【小学数学一题多解系列】几何计算题-小学数学网-学而思教育
小学数学趣题巧算百题百讲百练几何部分

小学数学趣题巧算百题百讲百练--几何部分数学网为广大小学生和家长整理的小学数学趣题巧算百题百讲百练系列,包括计算、几何、应用题、杂题以及各部分练习题,每部分都有100道精选例题及讲解,以提高广大小学生的综合解题能力。
本篇为几何部分。
小学生学习几何初步知识,不仅要掌握一些基本的平面图形和立体图形的性质、特征,还要会求这些平面图形的周长、面积及这些立体图形的表面积、体积,而且还要会综合地、巧妙地运用这些知识来进行计算。
特别是计算一些组合图形的面积时,常常用到割补、剪拼、平移、翻转等办法,使得计算巧妙、简便。
要学会这些方法,应用这些方法。
通过解几何题的训练,更好地培养空间想象力,这对学好小学几何初步知识是极有利的,同时也为将来到中学进一步学习几何知识,打下良好而坚实的基础。
例21 下图中圆O的面积和长方形OABC的面积相等。
已知圆O的周长是9.42厘米,那么长方形OABC的周长是多少厘米?分析与解题中告诉我们,圆O的面积和长方形OABC的面积相等。
我们知道,圆的面积等于rr,而图中圆O的半径恰好是长方形的宽,因此长方形OABC的长正好是r,即圆O的周长的一半。
而长方形的周长等于2个长与2个宽的和,也就是圆O的周长与直径的和。
长方形OABC的周长是:9.42+9.423.14=9.42+3=12.42(厘米)答:长方形OABC的周长是12.42厘米。
例22 桌面上有一条长80厘米的线段,另外有直径为1厘米、2厘米、3厘米、4厘米、5厘米、8厘米的圆形纸片若干张,现在用这些纸片将桌上线段盖住,并且使所用纸片圆周长总和最短,问这个周长总和是多少厘米?分析与解要想盖住桌上线段,并且使所用纸片圆周长总和最短,那么盖住线段的圆形纸片应该是互不重叠,一个挨一个地排开,这时若干个圆形纸片直径的总和正好是80厘米。
这些圆形纸片周长的总和与直径为80厘米的圆的周长相等,因此盖住桌子上线段的若干个圆形纸片的周长总和是:3.1480=251.2(厘米)答:这个周长总和是251.2厘米。
小学数学二年级几何运算解决问题专项训练

小学数学二年级几何运算解决问题专项训
练
本文档旨在提供小学二年级学生在几何运算方面解决问题的专
项训练。
通过这些练,学生将能够提高他们的几何运算能力,培养
他们的问题解决技巧。
练一:识别形状
题目:给出多个形状的图片,学生需要用文字描述出每个形状
的特征。
思路:学生需要仔细观察每个形状的边数、角度以及特殊的特征,然后用简明的文字描述出来。
练二:计算周长
题目:给出多个形状的图片,学生需要计算出每个形状的周长。
思路:学生需要根据每个形状边的长度,将边长进行相加求和,从而计算出周长。
练三:计算面积
题目:给出多个形状的图片,学生需要计算出每个形状的面积。
思路:学生需要根据每个形状的特征,如边长或半径,使用相
应的公式计算出面积。
练四:解决实际问题
题目:给出一些日常场景的问题,学生需要应用几何运算的知
识解决这些问题。
思路:学生需要将几何运算的概念和公式应用到实际生活中的
问题中,进行分析和解决。
通过完成这些专项训练,学生将能够加深对几何运算的理解,并提高他们在解决几何问题方面的能力。
希望本文档能对小学二年级的数学学习有所帮助。
小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
小学数学《几何计数》练习题(含答案)

