浙江省中考数学压轴题分类及解析
浙江省各市中考数学分类解析 专题12 押轴题

专题12:押轴题一、选择题1.(2012浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】A.①②B.②③C.②③④D.①③④【答案】C。
【考点】二元一次方程组的解,解一元一次不等式组。
【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:解方程组x y=4ax y=3a-⎧⎨-⎩+3,得x=12ay=1a+⎧⎨-⎩。
∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。
①x=5y=1⎧⎨-⎩不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,故当x≤1时,1≤y≤4,结论正确。
,故选C。
2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【】A.5 B.453C.3 D.43. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A 的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【】A. B.C.D.【答案】D。
【考点】动点问题的函数图象。
【分析】因为动点P按沿折线A→B→D→C→A的路径运动,因此,y关于x的函数图象分为四部分:A→B,B→D,D→C,C→A。
浙江省中考数学压轴题分类及解析.pptx

在△ABD 和△BCE 中,
,
∴△ABD≌△BCE(ASA); 2 △DEF 是正三角形;理由如下: ∵△ABD≌△BCE≌△CAF, ∴∠ADB=∠BEC=∠CFA, ∴∠FDE=∠DEF=∠EFD, ∴△DEF 是正三角形; 3 作 AG⊥BD 于 G,如图所示: ∵△DEF 是正三角形, ∴∠ADG=60°,
,
答:a 的值为 0.04,b 的值为 30;
(2)①当 0≤t≤50 时,设 y 与 t 的函数解析式为 y=k1t+n1,
将(0,15)、(50,25)代入,得:
,
解得:
,
∴y 与 t 的函数解析式为 y= t+15; 当 50<t≤100 时,设 y 与 t 的函数解析式为 y=k2t+n2,
路段流量 q 与速度 v 之间的部分数据如下表:[来源:学科网 ZXXK]
速度 v(千米/小时) …[来源:学科网] 5 10 20 32 40 48 …
流量 q(辆/小时) …
550 1000 1600 1792 1600 1152 …
(1) 根据上表信息,下列三个函数关系式中,刻画 q,v 关系最准确的是
(只需填上
正确答案的序号)①
②
③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最
大流量是多少?
(3) 已知 q,v,k 满足
,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当
时道路 出现轻度拥堵,试分析当车流密度 k
在什么范围时,该路段出现轻度拥堵;
在 Rt△ADG 中,DG= b,AG= b,
在 Rt△ABG 中,c2=(a+ b)2+( b)2,
备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)6选择压轴题含详解

专题06选择压轴题1.(2022•杭州)如图,已知ABC ∆内接于半径为1的O ,(BAC θθ∠=是锐角),则ABC ∆的面积的最大值为()A .cos (1cos )θθ+B .cos (1sin )θθ+C .sin (1sin )θθ+D .sin (1cos )θθ+2.(2021•杭州)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是()A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+3.(2020•杭州)在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,()A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =4.(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则()A .1M N =-或1M N =+B .1M N =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-5.(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连接BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,()A .若2AD AB >,则1232S S >B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <6.(2022•上城区一模)在直角坐标系中,一次函数12(0)y kx k k =+-≠的图象记作G ,以原点O 为圆心,作半径为1的圆,有以下几种说法:①当G 与O 相交时,y 随x 增大而增大;②当G 与O 相切时,54k =;③当G 与O 相离时,43k >或0k <.其中正确的说法是()A .①B .①②C .①③D .②③7.(2022•拱墅区一模)设函数(1)(1)(y x a x a a =-+--是实数),当1x =,2,3时,对应的函数值分别为r ,s ,(t )A .若52a >,则1r ss t -<-B .若522a <<,则01r ss t-<<-C .若52a <,则1r s s t-<--D .若322a <<,则10r s s t--<<-8.(2022•西湖区一模)已知1y ,2y 均为关于x 的函数,当x a =时,函数值分别为1A ,2A ,若对于实数a ,当01a <<时,都有1211A A -<-<,则称1y ,2y 为亲函数,则以下函数1y 和2y 是亲函数的是()A .211y x =+,21y x =-B .211y x =+,221y x =-C .211y x =-,21y x=-D .211y x =-,221y x =-9.(2022•钱塘区一模)在菱形ABCD 中,已知30A ∠=︒,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,且AE BF CG DH ===.若线段AE 与AB 的比值为(01)k k <<,则四边形EFGH 与菱形ABCD 的面积比可表示为()A .2221k k -+B .2221k k ++C .222k k -+D .2221k k -++10.(2022•淳安县一模)已知二次函数2(0)y ax bx a =-≠,经过点(,2)P m .当1y - 时,x 的取值范围为1x t - 或3x t -- .则如下四个值中有可能为m 的是()A .1B .2C .3D .411.