消防车荷载计算课件
消防车荷载计算课件

该案例涉及到一个大型工业园区,包括各种厂房、仓 库和生产线等设施。由于工业园区的建筑结构和用途 较为特殊,因此需要进行专业的消防车荷载计算。在 计算过程中,需要考虑设备的重量、建筑物的结构形 式和材料、以及消防车的工作方式和特点等因素。此 外,还需根据实际情况对计算结果进行校核和调整, 以确保建筑物结构的安全性和稳定性。
消防车荷载的应用场景
消防车荷载主要应用于消防通道、消防车道、桥梁、隧道等 场景的计算中,以确保这些结构物在消防车行驶或停放时能 够满足承载要求,保障安全。
在进行消防车荷载计算时,需要考虑多种因素,如消防车的 重量、尺寸、轮胎压力和接触面积等,以及路面材料的抗压 强度和抗剪强度等参数。
02 消防车荷载计算方法
有限元分析方法
定义
有限元分析方法是一种数值分析 方法,通过将结构物离散化为有 限个单元,利用数学模型描述其 受力状态,从而求解结构物的内 力和变形。
适用范围
适用于复杂结构物的受力分析, 如桥梁、隧道等。
计算步骤
建立有限元模型、施加边界条件 和载荷、进行有限元分析、输出 结果。
计算结果的校核与调整
04 消防车荷载的规范与标准
国家相关规范与标准
01
《建筑设计防 火规范》
02
《消防车通道 技术要求》
《消防车荷载 规范》
03
04
《消防车通道 设计规范》
地方相关规范与标准
01
北京市《消防车通道技术要求(暂行)》
02
上海市《消防车通道设计规范(试行)》
广东省《消防车通道技术要求(试行)》
03
国际相关规范与标准
消防车荷载计算课件
目录
Contents
• 消防车荷载概述 • 消防车荷载计算方法 • 消防车荷载对结构的影响 • 消防车荷载的规范与标准 • 实际应用案例分析
消防车荷载计算PPT

考虑了车辆动态效应,更接近实际情况。
计算复杂,需要更多的数据和参数支持,可能存在不确定性。
有限元分析法
定义
有限元分析法是一种数值分析方法,通过将结构离散化为 有限个小的单元(有限元),对每个单元进行受力分析, 进而得到整个结构的受力状态。
优点
可以模拟结构的复杂性和细节,得到更精确的计算结果。
某高层住宅楼的消防车荷载计算
总结词
高层住宅楼的消防车荷载计算需要结合建筑物的特点,考虑消防车停放位置和消防通道的特殊要求。
详细描述
在进行某高层住宅楼的消防车荷载计算时,需要考虑高层住宅楼的特点,如楼层高度、楼面用途等。同时,需要 结合当地的消防规范和标准,考虑消防车停放位置和消防通道的特殊要求。根据这些因素,可以确定各楼层楼面 的活荷载和消防车荷载。
新型消防车及装备研发
高效灭火装备
研发新型高效灭火装备,提高灭 火效率,减少灭火过程中对消防 车的载重压力。
多功能集成
将多种功能集成于消防车及装备 中,如救援、运输、通信等,提 高消防车的综合性能和应对复杂 灾害的能力。
绿色环保的消防车荷载技术
节能减排
采用绿色环保的发动机和传动系统,降低消防车的能耗和排放,减少对环境的影 响。
消防车荷载计算
目录
• 消防车荷载概述 • 消防车荷载计算方法 • 消防车荷载实例分析 • 消防车荷载的优化设计 • 消防车荷载的未来发展
01
消防车荷载概述
消防车荷载的定义
01
消防车荷载是指在消防车行驶或 停放时,对路面或结构物产生的 垂直压力或水平推力。
02
消防车荷载属于可变作用,其值 随消防车的类型、载重、轮胎压 力和路面状况等因素而变化。
消防车荷载计算

消防车荷载对基础的影响
基础沉降
消防车荷载可能引起基础的不均 匀沉降,导致建筑物倾斜或开裂。
基础承载力
消防车荷载对基础承载力有要求, 如果基础承载力不足,可能发生破 坏。
基础稳定性
消防车荷载可能影响基础的稳定性, 导致基础失稳,影响建筑物安全。
消防车荷载对道路的影响
道路承载力
消防车荷载对道路的承载力有要求, 如果道路承载力不足,可能发生沉陷 或损坏。
中型消防车
介于轻型和重型之间,适 用于城市和乡镇的灭火救 援工作。
重型消防车
载水量大,设备齐全,适 用于大型火灾的扑救和救 援工作。
消防车荷载的组成
01
02
03
04
消防车自重
指消防车本身的重量,包括车 体、设备、水箱等。
消防员及装备重量
指参与灭火救援的消防员及其 携带的装备重量。
灭火剂重量
指消防车水箱中的水量或干粉 、泡沫等灭火剂的重量。
谢谢
THANKS
要点一
总结词
要点二