小学数学《几何计数》练习题(含答案)1、数一数图中三角形的个数.解答:这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.Ⅰ.以一条基本线段为边的三角形:①尖朝上的三角形共有四层,它们的总数为:W=1+2+3+4=10(个).①上②尖朝下的三角形共有三层,它们的总数为:W=1+2+3=6(个).①下Ⅱ.以两条基本线段为边的三角形:①尖朝上的三角形共有三层,它们的总数为:W=1+2+3=6(个)②上②尖朝下的三角形只有一个,记为W②下=1(个).Ⅲ.以三条基本线段为边的三角形:①尖朝上的三角形共有二层,它们的总数为:W=1+2=3(个).③上②尖朝下的三角形零个,记为W③下=0(个).Ⅳ.以四条基本线段为边的三角形,只有一个,记为W④上=1(个).所以三角形的总数是10+6+6+1+3+1=27(个).2、下图共有( )个三角形.解答:Ⅰ.尖朝上的三角形有五种:(1)W①上=8+7+6+5+4=30(2)W②上=7+6+5+4=22(3)W③上=6+5+4=15(4)W④上=5+4=9(5)W⑤上=4∴尖朝上的三角形共有:30+22+15+9+4=80(个)Ⅱ.尖朝下的三角形有四种:(1) W①下=3+4+5+6+7=25(2)W②下=2+3+4+5=14(3)W③下=1+2+3=6(4)W④下=1尖朝下的三角形共有25+14+6+1=46(个)∴80+46=126个.3、下图一共有( )个三角形.解答:Ⅰ.与ABE ∆相同的三角形共有5个;Ⅱ.与ABP ∆相同的三角形共有10个;Ⅲ.与ABF ∆相同的三角形共有5个;Ⅳ.与AFP ∆相同的三角形共有5个;Ⅴ.与ACD ∆相同的三角形共有5个;Ⅵ.与AGD ∆相同的三角形共有5个.所以图中共有三角形为5+10+5+5+5+5+5=35(个).4、图ABC ∆中,cm BC 4=,BC 边被分成四等分, BC 边上的高cm AH 2=,则图中所有三角形面积的和为多少?(以AH 为边的三角形不计算在内.解答:底边为1cm 的三角形面积和为:)(442212cm =⨯÷⨯;底边为2cm 的三角形面积和为:)(632222cm =⨯÷⨯;底边为3cm 的三角形面积和为:)(622232cm =⨯÷⨯;底边为4cm 的三角形面积和为:)(412242cm =⨯÷⨯;图中所有三角形面积和为:)(2046642cm =+++.5、下图共有( )个平行四边形.解答:÷315⨯⨯⨯⨯(个)÷7(==216)215)26(56、如右图,数一数图中一共有多少个三角形?解答:这是个对称图形,我们可按如下三步顺序来数:第一步:大矩形ABCD可分为四个相同的小矩形:AEOH、EBFO、OFCG、HOGD,每个小矩形内所包含的三角形个数是相同的.第二步:每两个小矩形组合成的图形共有四个,如:ABFH、EBCG、HFCD、AEGD,每一个这样的图形中所包含的三角形个数是相同的.第三步:每三个小矩形占据的部分图形共有四个:如△ABD、△ADC、△ABC、△DBC,每一个这样的图形中所包含的三角形个数是相同的.最后把每一步中每个图形所包含三角形个数求出相加再乘以4就是整个图形中所包含的三角形的个数.Ⅰ.在小矩形AEOH中:①由一个三角形构成的8个.②由两个三角形构成的三角形有5个.③由三个或三个以上三角形构成的三角形有5个.这样在一个小矩形内17个三角形.Ⅱ.在由两个小矩形组合成的图形中,如矩形AEGD,共有5个三角形.Ⅲ.由三个小矩形占据的部分图形中,如△ABC,共有2个三角形.所以整个图形共有三角形个数是:(8+5+5+5+2)×4=25×4=100(个).7、下图共有几个长方形?解答:①除去四周凸出部分,中间大长方形内共有长方形:(7×6÷2)×(4×3÷2)=126(个);②左、右凸出部分共有长方形:(3×2÷2)×(7+6)+(5×4÷2)×(5+4)=39+90=129(个);③上、下凸出部分共有长方形:1×(8+7)=15(个).④图中共有长方形:126+129+15=270(个).8、下图共有多少个长方形?解答:①在大长方形中共有长方形:(4+3+2+1)×(3+2+1)=60(个);②在小长方形中共有长方形:(4+3+2+1)×(3+2+1)=60(个);③在①与②中重复的长方形有:1+2=3(个);④两个长方形共同组成的长方形有:(1+2)×(2+2)+1×(2+2)=16(个).⑤图中共有长方形:60+60-3+16=133(个).9、数一数下图中有多少个正方形?[分析]正方形的计算方法比较简单,因为正方形每边都是一样长,所以,如果用边长来分类就会很方便。