(2022•富阳区一模)已知二次函数2()(0)y a x h k a =-+≠的图象与一次函数(0)y mx n m =+≠的图象交于1(x ,1)y 和2(x ,2)y 两点,()A .若0a <,0m <,则122x x h +>B .若0a >,0m <,则122x x h +>C .若122x x h +>,则0a >,0m >D .若122x x h +<,则0a >,0m <12.(2022•临安区一模)已知点11(P x ,1)y ,22(P x ,2)y 为抛物线24(0)y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A .若124x x +<,则12y y <B .若124x x +>,则12y y <C .若12(4)0a x x +->,则12y y >D .若12(4)0a x x +-<,则12y y >13.(2022•钱塘区二模)如图,已知Rt ABC ∆,2AC BC ==,将ABC ∆绕点A 沿逆时针方向旋转后得到ADE ∆,直线BD 、CE 相交于点F ,连接AF ,则下列结论中:①AB =;②ABD ACE ∆∆∽;③45BFC ∠=︒;④F 为BD 的中点,其中正确的有()A .①②③B .①②④C .①②③④D .②③④14.(2022•西湖区校级一模)12()()(0)y a x x x x t a =--+>,点0(x ,0)y 是函数图象上任意一点,()A .若0t <,则2012()4ay x x <--B .若0t,则2012()4ay x x >--C .若0t <,则2012()4ay x x -- D .若0t,则2012()4ay x x -- 15.(2022•萧山区校级一模)已知代数式12()()x x x x mx n --++化简后为一个完全平方式,且当1x x =时此代数式的值为0,则下列式子中正确的是()A .12x x m-=B .21x x m-=C .12()m x x n -=D .12mx n x +=16.(2022•萧山区一模)已知二次函数1(1)(1)y ax bx =--和2()()(0)(y x a x b ab =--≠)A .若11x -<<,10a b>>,则12y y >B .若1x <,10a b>>,则12y y >C .若11x -<<,10a b <<,则12y y <D .若1x <-,10a b<<,则12y y <17.(2022•滨江区一模)在平面直角坐标系中,二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的图象经过点(2,)A m ,当1x 时,1y m + ;当1x >时,y m,则(a =)A .1-B .14-C .14D .118.(2022•上城区二模)如图,四边形ABCD 内接于O ,AB 为O 的直径,延长BA 与弦CD 的延长线交于点P ,已知12PD AB =,下列结论:①若 CD AD BC=+,则2AB CD =;②若60B ∠=︒,则20P ∠=︒;③若30P ∠=︒,则31PA PD =-;④AD BC 的值可能等于13.其中正确的序号是()A .①②③B .①②④C .②③④D .①③④19.(2022•余杭区一模)关于函数(1)(1)y mx m x =+--.下列说法正确的是()A .无论m 取何值,函数图象总经过点(1,0)和(1,2)--B .当12m ≠时,函数图象与x 轴总有2个交点C .若12m >,则当1x <时,y 随x 的增大而减小D .若0m >时,函数有最小值是114m m--+20.(2022•富阳区二模)约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,且该函数的对称轴始终位于直线2x =的右侧,有结论①0a c +=;②4b =;③11042a b c ++<;④10a -<<.则下列结论正确的是()A .①②③B .①③④C .①②④D .②③④21.(2022•西湖区校级模拟)已知a ,b ,c 是互不相等的非零实数,有三条抛物线:22y ax bx c =++,22y bx cx a =++,22y cx ax b =++.则这三条抛物线与x 轴的交点个数情况是()A .三条抛物线中至少有一条与x 轴有两个交点B .三条抛物线中至多有一条与x 轴有两个交点C .三条抛物线与x 轴都只有一个交点D .三条抛物线与x 轴都没有交点22.(2022•富阳区一模)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,图象过点(2,0)A -,对称轴为直线12x =,给出以下结论:①0abc <;②930a b c ++<;③若5(2-,1)y 、5(2,2)y 为函数图象上的两点,则12y y >;④111()()422a b m am b m +>+≠,其中正确的结论是()A .①②③④B .①②③C .①④D .①③④23.(2022•西湖区校级二模)已知直线12//l l ,直线34//l l ,且13l l ⊥,若以1l ,2l 中的一条直线为x 轴,3l ,4l 中的一条直线为y 轴,建立平面直角坐标系,设向右、向上为正方向,且抛物线212(0)2y ax ax a =-+>与这四条直线的位置如图所示,则所建立的平面直角坐标系中的x 轴、y 轴分别为()A .直线1l ,3lB .直线1l ,4lC .直线2l ,3lD .直线2l ,4l 24.(2022•西湖区校级模拟)已知函数1y 和2y 是关于x 的函数,点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,规定:当n q =时,有0m p +=,那么称函数1y 和2y 具有“性质O ”,则下列函数具有“性质O ”的是()A .212y x x =-和21y x =-B .2121y x x =-+-和2y x =-C .212y x x =-和21y x =-+D .2121y x x =---和2y x=25.(2022•下城区校级二模)若二次函数的解析式为()(1)(15)y x m x m =-- .若函数过(,)p q 点和(5,)p q +点,则q 的取值范围为()A .92544qB .944q --C .2524qD .924q -- 26.(2022•杭州模拟)二次函数21y x =第一象限的图象上有两点(,)A a k ,(,1)B b k +,关于二次函数22(b my x x m a a=++为任意实数)与x 轴交点个数判断错误的是()A .若1m =,则2y 与x 轴可能没有交点B .若12m =,则2y 与x 轴必有2个交点C .若1m =-,则2y 与x 轴必有2个交点D .若14m =,则2y 与x 轴必有2个交点27.(2022•江干区校级模拟)二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k .且另有一点(,)B k m 也在该函数图象上,则下列结论一定正确的是()A .m k>B .m k<C .()0a m k -<D .()0a m k ->28.(2022•拱墅区模拟)已知二次函数(4)()y x k x k m =--+++,其中k ,m 为常数.下列说法正确的是()A .