详细描述
工业设施、特殊设备、复杂环境
工业园区通常包含各种工业设施和特殊设备,这些设施和 设备的布局和结构对消防车荷载计算产生一定影响。此外 ,工业园区的环境相对复杂,地面状况、建筑物之间的距 离等也会对消防车的行驶和作业造成一定影响。因此,在 计算消防车荷载时,需要充分考虑这些因素,以确保消防 车在紧急情况下能够快速有效地进行灭火和救援工作。
动力有限元法
总结词
动力有限元法是一种基于数值模拟的计算方法,通过建立结 构的有限元模型,模拟消防车行驶时对结构的动态响应。
详细描述
动力有限元法考虑了消防车行驶过程中产生的动荷载,能够 模拟结构在不同频率和幅值的振动下的响应。该方法精度高 ,适用于复杂结构和非线性分析,但计算量大,需要高性能 计算机和专业的数值分析软件。
消防车荷载计算概述(PPT 32张)

一、等效均布活荷载
1、概念 荷载规范2.1.18 等效均布荷载:结构设计时,楼面上不连续分布的 实际荷载,一般采用均布荷载代替;等效均布荷载 系指其在结构上所得的荷载效应能与实际的荷载效 应保持一致的均布荷载。
在结构设计控制部位,将复杂荷载或无规律分布活 荷载,根据其荷载效应与“假想的均布活荷载”效 应相等的原则来确定这一“假想均布活荷载”的数 值,其中的“假想均布活荷载”就是等效均布活荷 载。 采用等效均布活荷载的目的在于将复杂的荷载作用 情况予以简化,在保证荷载效应总值不变的情况下, 用等效均布活荷载来代替实际的复杂荷载,以解决 结构设计中的复杂问题,简化设计。
2)考虑动力系数和覆土的影响 消防车荷载属于动力荷载,规范已考虑动力系数, 表5.1.1中的数值是按消防车荷载直接作用于楼板 的情况下计算而来。 覆土对汽车动力荷载起到缓冲和扩散作用,计算楼 板、梁、柱、墙时均可考虑覆土的有利影响,按规 范附录B确定折减系数。 附录B.0.2,板顶折算覆土厚度,当同时存在土层 和混凝土层时,可分别折算各自的折算覆土厚度, 总的折算厚度取两部分之和。
十字梁布置 计算楼板的荷载 计算楼面梁的荷载 计算柱的荷载
计算基础的荷载
大板布置 18 15 15
5
30 24 24
5
问题:计算主梁时,相同的消防车作用,荷载相差 较大,如何解决?
三、荷载折减
1、PKPM中荷载折减界面 第1个界面对应5.1.2第1条,为计算楼面梁的折减 第2个界面对应5.1.2第2条,为计算墙、柱、基础 的折减 两个折减不能重复进行
2、消防车荷载合理取值 1)按跨度根据表5.1.1取值 单向板: 规范只规定板跨不小于2米,取35kN/m2; 跨度小于2米时,应按轮压计算等效均布活荷载,并且 不小于35kN/m2; 跨度不小于4米,取25kN/m2 跨度2~4米,按跨度在35~25的范围内线性插值确定。
消防车活荷载计算(双向板)

2.70
覆土厚度S(m)=
1.00
1.00
折算覆土厚度Sp=
1.00
1.00
消防车活载覆土折减系数=
0.89
0.88
消防车活载按板跨插值结果=
33.75
35.00
综合考虑覆土后消防车计算活荷载=
30.1
模型中输入的活荷载(加权平均)=
30.4
②、消防车道主梁、墙柱活荷载取值:
消防车主梁、墙柱活载按梁跨插值
主梁跨度(m)=
8.10
6.50
折算覆土厚度Sp=
1.00
1.00
消防车活载覆土折减系数=
1.00
1.00
双向板楼盖主梁折减系数=
0.80
0.80
消防车活荷载插值结果=
20.00
20.00
综合考虑覆土后消防车计算活荷载=
16.0
16.0
模型中输入的活荷载(加权平均)=
16.0
0.81
0.92
2.5
0.57
0.62
0.7
0.81
3.0
0.48
0.54
0.61
0.71
2、根据《建筑结构荷载规范》(GB 50009-2012 )表5.1.1:
表5.1.1(8)双向板消防车活荷载
板跨(m)
消防车活载
3
35
6
20
3、根据《建筑结构荷载规范
》(GB 50009-2012 )附录 板顶折算覆土厚度Sp应按下式
计算:
Sp=1.43s·tanθ
式中:S——覆土厚度
θ——覆土应力扩散角,不大
于45°
注:本工程应力扩散角取35°
《荷载规范2012》计算消防车荷载

墙柱:
折减系数 0.6 活荷载
17.2 (kN/m2)
基础:可不考虑消防车活荷载,0.0(kN/m2)。
双向板消防车荷载计算
双向板消防车活荷载标准值