小学数学-有答案-学而思教育小升初专项训练3:几何篇(2)

学而思教育小升初专项训练3:几何篇(2)一、解答题(共29小题,满分0分)1. 求图中阴影部分的面积。
2. 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是________平方厘米。
3. 有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体(如图).这60个小长方体的表面积总和是________平方米。
4. 如图中每个小圆的半径是1厘米,阴影部分的周长是________厘米。
(π=3.14)5. 一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个?6. 如图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。
求扇形所在的圆面积。
7. 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(如图).问:这只羊能够活动的范围有多大?8. 如图,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。
9. 如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。
(取π=3)̂是以C为圆心,AC 10. 如图,AB与CD是两条垂直的直径,圆O的半径为15厘米,AEB为半径的圆弧,求阴影部分的面积。
11. 用棱长是1厘米的正方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?12. 在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞。
洞口是边长为1厘米的正方形,洞深1厘米(如图).求挖洞后木块的表面积和体积。
13. 如图是一个边长为2厘米的正方体。
在正方体的上面的正中向下挖一个边长为1厘厘米的小洞;第三个小米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为12厘米。
那么最后得到的立体图形的表面积是多少平方洞的挖法与前两个相同,边长为14厘米?14. 一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图。
【数学】学而思网校内部奥数习题集.低年级(第1-4套)

内部习题集——第一套一. 填空题1.计算:8+9+10+11+12+13=()2.右图中有()个正方形?3.请在括号里填上适当的数()÷3=7......1 ()÷5=3 (4)51÷()=8......3 43÷()=8 (3)4.两人共有钱300元.如果甲借给乙60元,那么甲、乙两人的钱数相等。
那么甲有()元,乙有()元。
5.育民小学三年级的部分学生排成一个实心方阵,最外面一层有学生48人 .那么除了最外面一层的学生,这个方阵一共有()名学生 .6.把一根木料截成4段用12分钟。
照这样的速度,要是把同样的木料截成8段,要用()分钟?7.将2到7这六个数,填入下图的圈中,使得每条线上的三个数的和相等.相等的和是()8.用l6个边长为2分米的小正方形拼成一个大正方形.大正方形的周长是()分米9.有A、B、C三个人,这三个人中,一位是经理,一位是会计,一位是司机。