若2k >,0m <,则二次函数y 的最大值小于0B .若2k ≠,0m <,则二次函数y 的最大值大于0C .若2k <,0m ≠,则二次函数y 的最大值小于0D .若2k ≠,0m >,则二次函数y 的最大值大于029.(2022•拱墅区模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD ,已知3AB =,4BC =,设PAB ∆、PBC ∆、PCD ∆、PDA ∆的面积分别为1S 、2S 、3S 、4S ,下列判断,其中不正确的是()A .PA PB PC PD +++的最小值为10B .若PAB PCD ∆≅∆,则PAD PBC ∆≅∆C .若PAB PDA ∆∆∽,则2PA =D .若12S S =,则34S S =30.(2022•拱墅区模拟)已知抛物线22y x bx c =-++与x 轴只有一个交点,且过点(6,)A m n -,(2,)B m n +,则n 的值为()A .32-B .18-C .16-D .12-专题06选择压轴题1.(2022•杭州)如图,已知ABC ∆内接于半径为1的O ,(BAC θθ∠=是锐角),则ABC ∆的面积的最大值为()A .cos (1cos )θθ+B .cos (1sin )θθ+C .sin (1sin )θθ+D .sin (1cos )θθ+【答案】D【详解】当ABC ∆的高AD 经过圆的圆心时,此时ABC ∆的面积最大,如图所示,A D BC '⊥ ,2BC BD ∴=,BOD BA C θ∠=∠'=,在Rt BOD ∆中,sin 1BD BD OB θ==,cos 1OD ODOB θ==sin BD θ∴=,cos OD θ=,22sin BC BD θ∴==,1cos A D A O OD θ'='+=+,∴112sin (1cos )sin (1cos )22ABC S A D BC θθθθ∆='⋅=⋅+=+.故选:D .2.(2021•杭州)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是()A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+【答案】A【详解】A .令120y y +=,则2210x x x +--=,解得x =或x =1y 和2y 具有性质P ,符合题意;B .令120y y +=,则2210x x x +-+=,整理得,210x x ++=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;C .令120y y +=,则110x x---=,整理得,210x x ++=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;D .令120y y +=,则110x x--+=,整理得,210x x -+=,方程无解,即函数1y 和2y 不具有性质P ,不符合题意;故选:A .3.(2020•杭州)在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,()A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =【答案】B【详解】A 、错误.由12M =,22M =,可得240a ->,280b ->,取3a =,215b =,则25b c a==,此时2160c ->.故A 错误.B 、正确.理由:11M = ,20M =,240a ∴-=,280b -<,a ,b ,c 是正实数,2a ∴=,2b ac = ,212c b ∴=,对于234y x cx =++,则有△244221111616(64)(8)(8)0444c b b b b =-=-=-=+-<,30M ∴=,∴选项B 正确,C 、错误.由10M =,22M =,可得240a -<,280b ->,取1a =,218b =,则218b c a==,此时2160c ->.故C 错误.D 、由10M =,20M =,可得240a -<,280b -<,取1a =,24b =,则24b c a==,此时2160c -=.故D 错误.故选:B .4.(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则()A .1M N =-或1M N =+B .1M N =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-【答案】C【详解】()()y x a x b =++ ,a b ≠,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠ ,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+;综上可知,M N =或1M N =+.故选:C .另一解法:a b ≠ ,∴抛物线()()y x a x b =++与x 轴有两个交点,2M ∴=,又 函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,而2(1)(1)()1y ax bx abx a b x =++=+++,它至多是一个二次函数,至多与x 轴有两个交点,2N ∴ ,N M ∴ ,∴不可能有1M N =-,故排除A 、B 、D ,故选:C .5.(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连接BE .记ADE ∆,BCE∆的面积分别为1S ,2S ,()A .若2AD AB >,则1232S S >B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <【答案】D【详解】 如图,在ABC ∆中,//DE BC ,ADE ABC ∴∆∆∽,∴2112(BDE S AD S S S AB∆=++,∴若2AD AB >,即12AD AB >时,11214BDE S S S S ∆>++,此时123BDE S S S ∆>+,而222BDE S S S ∆+<.但是不能确定13S 与22S 的大小,故选项A 不符合题意,选项B 不符合题意.若2AD AB <,即12AD AB <时,11214BDE S S S S ∆<++,此时12232BDE S S S S ∆<+<,故选项C 不符合题意,选项D 符合题意.故选:D.6.(2022•上城区一模)在直角坐标系中,一次函数12(0)y kx k k =+-≠的图象记作G ,以原点O 为圆心,作半径为1的圆,有以下几种说法:①当G 与O 相交时,y 随x 增大而增大;②当G 与O 相切时,54k =;③当G 与O 相离时,43k >或0k <.其中正确的说法是()A .①B .①②C .①③D .