对独立性检验思想的更进一步认识和一些细节性的说法,则应该放在下一个课时,通过更多正面和反面的例子予以进行.。

相关文档
最新文档