已经知道C的年龄比会计大,A和司机的年龄不相同,司机的年龄比B小. 那么A是()职位.10.今年哥哥26岁,弟弟18岁,问()年前,哥哥的年龄是弟弟的3倍?二. 解答题11.有一批水果,第一天卖出一半,第二天卖出剩下的一半,这时还剩4箱水果 .问:这批水果一共有几箱?12.1只河马的体重等于2只大象的体重,1只大象的体重等于10匹马的体重,1匹马的体重是320千克,这只河马的体重是多少千克?13.一个数加上12,再用4除,然后减去15,再乘以10,恰好是100 .这个数是多少?14.1只菠萝的重量等于2只梨的重量,也等于4只香蕉的重量,还等于2只苹果、1只梨、1只香蕉的重量之和 .那么1只菠萝等于几只苹果的重量?15.生活中的数学问题理发店同时近来三位顾客,甲理发、刮胡子不吹风,乙只刮胡子不理发,丙理发、吹风还刮胡子,店里只有一个理发师,请安排一个合理的先后顺序 .答案部分1.分析与解答:原式=(8+13)+(9+12)+(10+11)=21×3=63.2.分析与解答:设法将正方形分类,将每一类的总数相加就得到所有的正方形的个数,由两块小三角形构成的正方形有4个,由四块小三角形构成的正方形有4个,由八块小三角形构成的正方形有1个,由十六块小三角形构成的正方形为1个。
小学数学解几何问题练习题

小学数学解几何问题练习题题目一:线段的计算1. 小明的房间长10米,宽8米,他要在房间中画一条与房间长度相等的线段,长度为多少米?2. 小红买了一条绳子,长度为12米,她要将绳子剪成两段,其中一段为4米,另一段是多长?3. 爸爸给小华买了一条绳子,长度为18米,小华想将绳子分成两段,其中一段为6米,另一段是多少米?题目二:角度的测量1. 用直角器测量下列角的大小,并在图中标出度数(图略):a) 直角b) 锐角c) 钝角2. 用分角器测量下列角的大小,并在图中标出度数(图略):a) 45度b) 60度c) 120度题目三:平行线和垂直线的判断1. 给出以下图形,判断哪些线段是平行线,哪些是垂直线(图略)。
a) AB和CDb) EF和GHc) PQ和RSd) UV和WZ2. 给出以下图形,判断哪些线段是平行线,哪些是垂直线(图略)。
a) AB和EFb) CD和GHc) PQ和RTd) UV和WZ题目四:三角形的性质1. 给出以下图形,判断哪些是等边三角形,哪些是等腰三角形(图略)。
a) △ABCb) △DEFc) △GHI2. 给出以下图形,判断哪些是等边三角形,哪些是等腰三角形(图略)。
a) △LMNb) △OPQc) △RST题目五:平行四边形和矩形的性质1. 给出以下图形,判断哪些是平行四边形,哪些是矩形(图略)。
a) ABCDb) EFGHc) IJKL2. 给出以下图形,判断哪些是平行四边形,哪些是矩形(图略)。
a) MNOPb) QRSTc) UVWX题目六:图形的面积计算1. 小明的房间是正方形,边长为6米,房间的面积是多少平方米?2. 小红的花坛是一个长方形,长为8米,宽为5米,花坛的面积是多少平方米?3. 小华做了一个三角形,底边长为12米,高为4米,三角形的面积是多少平方米?注意:以上题目仅供参考,可以根据实际情况进行修改和调整。
小学五年级数学思维专题训练—几何计数(含答案解析)

小学五年级数学思维专题训练—几何计数1.如右图所示,把一个正方体切去8个小角,那么这个新的立方体图形有____条棱。
2.下图中的每个小方格都是面积为1的正方形,面积为2的长方形有_____个。
3.如下图所示,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等)。
把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有_____种。
4.下图是由16个小正方形组成的大正方形,则在这个图中,共有_____个由小正方形组成的长方形(包括正方形)中包含“ ”。
5.下图中有_____个三角形。
6.如下图所示,两条线上有6个点。
试求出以6个点中任意3点为顶点构成的三角形一共有几个。
7.将4个小正方体拼在一起(正方体与正方体拼接的两个面要完全重合),共有_____种不同的拼法。