板跨(m) 3
6
荷载
35
20
表B.0.2 双向板楼盖楼面消防车活荷载折减系数
折算覆
楼板跨度(m)
土厚度S1
3
4
5
6
0.0
1.00 1.00 1.00
1.00
主次梁:
折减系数 0.8 活荷载
16.0 (kN/m2)
墙柱:
折减系数 0.6 活荷载
12.0 (kN/m2)
基础:可不考虑消防车活荷载,0.0(kN/m2)。
受力类别
板跨度
工程汇总
覆土厚度 楼板计算
消防车活荷载
主梁
次梁
墙柱
备注
单向板消防车荷载计算
单向板消防车活荷载标准值
板跨(m) 2
4
荷载
35
25
表B.0.1 单向板楼盖楼面消防车活荷载折减系数
折算覆
规 范
土厚度S1
表
0.0
格
0.5
楼板跨度(m)
2
3
4
1.00 1.00 1.00
0.94 0.94 0.94
1.0
0.88 0.88 0.88
1.5
0.82 0.80 0.81
1.50 (m)
覆土应力扩散角θ =
35.0 º
35
根据板跨度确定荷载标准值:
荷载标准数值 =
20 (kN/m2)
根据覆土情况确定活荷载折减系数:
折算覆土厚度 s1=
消防车荷载分析

消防车荷载分析(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除车库顶板消防车布置分析第一种消防车布置情况:梁板编号【图一】消防车布置(一)【图二】按消防车实际布置位置输入消防车荷载荷载简图【图三】荷载取值说明:1、30kN/m2为考虑米厚覆土恒载,根据《荷载规范》附录A取覆土容重18kN/m3,板自重程序自动计算.2、4kN/m2为地下室顶板活荷载.3、A、C、G、K板面的17 kN/m2为消防车2个后轮的荷载,根据《荷载规范》条文解释P197页得2个后轮的重量为120kN,平均分布到2650x2650mm的板上,即q=120kN/* m2= kN/m2.暂按均不荷载计算,因为均不荷载对计算梁配筋不存在误差,虽然对板计算有误差,后面再考虑消防车压对把的影响。
4、B、H板面的35 kN/m2为两台消防车4个后轮的荷载,根据《荷载规范》条文解释P197页得4个后轮的重量为2x120kN,平均分布到2650x2650mm的板上,即q=240kN/* m2= kN/m2,这与《荷载规范》P15页表第8项双向板楼盖(跨度不小于3mx3m)取35 kN/m2基本吻合,如果仅考察消防车荷载对板四周梁产生的作用,的双向板仍然可按35 kN/m2取值.5、计算仅考虑消防车荷载对梁的作用,不考虑消防车荷载对板的作用,故可按均布荷载输.按20kN/m2输入消防车荷载荷载简图【图四】荷载取值说明:1、30kN/m2为考虑米厚覆土恒载,根据《荷载规范》附录A取覆土容重18kN/m3,板自重程序自动计算2、20kN/m2为地下室顶板满布消防车荷载采用PKPM2012计算,得出结果如下:按实际消防车荷载计算结果【图五】按20kN/m2消防车荷载计算结果【图六】20kN/m2的荷载要小。
第二种消防车布置情况:消防车布置(二)【图七】按消防车实际布置位置输入消防车荷载荷载简图【图八】荷载取值说明:1、30kN/m2为考虑米厚覆土恒载,根据《荷载规范》附录A取覆土容重18kN/m3,板自重程序自动计算2、4kN/m2为地下室顶板活荷载3、D、F、H板面的17 kN/m2为消防车2个后轮的荷载,根据《荷载规范》条文解释P197页得2个后轮的重量为120kN,平均分布到2650x2650mm的板上,即q=120kN/* m2= kN/m2(仅考虑消防车荷载对梁的作用,不考虑消防车荷载对板的效应,故可按均布荷载输)4、E板面的35 kN/m2为两台消防车4个后轮的荷载,根据《荷载规范》条文解释P197页得4个后轮的重量为2x120kN,平均分布到2650x2650mm的板上,即q=240kN/* m2= kN/m2,这与《荷载规范》P15页表第8项双向板楼盖(跨度不小于3mx3m)取35 kN/m2基本吻合,如果仅考察消防车荷载对板四周梁产生的作用,的双向板仍然可按35 kN/m2取值( 中间跨板为,为简化分析,全按取)5、G、K板面9 kN/m2为消防车1个后轮的荷载,根据《荷载规范》条文解释P197页得1个后轮的重量为60kN,平均分布到2650x2650mm的板上,即q=60kN/* m2= kN/m2,取9 kN/m26、计算仅考虑消防车荷载对梁的作用,不考虑消防车荷载对板的作用,故可按均布荷载输按20kN/m2输入消防车荷载荷载简图【图九】按实际消防车荷载计算结果【图十】按20kN/m2消防车荷载计算结果【图十一】20kN/m2的荷载要小。