②③【答案】C【详解】12(0)y kx k k =+-≠ ,当2x =时,1y =,∴一次函数经过点(2,1),如图,(2,1)P ,A 、B 为直线与圆的切点,连接OB 、AB 、OP 交AB 于点C ,过B 作BE y ⊥轴于E ,(0,1)A ,//PA x ∴轴,2PA = ,1OA =,225OP PA OA ∴=+=Rt PAO ∆中,sin 5OPA ∠=cos 5OPA ∠=,由切线长定理得:PB PA =,PO AB ⊥,2AB AC ∴=,2sin 5AC AP OPA =∠=5AB ∴=,90AOP OPA ∠+∠=︒ ,90AOC OAC ∠+∠=︒,OAC OPA ∴∠=∠,Rt ABE ∆中,414sin 555BE AB EAB =∠=,428cos 555AE AB EAB =∠=,35OE AE OA ∴=-=,4(5B ∴,3)5-,代入12(0)y kx k k =+-≠可得:43k =, 直线12(0)y kx k k =+-≠与y 轴交点坐标为(0,12)k -,当43k =时,直线与圆相切,直线与y 轴交点5(0,3-,当43k >时,5123k -<-,直线与圆相离;当0k <时,121k ->,直线与圆相离;当403k <<时,51213k -<-<,直线与圆相交; 直线与圆相交时,403k <<,∴一次函数递增,故①正确;直线与圆相切时,43k =,故②错误; 直线与圆相离时,43k >或0k <,故③正确,①③正确,故选:C .7.(2022•拱墅区一模)设函数(1)(1)(y x a x a a =-+--是实数),当1x =,2,3时,对应的函数值分别为r ,s ,(t )A .若52a >,则1r s s t -<-B .若522a <<,则01r s s t -<<-C .若52a <,则1r s s t -<--D .若322a <<,则10r s s t--<<-【答案】D 【详解】将1x =,2,3分别代入(1)(1)y x a x a =-+--得22r a a =-,243s a a =-+,268t a a =-+,∴22222(43)232143(68)2525r s a a a a a s t a a a a a a ----+-===+--+--+--,当52a >时,2025a >-,∴1r s s t->-,选项A 不正确,当522a <<时,2225a <--,∴1r s s t-<--,选项B 不正确.当52a <时,2025a <-,∴1r s s t-<-,选项C 不正确.当322a <<时,22125a -<<--,10r s s t -∴-<<-,选项D 正确.故选:D .8.(2022•西湖区一模)已知1y ,2y 均为关于x 的函数,当x a =时,函数值分别为1A ,2A ,若对于实数a ,当01a <<时,都有1211A A -<-<,则称1y ,2y 为亲函数,则以下函数1y 和2y 是亲函数的是()A .211y x =+,21y x =-B .211y x =+,221y x =-C .211y x =-,21y x =-D .211y x =-,221y x =-【答案】D【详解】(1)A 选项,211y x =+ ,21y x =-,21211y y x x∴-=++,当01x <<时,11x>,且211x +>,212111y y x x ∴-=++>,即此选项不合题意;(2)B 选项,211y x =+ ,221y x =-,2121(21)y y x x ∴-=+--2(1)1x =-+,当01x <<时,2(1)11x -+>,即此选项不合题意;(3)C 选项,211y x =- ,21y x=-,21211()y y x x∴-=---211x x=+-,当12x =时,215114x x +-=>,即此选项不合题意;(4)D 选项,211y x =- ,221y x =-,2121(21)y y x x ∴-=---22x x =-,当01x <<时,2120x x -<-<,即此选项符合题意;故选:D .9.(2022•钱塘区一模)在菱形ABCD 中,已知30A ∠=︒,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,且AE BF CG DH ===.若线段AE 与AB 的比值为(01)k k <<,则四边形EFGH 与菱形ABCD 的面积比可表示为()A .2221k k -+B .2221k k ++C .222k k -+D .2221k k -++【答案】A 【详解】设AB BC CD DA x ====,AE BF CG DH kx ====,则AH DG CF BE x kx ====-,过F 作MN CD ⊥于N ,交AB 延长线于点M,: 四边形ABCD 是菱形,30A C ∴∠=∠=︒,AB BC CD AD ===,AE BF CG DH === ,BE CF DG AH ∴===,在AEH ∆和CGF ∆中,AE CGA C AH CF=⎧⎪∠=∠⎨⎪=⎩,()AEH CGF SAS ∴∆≅∆,同理:()BEF DGH SAS ∆≅∆,30A ∠=︒ ,//AB BCD ,30C MBF ∴∠=∠=︒,122kx FM BF ∴==,122x kxFN CF -==,2xMN FM FN ∴=+=,∴菱形ABCD 的面积222xx x =⋅=,四边形EFGH 的面积=菱形ABCD 的面积2CGF-∆的面积2BEF -∆的面积22221122()222222x x kx kx x x kx x kx kx k x -=⋅-⨯⨯⋅-⨯⨯-=-+,∴四边形EFGH 与菱形ABCD 的面积比为22222222212x kx k x k k x -+=-+.故选:A .10.(2022•淳安县一模)已知二次函数2(0)y ax bx a =-≠,经过点(,2)P m .当1y - 时,x 的取值范围为1x t -或3x t -- .则如下四个值中有可能为m 的是()A .1B .2C .3D .4【答案】A 【详解】当1y - 时,21ax bx -- ,x 的取值范围为1x t -或3x t -- ,(1,1)t ∴--,(3,1)t ---为抛物线上的点,∴抛物线对称轴为直线1322t t x ---==-,∴22b a=-,4b a ∴=-,224(2)4y ax ax a x a ∴=+=+-,当0a >时,41a -- ,解得14a ,将(,2)m 代入解析式得242am am +=,22144a m m ∴=+ ,2048m m ∴<+ ,24(2)12m ∴<+ ,24m ∴--<-或02m <-+ ,故选:A .11.(2022•富阳区一模)已知二次函数2()(0)y a x h k a =-+≠的图象与一次函数(0)y mx n m =+≠的图象交于1(x ,1)y 和2(x ,2)y 两点,()A .若0a <,0m <,则122x x h+>B .若0a >,0m <,则122x x h +>C .若122x x h +>,则0a >,0m >D .若122x x h +<,则0a >,0m <【答案】A【详解】2()y a x h k =-+ ,∴抛物线对称轴为直线x h =,0a < ,0m <,∴抛物线开口向下,一次函数中y 随x 增大而减小,设12x x <,则12y y >,∴122x x h +>,122x x h ∴+>.故选:A .12.(2022•临安区一模)已知点11(P x ,1)y ,22(P x ,2)y 为抛物线24(0)y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A .