(旋转后相同算同一种拼法)8.如下图所示,在正方形的7个点中取4个格点作为顶点的四边形中,正方形有______个,取其中3个格点组成的等腰三角形有_______个。
9.下图是由9个点组成的,那么以图中4个点为顶点的正方形有_____个,以图中3个点为顶点的三角形有______个。
10.一块木板上有13枚钉子(如左下图)。
用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形,等等(如右下图)。
请回答:可以构成多少个正方形?11.下图是半个正方形,它被分成了若干个小的等腰直角三角形,图中,正方形有_____个,三角形有_____个。
12.下图中三角形的个数是______。
13.下图中共有______个三角形。
14.如下图中共有______个正方形。
15.数一数下图中共有_____个三角形。
16.以下图36个方格点钟的4个点为顶点的正方形的个数为______。
17.在下图由10个点排成的长方形中,每边上相邻亮点的距离都是1厘米。
如果用其中的点连成三角形,那么面积是2平方厘米的三角形的个数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【小学数学一题多解系列】几何计算题-小学数学网-学而思教育例116 有两个完全相同的长方体恰好拼成了一个正方体,正方体的表面积是30平方厘米.如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少?(北京市西城区)【分析1】因为正方体有6个相等的面,所以每个面的面积是30÷6=5平方厘米.拼成一个大长方体要减少一个面的面积,同时增加两个面的面积.由此可求大长方体的表面积.【解法1】30-30÷6+30÷6×2=30-5+10=35(平方厘米).或:30+30÷6×(2-1)=30+5=35(平方厘米).【分析2】因为拼成大长方体后,表面积先减少一个面的面积,同时又增加两个面的面积,实际上增加了一个面的面积.【解法2】30+30÷6=30+5=35(平方厘米).【分析3】把原来正方体的表面积看作“1”.先求出增加的一个面是原来正方体表面积的几分之几,再运用分数乘法应用题的解法求大长方体的表面积.【分析4】因为原来正方体的表面积是6个小正方形面积的和,拼成大长方体的表面积是7个小正方形面积的和,所以可先求每个小正方形的面积,再求7个小正方形的面积.【解法4】30÷6×(6+1)=30÷6×7=35(平方厘米).答:大长方体的表面积是35平方厘米.【评注】比较以上四种解法,解法2和解法3是本题较好的解法.例117 大正方体棱长是小正方体棱长的2倍,大正方体体积比小正方体的体积多21立方分米,小正方体的体积是多少?(北京市东城区)【分析1】把小正方体的体积看作“1倍”,那么大正方体的体积是小正方体的2×2×2=8(倍),比小正方体多8-1=7(倍).由此本题可解.【解法1】21÷(2×2×2-1)=21÷7=3(立方分米).【分析2】把小正方体的棱长看作“ 1”,那么大正方体棱长就是2.【分析3】先求出大、小正方体的体积比,再求21立方分米的对应份数,最后求出每份的体积即小正方体的体积.【解法3】大、小正方体的体积比?(2×2×2)∶(1×1×1)=8∶1小正方体的体积是多少立方分米?21÷(8-1)=3(立方分米)答:小正方体的体积是3立方分米.【评注】解法1的思路简单,运算简便.例118 一个圆锥形麦堆,底面周长是25.12米,高是3米.把这些小麦装入一个底面直径是4米的圆柱形粮囤内正好装满,这个圆柱形粮囤的高是多少米?(天津市和平区)【分析1】由题意可知,麦堆的体积等于圆柱粮囤的体积.所以先求出麦堆的体积,再除以圆柱粮囤的底面积,即得粮囤的高。