消防车荷载计算精品文档

对于长方形板块,规范未明确,可分别按短边边长
和长边边长确定相应的数值,并取其平均值作为等 效均布活荷载,如3mx5m的板块,可按3mx3m 和5mx5m分别确定为35kN/m2和25kN/m2,取 平均值30kN/m2作为3mx5m的等效均布活荷载
2)考虑动力系数和覆土பைடு நூலகம்影响
消防车荷载属于动力荷载,规范已考虑动力系数, 表5.1.1中的数值是按消防车荷载直接作用于楼板 的情况下计算而来。
计算楼板的荷载 计算楼面梁的荷载 计算柱的荷载 计算基础的荷载
十字梁布置 30 24 24 5
大板布置 18 15 15 5
问题:计算主梁时,相同的消防车作用,荷载相差 较大,如何解决?
1、PKPM中荷载折减界面 第1个界面对应5.1.2第1条,为计算楼面梁的折减 第2个界面对应5.1.2第2条,为计算墙、柱、基础
1、概念 荷载规范2.1.18
等效均布荷载:结构设计时,楼面上不连续分布的 实际荷载,一般采用均布荷载代替;等效均布荷载 系指其在结构上所得的荷载效应能与实际的荷载效 应保持一致的均布荷载。
在结构设计控制部位,将复杂荷载或无规律分布活 荷载,根据其荷载效应与“假想的均布活荷载”效 应相等的原则来确定这一“假想均布活荷载”的数 值,其中的“假想均布活荷载”就是等效均布活荷 载。
的折减
不同效应之间,等效均布活载的数值一般不能通用。 如果采用,也只能是近似计算。
不同构件计算时的等效均布活荷载不能通用。如计 算楼板的等效均布活荷载与计算梁、柱及基础等的 等效均布活荷载不能通用。
3、计算
4、小结 1)、附录C.0.2、 C.0.6 :按单跨简支计算 2)、相同荷载时,效应不同,等效均布活荷载的 数值不同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.8
30.0
24.0
20.0
16.0
13.5
11.5
10.0
24.0
21.0
17.0
14.3
12.0
10.2
9.0
19.0
17.0
14.5
12.5
10.6
9.2
8.0
16.0
14.0
12.5
11.0
9.5
8.3
8.0
14.0
13.0
12.0
10.3
9.0
7.8
7.3
12.0
12.0
11.0
9.6
18.8 17.3 15.7
18.5 17.0 15.4
18.2 16.8 15.2
4.5 17.4 16.9 16.5 16.1 15.7 15.3 14.9 14.8 14.6 14.4 14.3 14.0 13.7
5.0 15.7 15.3 14.9 14.6 14.2 13.9 13.6 13.4 13.3 13.1 13.0 12.7 12.4
❖ 注:覆土厚度不为表中数值时,其动力系数可按线性内插法 确定.
❖ 2. 表4.1.1中第8项实际上是汽车轮压直接作用在楼板上 的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽 车的共同作用.
❖ 3. “荷载规范”条文说明中指出,”对20-30t的消防车,可按
最大轮压为60kN作用在0.6mx0.2m的局部面积上的条件
❖ 显然,这是按荷重等效的结果,取值的理由不够充分。 ❖ 2.另一种方案是规范提出来的: ❖ 根据板中弯矩等效的原则定出来的 (这是比较合理的,但
计算较为繁琐。)
精选课件
4
消防车的平面尺寸
❖
精选课件
5
消防车的排列方式
❖ 单向板 1.行驶方向平行于支座
精选课件
6
2.行驶方向垂直于支座
精选课件
7
消防车的动力效应
精选课件
1
2.荷载规范GB 50010-2002 (2006年版)条文 汽车通道及停车库:
(1)单向板楼盖(板跨不小于2m) 客车 4 kN/m2 消防车 35 kN/m2 (2)双向板楼盖(板跨不小于6m×6m)和无梁楼盖(柱 网尺寸不小于6m×6m) 客车 2.5 kN/m2 消防车 20 kN/m2
精选课件
2
二、设计取值及审查意见
❖ 如果是小于6mx6m板跨的双向板,怎么样 取值呢?