若124x x +<,则12y y <B .若124x x +>,则12y y <C .若12(4)0a x x +->,则12y y >D .若12(4)0a x x +-<,则12y y >【答案】C【详解】24y ax ax c =-++ ,∴抛物线对称轴为直线422a x a=-=-,22(P x ,2)y 关于直线2x =的对称点为2(4P x -,2)y ,若124x x +<,由2244x x +-=,12x x <,可得124x x <-,当抛物线开口向上时,12y y >,∴选项A 错误.若124x x +>,由2244x x +-=,12x x <,可得2124x x x -<<,当抛物线开口向下时,12y y >,∴选项B 错误.若12(4)0a x x +->,当124x x +<时,则0a <,0a ->,抛物线开口向上,12y y ∴>,当124x x +>时,则0a >,0a -<,抛物线开口向下,12y y ∴>,选项C 正确.若12(4)0a x x +-<,当124x x +<时,0a >,0a -<,抛物线开口向下,12y y ∴<,选项D 错误.解法二:作差法,21114y ax ax c =-++ ,22224y ax ax c =-++,221211224(4)y y ax ax c ax ax c ∴-=-++--++221212()4()a x x a x x =--+-121212()()4()a x x x x a x x =-+-+-1212()(4)a x x x x =--+-12x x < ,120x x ∴-<,当12(4)0a x x +->时,则1212()(4)0a x x x x --+->,12y y ∴>,故选:C .13.(2022•钱塘区二模)如图,已知Rt ABC ∆,2AC BC ==,将ABC ∆绕点A 沿逆时针方向旋转后得到ADE ∆,直线BD 、CE 相交于点F ,连接AF ,则下列结论中:①22AB =;②ABD ACE ∆∆∽;③45BFC ∠=︒;④F 为BD 的中点,其中正确的有()A .①②③B .①②④C .①②③④D .②③④【答案】C【详解】在Rt ABC ∆,2AC BC ==,222222AB +=∴①正确;由旋转的性质可得:22AB AD ==,2AC AE ==,BAC DAE ∠=∠,∴AD ABAE AC =,且DAB EAC ∠=∠,ABD ACE ∴∆∆∽,∴②正确;ABD ACE ∆∆ ∽,DBA ECA ∴∠=∠,45BFC BAC ∴∠=∠=︒,∴③正确;45BFC BAC ∠=∠=︒ ,A ∴、B 、C 、F 四点共圆,90BFA ∴∠=︒,AB AD = ,BF DF ∴=,即F 为BD 的中点,∴④正确.故选:C .14.(2022•西湖区校级一模)12()()(0)y a x x x x t a =--+>,点0(x ,0)y 是函数图象上任意一点,()A .若0t <,则2012()4a y x x <--B .若0t ,则2012()4a y x x >--C .若0t <,则2012()4a y x x -- D .若0t ,则2012()4a y x x --【答案】D 【详解】对称轴公式为122x x x +=,将其代入12()()(0)y a x x x x t a =--+>,y ∴的最小值为212121212()()()224x x x x a a x x t x x t ++--+=--+,0a > ,∴顶点处为最小值, 点0(x ,0)y 是函数图象上任意一点.2012()4a y x x t ∴--+ ,即A 、B 选项都不对,若0t 时,2012()4a y x x -- ,故选:D .15.(2022•萧山区校级一模)已知代数式12()()x x x x mx n --++化简后为一个完全平方式,且当1x x =时此代数式的值为0,则下列式子中正确的是()A .12x x m-=B .21x x m -=C .12()m x x n -=D .12mx n x +=【答案】B【详解】1x x = ,0mx n ∴+=,12()()x x x x mx n --++ 21212()x x x m x x x n=-+-++21()x x =-22112x x x x =-+,1212x x m x ∴+-=,即21x x m -=.故选:B .16.(2022•萧山区一模)已知二次函数1(1)(1)y ax bx =--和2()()(0)(y x a x b ab =--≠)A .若11x -<<,10a b >>,则12y y >B .若1x <,10a b >>,则12y y >C .若11x -<<,10a b <<,则12y y <D .若1x <-,10a b <<,则12y y <【答案】D【详解】21(1)(1)()1y ax bx abx a b x =--=-++,22()()()(0)y x a x b x a b x ab ab =--=-++≠,2212(1)1(1)(1)(1)(1)(1)y y ab x ab ab x ab x x ∴-=-+-=--=-+-.对于A 选项,11x -<< ,(1)(1)0x x ∴+-<,10a b>> ,1ab ∴>,(1)(1)(1)0ab x x ∴-+-<,即12y y <,故A 选项错误;对于B 选项,1x < ,(1)(1)x x ∴+-不确定正负,1y ∴与2y 的大小无法确定,故B 选项错误;对于C 选项,11x -<< ,(1)(1)0x x ∴+-<, 10a b<<,01ab ∴<<,10ab ∴-<,(1)(1)(1)0ab x x ∴-+->,即12y y >,故C 选项错误;对于D 选项,1x <- ,(1)(1)0x x ∴+->, 10a b<<,01ab ∴<<,10ab ∴-<,(1)(1)(1)0ab x x ∴-+-<,即12y y <,故D 选项正确.故选:D .17.(2022•滨江区一模)在平面直角坐标系中,二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的图象经过点(2,)A m ,当1x 时,1y m + ;当1x >时,y m,则(a =)A .1-B .14-C .14D .1【答案】D 【详解】 当1x 时,1y m + ,∴函数开口向上,且当1x =时,1y m =+,当1x >时,y m,∴函数的对称轴为2x =,将点(2,)m ,(1,1)m +代入函数2y ax bx c =++,得42122a b c m a b c m b a⎧⎪++=⎪++=+⎨⎪⎪-=⎩,解得:1a =,故选:D .18.(2022•上城区二模)如图,四边形ABCD 内接于O ,AB 为O 的直径,延长BA 与弦CD 的延长线交于点P ,已知12PD AB =,下列结论:①若 CD AD BC =+,则2AB CD =;②若60B ∠=︒,则20P ∠=︒;③若30P ∠=︒,则31PA PD =-;④AD BC的值可能等于13.其中正确的序号是()A .①②③B .①②④C .②③④D .