【解法1】麦堆的底面半径是多少?25.12÷3.14÷2=4(米)麦堆的体积是多少立方米?圆柱粮囤的高是多少米?综合算式:【分析2】根据麦堆的体积和圆柱粮囤体积相等列方程解.【解法2】设圆柱粮囤高是h米.体积,而这个圆柱与粮囤的体积相等,即积一定,根据圆柱体积=πr2h可知,圆柱高h与半径的平方r2成反比例.由此列方程解.【解法3】设圆柱粮囤高为h米.麦堆底半径:25.12÷3.14÷2=4(米)粮囤底半径:4÷2=2(米)16=4hh=4答:这个圆柱形粮国的高是4米.【评注】解法3的思路最简单、最灵活,运算最简便,是本题的最佳解法.例119 一个圆锥体的体积是36立方分米,高是9分米,比与它等底的圆柱体的体积小12立方分米,这个圆柱体的高是多少分米?(天津市河西区)【分析1】先求圆锥的底面积即圆柱的底面积,再求圆柱体积,最后求圆柱的高.【解法1】圆柱底面积是多少?36×3÷9=12(平方分米)圆柱的体积是多少?36+12=48(立方分米)圆柱的高是多少?48÷12=4(分米)综合算式:(36+12)÷(36×3÷9)=48÷12=4(分米).【分析2】如果设圆柱高为h,那么它相当于高为3h的等底圆锥,而这的高与圆锥的体积成正比例.【解法2】设圆柱体的高是h分米.(36+12)∶3h=36∶9答:这个圆柱体的高是4分米。
【评注】解法2的思路简单明白,运算最为简便,是本题的较好解法.本题还可用方程解,读者试解一下.例120 如下图,求阴影部分的面积(单位:厘米).(湖北省武汉市)【分析1】从图中条件可知,三角形为等腰直角三角形,所以两个锐角都是45°.因此用三角形的面积分别减去三个扇形的面积,即得阴影面积.【解法1】(10+10)×(10+10)÷2=20×20÷2-3.14×25-3.14×25=200-78.5-78.5=43(平方米)【分析2】因为三个空白扇形恰好拼成180°的扇形,所以用三角形的面积减去圆心角是180°的扇形面积,即得阴影部分的面积.【解法2】(10+10)×(10+10)÷2=20×20÷2-3.14×10×10÷2 =200-157=43(平方厘米).【分析3】同分析2.用三角形的面积减去半圆的面积,即得阴影部分的面积.【解法3】(10×2)×(10×2)÷2-3.14×10×10÷2=200-157=43(平方厘米).答:阴影部分的面积是43平方厘米.【评注】比较以上三种解法,解法3的思路较灵活,运算简便,是本题较好解法.例121 右下图是由若干个1立方厘米的正方体木块摆成的图形,它的体积是多少立方厘米?(广东省广州市越秀区)【分析1】把此图分为三层,最底层的长是5厘米,宽是4厘米,高是1厘米,由此可求底层的体积.同样可求第一层和第二层的体积,再将三层的体积加起来即得此形体体积.【解法1】最底层的体积是多少?5×4×1=20(立方厘米)第一层和第二层的体积共多少?4×2×2=16(立方厘米)此形体的体积是多少?20+16=36(立方厘米)综合算式:5×4×1+4×2×2=20+16=36(立方厘米).【分析2】把这个形体切成一个长4厘米、宽3厘米、高1厘米和一个长4厘米、宽2厘米、高3厘米的两个长方体,求其体积和.【解法2】4×3×1+4×2×3=12+24=36(立方厘米).【分析3】把原形体补充为一个长5厘米、宽4厘米、高3厘米的长方体,求出它的体积,再减去多补充的体积4×3×2=24(立方厘米),即得原形体的体积.【解法3】5×4×3-4×3×2=60-24=36(立方厘米).【分析4】因为第一、二层共有4×2×2=16(块),第三层有4×5=20(块),三层共36块,并且每块1立方厘米,由此可求36块多少立方厘米.【解法4】1×(4×2×2+4×5)=1×(16+20)=36(立方厘米).答:它的体积是36立方厘米.【评注】以上四种解法各有特色,读者可根据自己的实际情况灵活选用.例122 如图,已知圆的直径是8厘米,求阴影部分的周长和面积.(陕西省西安市新城区)【分析1】图中阴影部分的周长是大圆半周长与小圆两个半周长的和,它的面积是大半圆的面积与小半圆面积的差,再加小半圆面积的和.【解法1】周长:3.14×8÷2+3.14×(8÷2)÷2×2=25.12÷2+12.56÷2×2=12.56+12.56=25.12(厘米)=3.14×4×4÷2-3.14×2×2 7;2+3.14×2×2÷2=25.12(平方厘米).