❖ 荷载取值为20kN/m2,按2006版荷载规范是 偏小的,也就会认为是不安全的。而设计 中多数是这样的板。
❖ 如果按规范的另一取值则为35 kN/m2。在 做梁板设计时会因荷载较大而变得困难, 配筋会偏大。
精选课件
消防车等效荷载分析
❖一. 问题的由来
❖ 1.荷载规范GB 50010-2002条文 ❖ 汽车通道及停车库:
(1)单向板楼盖(板跨不小于2m) 客车 4 kN/m2 ❖ 消防车 35 kN/m2 ❖ (2)双向板楼盖和无梁楼盖(柱网尺寸不小于 6m×6m) 客车 2.5 kN/m2 ❖ 消防车 20 kN/m2
8.5
7.5
6.7
11.0
11.0
10.5
9.2
8.0
7.3
6.5
9.5
10.0
9.5
8.6
7.8
7.0
6.2
8.5
8.5
8.5
7.7
7.0
6.5
5.6
7.0
7.0
7.0
7.0
6.5
6.0
5.3
精选课件
12
谢谢大家 !
精选课件
13
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
单向板跨度(m)
3.0
3.5
4.0
23.1 21.2 19.3
22.4 20.6 18.7
21.7 20.0 18.2
21.1 19.5 17.7
20.5 19.0 17.3
20.0 18.5 16.9
19.4 18.0 16.4
19.3 17.8 16.2
19.1 17.6 16.1
19.0 17.4 15.9
精选课件
9
本表的适用范围:
1. 设计楼板可以直接采用本表数据。 2. 设计楼面梁:1)对单向板楼盖的次梁和槽形板 的纵肋可乘以0.8的折减系数。2) 对单向板楼盖的 主梁可乘以0.6的折减系数。3) 对双向板楼盖的梁 可乘以0.8的减系数。 3. 设计墙、柱和基础时:1)对单向板楼盖可乘以 0.5的折减系数。2) 对双向板楼盖和无梁楼盖可乘 以0.8的折减系数。
3
三、解决办法
❖ 1.有些地方工程师提出了一种解决方案建议用10。理由 如下:
❖ 一部消防车的最大重量为32吨,其平面尺寸2.5M×8.0M, 即每平方米的重量:,这个值相当于把消防车密密密麻麻排 在结构板上,毫无空隙。如果空隙一米,则,
32 K0N 1.1 0K 5N /m 2 (2.51)(8.01)
精选课件
10
计算结果汇总如下表
等效活荷载qe 值
0.0
0.2
0.4
0.6
0.8
覆
1.0
土 厚
1.2
度
1.3
1.4
1.5
1.6
1.8
2.0
2.0 35.8 34.6 33.5 32.5 31.7 31.1 30.4 30.4 30.4 30.4 30.4 30.4 30.4
2.5 27.2 26.4 25.6 24.8 24.1 23.5 23.1 22.9 22.7 22.2 22.2 22.2 22.2
精选课件
11
双向板跨度(m*m)
2.0x2.0 2.5x2.5 3.0x3.0 3.5x3.5 4.0x4.0 4.5x4.5 5.0x5.0
57.0
41.0
31.0
24.0
19.1
15.5
13.0
46.0
34.0
27.0Biblioteka 21.017.014.2
12.0
37.0
29.0
23.0
18.3
15.2
13.0
确定”,为此,应按规范的图示确定汽车纵横方向的排列间
距.
精选课件
8
计算方法
1. 单向板按<荷载规范>GB50009-2001之附录B计算, 适用于消防车满载总重为300kN的大型车辆.按车辆最 大轮压为60kN,作用在0.6mx0.2m的局部面积上的条件 并按最不利组合确定。
2. 双向板按弹性薄板小挠度理论并按最不利组合确定。
❖ 1.车辆荷载尤其是消防车对楼面的荷载作用,主要应考虑 车辆满载重量及汽车轮压的动荷载效应,动和系数与楼面 覆土厚度等因素有关,
❖ 汽车轮压荷载传至楼板和梁的动力系数如下
❖ 覆土厚度(m) 0.25 0.40 0.60 0.65 ≥0.70
❖ 动力系数 1.30 1.20 1.07 1.04 1.00