①③④【答案】A 【详解】①连接OC ,OD ,CD 的度数 AD =的度数 BC +的度数, CD 的度数 AD +的度数 BC+的度数180=︒∴ CD的度数90=︒,90COD ∴∠=︒,CD ∴=,2AB OD ∴===,故①正确;②60B ∠=︒ ,OBC ∴∆是等边三角形,60COB ∴∠=︒,12PD AB = ,PD OD OC OB ∴===,P DOP ∴∠=∠,ODC OCD ∠=∠,2ODC OCD P ∴∠=∠=∠,2360P OCD P COB ∴∠+∠=∠=∠=︒,20P ∴∠=︒,故②正确;③30P ∠=︒ ,30ODP P ∴∠=∠=︒,120PDO ∴∠=︒,OP ∴=,∴1PA PA PD OD==-,故③正确;④若13AD BC =,PAD PCB ∠=∠ ,P P ∠=∠,PAD PCB ∴∆∆∽,∴13AD PD BC PB ==,13PD PB ∴=,12PD AB = ,PD PA ∴=,PD OD PA OA PO ∴+=+=,∴点D 与A 重合,与题目矛盾,故④错误,故选:A .19.(2022•余杭区一模)关于函数(1)(1)y mx m x =+--.下列说法正确的是()A .无论m 取何值,函数图象总经过点(1,0)和(1,2)--B .当12m ≠时,函数图象与x 轴总有2个交点C .若12m >,则当1x <时,y 随x 的增大而减小D .若0m >时,函数有最小值是114m m --+【答案】D【详解】A .当1x =时,(1)(1)0y mx m x =+--=,当1x =-时,(1)(1)2y mx m x =+--=,故图象过(1,0)和(1,2)-,故A 错误,不符合题意;B .当0m =时,(1)(1)1y mx m x x =+--=-,该函数与x 轴只有一个交点,故B 错误,不符合题意;C .12m >,则函数为开口向上的抛物线,则1(1)(1)(1)m y mx m x m x x m-=+--=+-,则该函数的对称轴为直线111(1122m x m m -=+=<,故1x <时,y 随x 的增大而即可能减小也可能增大,故C 错误,不符合题意;D .若0m >时,二次函数在顶点处取得最小值,当12x m =时,1(1)(1)14y mx m x m m-=+--=-+,故D 正确,符合题意;故选:D .20.(2022•富阳区二模)约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,且该函数的对称轴始终位于直线2x =的右侧,有结论①0a c +=;②4b =;③11042a b c ++<;④10a -<<.则下列结论正确的是()A .①②③B .①③④C .①②④D .②③④【答案】C【详解】 点(1,)A m ,(,4)B n -是关于x 的“黄金函数”2(0)y ax bx c a =++≠上的一对“黄金点”,A ∴,B 关于原点对称,4m ∴=,1n =-,(1,4)A ∴,(1,4)B --,代入2(0)y ax bx c a =++≠得4??4a b c a b c ++=⎧⎨+=⎩,∴40b a c =⎧⎨+=⎩,∴①②正确,该函数的对称轴始终位于直线2x =的右侧,22b a ∴->,422a∴->,10a ∴-<<,④正确,0a c += ,01c ∴<<,c a =-,当12x =时,21113224244y ax bx c a b c a a a =++=++=+-=-,10a -<< ,304a ∴->,∴11320424a b c a ++=->,③错误.综上所述,结论正确的是①②④.故选:C .21.(2022•西湖区校级模拟)已知a ,b ,c 是互不相等的非零实数,有三条抛物线:22y ax bx c =++,22y bx cx a =++,22y cx ax b =++.则这三条抛物线与x 轴的交点个数情况是()A .三条抛物线中至少有一条与x 轴有两个交点B .三条抛物线中至多有一条与x 轴有两个交点C .三条抛物线与x 轴都只有一个交点D .三条抛物线与x 轴都没有交点【答案】A【详解】证明:假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有212223440440440b ac c ab a bc ⎧=-⎪=-⎨⎪=-⎩ ,三式相加,整理、化简得:2220a b c ab ac bc ++--- ,222()()()0a b b c c a ∴-+-+- ,a b c ∴==与a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.故选:A .22.(2022•富阳区一模)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,图象过点(2,0)A -,对称轴为直线12x =,给出以下结论:①0abc <;②930a b c ++<;③若5(2-,1)y 、5(2,2)y 为函数图象上的两点,则12y y >;④111()()422a b m am b m +>+≠,其中正确的结论是()A .①②③④B .①②③C .①④D .①③④【答案】C 【详解】 抛物线开口向下,0a ∴<,抛物线与y 轴正半轴相交,0c ∴>,对称轴在y 轴右侧,a ∴,b 异号,0b ∴>,0abc ∴<,故①正确;图象过点(2,0)A -,对称轴为直线12x =,∴抛物线与x 轴的另一个交点为(3,0),3x ∴=时,930y a b c =++=,故②错误;5(2- ,1)y 、5(2,2)y 为函数图象上的两点,对称轴为12x =,12y y ∴<,故③错误;12x =时,函数有最大值,∴21142a b c am bm c ++>++,即111()()422a b m am b m +>+≠,故④正确.故选:C .23.(2022•西湖区校级二模)已知直线12//l l ,直线34//l l ,且13l l ⊥,若以1l ,2l 中的一条直线为x 轴,3l ,4l 中的一条直线为y 轴,建立平面直角坐标系,设向右、向上为正方向,且抛物线212(0)2y ax ax a =-+>与这四条直线的位置如图所示,则所建立的平面直角坐标系中的x 轴、y 轴分别为()A .直线1l ,3l B .直线1l ,4l C .直线2l ,3l D .直线2l ,4l 【答案】C 【详解】2122y ax ax =-+ ,∴抛物线对称轴为直线212a x a -=-=,3l ∴为y 轴,将0x =代入2122y ax ax =-+得12y =,∴抛物线经过1(0,)2,2l ∴为x 轴,故选:C .24.