【分析2】由图可知两个小半圆是相等的,因此阴影小半圆恰好补充空白小半圆,那么阴影面积等于大圆面积减去空白大半圆面积;阴影周长是小圆周长与大圆半周长的和.=12.56+12.56=25.12(厘米)=3.14×16-3.14×8=3.14×(16-8)=25.12(平方厘米).【分析3】因为大圆直径是小圆直径的2倍,所以小圆的周长和大圆的半周长相等,由此可知阴影部分周长恰是大圆的周长.将阴影小半圆移到空白小半圆使其重合,那么阴影部分恰是大半圆.【解法3】周长:3.14×8=25.12(厘米)=3.14×16÷2=25.12(平方厘米).答:略.【评注】比较以上三种解法,解法3的思路最直接最灵活,运算最简便,是最佳解法.例123 如图,求阴影部分的面积(单位:厘米).(辽宁省大连市中山区)【分析1】先求出扇形的半径和圆心角的度数,再根据扇形面积公式求阴影的面积.【解法1】半径:36÷2=18(厘米)圆心角:360°-60°=300°阴影面积:=847.8(平方厘米).【分析2】先求出扇形所在圆的面积,再求阴影部分占圆面积的几分之几,最后运用分数乘法应用题的解法求阴影面积.=3.14×270=847.8(平方厘米).【分析3】先求扇形所在圆的面积,再求空白扇形的面积,用圆面积减去空白扇形面积,即得阴影扇形的面积.=3.14×18×18-3.14×18×3=847.8(平方厘米).【分析4】把扇形所在圆的面积看作“1”,那么空白扇形的面积占圆的面积.=3.14×270=847.8(平方厘米).答:阴影部分的面积是847.8平方厘米.【评注】比较以上四种解法,解法1的思路最简单,运算最简便,是本题最佳解法.例124 在一个现代化的体育馆里铺设了30块长20米、宽3.5米、厚0.03米的硬塑地板,这个体育馆的面积有多少平方米?(江苏省南京市鼓楼区)【分析1】先求出每块硬塑板的占地面积,再求30块硬塑板的面积即体育馆占地面积.【解法1】20×3.5×30=70×30=2100(平方米).【分析2】把这30块硬塑板平放成宽20米,长是30个3.5米的长方形,求出这个长方形的面积即体育馆的面积.【解法2】3.5×30×20=105×20=2100(平方米).【分析3】把这30块硬塑板平放成长是30个20米、宽是3.5米的长方形,求出这个长方形的面积即体育馆的面积.【解法3】20×30×3.5=600×3.5=2100(平方米).答:这个体育馆的面积有2100平方米.【评注】解法1的思路最直接,解法最佳.例125 求图中阴影部分的面积(单位:厘米).(吉林省)【分析1】先求平行四边形的面积,再求空白三角形的面积,用平行四边形的面积减去三角形的面积,即得阴影部分的面积.【解法1】8×4-8×4÷2=32-16=16(平方厘米).【分析2】假设AE是6厘米,那么BE的长是8-6=2厘米.由此直接求出两个阴影三角形的面积,再求它们的面积和,即得阴影面积.【解法2】假设AE长6厘米,那么BE的长是8-6=2厘米.6×4÷2+2×4÷2=12+4=16(平方厘米).【分析3】因为三角形DEC和平行四边形等底等高,所以三角形DEC的面积是平行四边形面积的一半.由此求出平行四边形的面积再除以2即得阴影部分的面积.【解法3】8×4÷2=16(平方厘米).【分析4】把三角形ADE沿AB向右平移,使AD与BC重合,这样两个阴影三角形恰好拼成一个底是8厘米、高是4厘米的三角形,求出此三角形的面积即得阴影面积.【解法4】8×4÷2=16(平方厘米).答:阴影部分的面积是16平方厘米.【评注】解法1和解法2虽然易于理解和掌握,但运算较繁.解法3和解法4的思路直接,简单灵活,运算简便,是本题最佳解法.例127 如图,求阴影部分的面积(单位:厘米).(湖南省长沙市东区)【分析1】先求大半圆的面积,再求小半圆的面积,用大半圆面积减去小半圆面积即得阴影部分的面积.=1413-39.25=1373.75(平方厘米).【分析2】先求大圆面积,再求小圆面积,用大圆面积减去小圆面积,再除以2即得阴影部分的面积.=(2826-78.5)÷2=2747.5÷2=1373.75(平方厘米).【分析3】本题是求半圆环面积.可先求圆环面积,再除以2即得.如果设大圆半径为R,小圆半径为r,那么圆环面积=πR2-πr2=π(R2-r2)【解法3】R=60÷2=30(厘米)r=10÷2=5(厘米)3.14×(30×30-5×5)÷2=3.14×(900-25)÷2=2747.5÷2=1373.75(平方厘米).【评注】比较以上五种解法,前四种解法的综合算式可通过乘法分配律相互转化,其中解法3的运算简便,是本题的较好解法.例129 从一个长方体上截下一个棱长4厘米的正方体后,剩下的是一个长方体,它的体积是32立方厘米.原来长方体最长的一条棱是多少厘米?(山西省太原市)【分析1】因为截下的是正方体,所以剩下长方体的截面是正方形.因此可求出剩下长方体的长,再加上截下正方体的棱长,即得原来长方体的最长棱.【解法1】剩下长方体的长?32÷(4×4)=2(厘米)原来长方体的最长棱?2+4=6(厘米)综合算式:32÷(4×4)+4=32÷16+4=6(厘米).【分析2】用剩下长方体的体积加上截下正方体的体积,即得原来长方体的体积.再根据“长方体体积=底面积×高”,用原长方体的体积除以底面积即得它的最长棱.【解法2】截下正方体的体积?4×4×4=64(立方厘米)原来长方体的体积?64+32=96(立方厘米)原长方体的最长棱?96÷(4×4)=6(厘米)综合算式:(4×4×4+32)÷(4×4)=(64+32)÷16=96÷16=6(厘米).【分析3】根据“剩下的长方体体积加上截下的正方体体积等于原来长方体的体积”这一等量关系,列方程解.【解法3】设原来最长棱x厘米.32+4×4×4=(4×4)x32+64=16xx=96÷16x=6【分析4】用比例解法.因为长方体的体积÷高=底面积,底面积一定,所以长方体的体积和高成正比例.即长方体的体积与最长棱成正比例.【解法4】设原来最长棱x厘米.(4×4×4)∶4=(32+4×4×4)∶x 64∶4=96∶x64x=4×96x=6答:原来长方体的最长棱是6厘米.【评注】后三种解法都需要求出原来长方体的体积,再求原来的最长棱,运算较繁.解法1的思路简单明白,且运算简便,所以是本题的最佳解法.例131 把一个高3分米圆柱体的底面分成许多个相等的扇形,然后把圆柱体切开,拼成一个与它等高的近似长方体,长方体的表面积比圆柱体的表面积增加12平方分米,原来圆柱体的体积是多少?(福建省福州市)【分析1】把圆柱体切拼成长方体后,它的表面积实际上增加了两个长方形S的面积,即12平方分米.由此可求一个长方形的面积,再除以它的长(即圆柱的高),即得它的宽(即圆柱底面半径).由此可根据圆柱体积公式求它的体积.【解法1】3.14×(12÷2÷3)2×3 =3.14×4×3=37.68(立方分米).【分析2】先求圆柱底面半径,再求圆柱底面半周长,即长方体的长.最后根据长方体的体积=长×宽×高,或把S面当作底面,根据长方体体积=底面积×高,求出长方体体积,即圆柱的体积.【解法2】(12÷2÷3×3.14)×(12÷2÷3)×3=6.28×2×3=37.68(立方分米).或:(12÷2)×(12÷2÷3×3.14)=6×6.28=37.68(立方分米).【分析3】如图把长方体的前面(曲面)当作底面,长方体的宽(半径)当作高,根据长方体的体积=底面积×高,求出长方体的体积.关键是先求圆柱侧面积的一半(曲面).【解法3】(12÷2÷3×3.14×3)×(12÷2÷3)=18.84×2=37.68(立方分米).答:原来圆柱体的体积是37.68立方分米.【评注】比较以上四种解法,解法1的运算较简便,思路也较直接,是本题较好的解法.后两种解法的运算虽繁些,但对一些特殊题目的解答,可起到事半功倍的作用.。