(2022•西湖区校级模拟)已知函数1y 和2y 是关于x 的函数,点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,规定:当n q =时,有0m p +=,那么称函数1y 和2y 具有“性质O ”,则下列函数具有“性质O ”的是()A .212y x x =-和21y x =-B .2121y x x =-+-和2y x =-C .212y x x =-和21y x =-+D .2121y x x =---和2y x =【答案】C【详解】 点(,)m n 在函数1y 的图象上,点(,)p q 在函数2y 的图象上,A 选项:将x m =代入212y x x =-,得:22n m m =-,将x p =代入21y x =-,得:1q p =-,n q = ,221m m p ∴-=-,221p m m ∴=-+,0m p += ,2210m m m ∴+-+=,210m m ∴-+=,△2(1)41130=--⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,A ∴选项不符合题意,错误;B 选项:将x m =代入2121y x x =-+-,得:221n m m =-+-,将x p =代入2y x =-,得:q p =-,n q = ,221m m p ∴-+-=-,221p m m ∴=-+,0m p += ,2210m m m ∴+-+=,210m m ∴-+=,△2(1)41130=--⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,将x m =代入212y x x =-,得:22n m m =-,将x p =代入21y x =-+,得:1q p =-+,n q = ,221m m p ∴-=-+,221p m m ∴=-++,0m p += ,2210m m m ∴-++=,2310m m ∴--=,△2(3)41(1)130=--⨯⨯-=>,∴存在不相等的两个m 使得方程成立,∴存在这样的点使得函数1y 和2y 具有“性质O ”,C ∴选项符合题意,正确;D 选项:将x m =代入2121y x x =---,得:221n m m =---,将x p =代入2y x =,得:q p =,n q = ,221m m p ∴---=,221p m m ∴=---,0m p += ,2210m m m ∴---=,210m m ∴++=,△2141130=-⨯⨯=-<,m ∴无解,∴不存在这样的点使得函数1y 和2y 具有“性质O ”,25.(2022•下城区校级二模)若二次函数的解析式为()(1)(15)y x m x m =-- .若函数过(,)p q 点和(5,)p q +点,则q 的取值范围为()A .92544q B .944q -- C .2524q D .924q -- 【答案】A【详解】 二次函数的解析式为()(1)(15)y x m x m =-- ,∴该函数的对称轴为直线12m x +=,函数过(,)p q 点和(5,)p q +点,∴5122p p m +++=,42m p -∴=,244125()(1)(1)2244m m q m m --∴=--=--+,15m ,∴当1m =时,q 取得最大值254;当5m =时,q 取得最小值94,q ∴的取值范围是92544q ,故选:A .26.(2022•杭州模拟)二次函数21y x =第一象限的图象上有两点(,)A a k ,(,1)B b k +,关于二次函数22(bmy x x m a a =++为任意实数)与x 轴交点个数判断错误的是()A .若1m =,则2y 与x 轴可能没有交点B .若12m =,则2y 与x 轴必有2个交点C .若1m =-,则2y 与x 轴必有2个交点D .若14m =,则2y 与x 轴必有2个交点【答案】B【详解】点A 、B 在二次函数21y x =第一象限的图象上,则2k a =且21k b +=,即221b a =+,对于函数函数2y ,△2224()4b m b ama a a -=-⨯=,当14m =时,△222213()4240a b am a a -+-==>,故14m =,则2y 与x 轴必有2个交点正确,故D 正确,不符合题意;当1m =-时,同理可得:△2241a a a ++=,2241(2)3a a a ++=+- ,0a >,2(2)4a ∴+>,∴△0,故C 正确,不符合题意;当12m =时,同理可得:△22(1)0a a -= ,故B 错误,符合题意;同理可得:A 正确,不符合题意;故选:B .27.(2022•江干区校级模拟)二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k .且另有一点(,)B k m 也在该函数图象上,则下列结论一定正确的是()A .m k>B .m k <C .()0a m k -<D .()0a m k ->【答案】D【详解】 二次函数2(0)y ax bx c a =++≠的图象的顶点为(,)A m k ,2()y a x m k ∴=-+,整理得:222y ax amx m k =-++,2b am ∴=-,(,)A m k 和(,)B k m 都在抛物线上,可得:2am bm c k ++=①,2ak bk c m ++=②,②-①得:22m k ak bk am bm-=---22()()a m kb m k =----()()()a m k m k b m k =-+---,()()()()0a m k m k b m k m k ∴+-+-+-=,()[()1]0m k a m k b -+++=,()[()21]0m k a m k am -+-+=,()(1)0m k ak am --+=,0m k ∴-=或10ak am -+=,0m k ∴-=或()1a m k -=,()0a m k ∴->,故选:D .28.(2022•拱墅区模拟)已知二次函数(4)()y x k x k m =--+++,其中k ,m 为常数.下列说法正确的是()A .若2k >,0m <,则二次函数y 的最大值小于0B .若2k ≠,0m <,则二次函数y 的最大值大于0C .若2k <,0m ≠,则二次函数y 的最大值小于0D .若2k ≠,0m >,则二次函数y 的最大值大于0【答案】D【详解】(4)()y x k x k m =--+++ ,∴抛物线对称轴为直线422k k x --==-,∴当2x =-时,函数最大值为2(2)y k m =-+,故选:D .29.(2022•拱墅区模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD ,已知3AB =,4BC =,设PAB ∆、PBC ∆、PCD ∆、PDA ∆的面积分别为1S 、2S 、3S 、4S ,下列判断,其中不正确的是()A .PA PB PC PD +++的最小值为10B .若PAB PCD ∆≅∆,则PAD PBC ∆≅∆C .若PAB PDA ∆∆∽,则2PA =D .若12S S =,则34S S =【答案】C 【详解】A .当点P 是矩形ABCD 两对角线的交点时,PA PB PC PD +++的值最小,根据勾股定理得,5AC BD ==,所以PA PB PC PD +++的最小值为10,故此选项正确,不符合题意;B .若PAB PCD ∆≅∆,则PA PC =,PB PD =,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以PAD PBC ∆≅∆,故此选项正确正确,不符合题意;C .若PAB PDA ∆∆∽,则PAB PDA ∠=∠,90PAB PAD PDA PAD ∠+∠=∠+∠=︒,180()90APD PDA PAD ∠=︒-∠+∠=︒,同理可得90APB ∠=︒,那么180BPD ∠=︒,B 、P 、D 三点共线,P 是直角BAD ∆斜边上的高,根据面积公式可得345 2.4PA =⨯÷=,故此选项不正确,符合题意;D .如图,若12S S =,过点P 作PH BC ⊥于H ,HP 的延长线交AD 于G ,则PG AD ⊥.∴四边形ABHG 是矩形,GH AB ∴=,2411111()22222S S AD PG BC PH BC PH PG BC GH BC AB ∴+=⋅+⋅=⋅+=⋅=⋅,过点P 作PM AB ⊥于M ,MP 的延长线交CD 于N ,同理1312S S BC AB +=⋅,1324S S S S ∴+=+,则34S S =,故此选项正确,不符合题意.故选:C .30.(2022•拱墅区模拟)已知抛物线22y x bx c =-++与x 轴只有一个交点,且过点(6,)A m n -,(2,)B m n +,则n的值为()A .32-B .18-C .16-D .12-【答案】A 【详解】 抛物线22y x bx c =-++过点(6,)A m n -,(2,)B m n +,∴对称轴是直线2x m =-.又 抛物线22y x bx c =-++与x 轴只有一个交点,∴设抛物线解析式为22(2)y x m =--+,把(6,)A m n -代入,得22(62)32n m m =---+=-,即32n =-.故选:A .。
浙江省杭州市中考数学压轴题总复习含答案解析

2021年浙江省杭州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4√3,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上2.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.(1)求M点坐标;(2)如图1,若⊙P经过点M.①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.4.如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB ﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.。
浙江省中考数学真题压轴题分类汇编

浙江省中考数学真题压轴题分类汇编一、压轴题--四边形1、(衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。
点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。
已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。
(1)如图1,当t=3时,求DF的长;(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。
2、(丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.二、压轴题--圆3、(•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.4、(•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.5、(•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.三、压轴题--方程6、(·台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。
2021年浙江省杭州市中考数学压轴题总复习(附答案解析)

2021年浙江省杭州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4√3,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.
(i)求EN•EG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
2.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=4
5,点E在对角线AC上(不
与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;
(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;
(3)当△DFC是等腰三角形时,求AD的长.。
2023年杭州中考数学压轴题多种解法

2023年杭州中考数学压轴题多种解法
题目:已知抛物线y=ax2+bx+c与x轴交于点A(−1,0),B(3,0),与y轴交于点C(0,3),点D 是抛物线的顶点,点E是抛物线上的一个动点.
(1)求抛物线的表达式;
(2)当△BDE的面积最大时,求E点的坐标;
(3)当∠BDE=∠BCE时,求E点的坐标.
解法一:
(1)由题意,得⎩⎨⎧a−b+c=09a+3b+c=0c=3,解得⎩⎨⎧a=−1b=2c=3,所以抛物线的表达式为
y=−x2+2x+3.
(2)由(1)知,顶点D的坐标为(1,4),设E点的坐标为(m,−m2+2m+3),过E点作y轴的平行线,交BD于点F,则F点的坐标为(1,−m2+2m+3),所以S△BDE=S△BDF+S△DFE=21
×2×(4−(−m2+2m+3))=−m2+2m+5=−(m−1)2+6.当m=1时,△BDE的面积最大,此时E点的坐标为(1,4).
(3)过点D作DG⊥BC于G,则G点的坐标为(1,1),易知直线CE的斜率不存在时,不满足题意.设直线CE的方程为y−3=k(x−0),即y=kx+3.由{y=−x2+2x+3y=kx+3,得−x2+(2−k)x+0=0.解得:x1=−3,x2 =kk−2,所以E点的坐标为(kk−2,k⋅kk−2+3).由∠BDE=∠BCE,得∠EGC=∠EDC.所以3−kk−2kk−2−1=1−(k⋅kk−2+3)4−(k⋅kk−2+3)=−1.解得:k2−k−3=0.解得:k1=2−−1+13,k2=2−−1−13,所以E点的坐标为(2−−1+13,5+13)或(2−−1−13,5−13).。
浙江省衢州市,2020~2021年中考数学压轴题精选解析

浙江省衢州市,2020~2021年中考数学压轴题精选解析浙江省衢州市中考数学压轴题精选~~第1题~~(2020衢州.中考模拟) 建立模型:如图1,已知△ABC ,AC=BC ,∠C=90°,顶点C 在直线l 上.(1) 实践操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E ,求证:△CAD ≌△BCE.(2) 模型应用:Ⅰ.如图2,在直角坐标系中,直线l :y= x+4与y 轴交于点A ,与x 轴交于点B ,将直线l 绕着点A 顺时针旋转45°得到l .求l 的函数表达式.Ⅱ.如图3,在直角坐标系中,点B (8,6),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a ﹣6)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.~~第2题~~(2020衢州.中考模拟) 如图菱形ABCD 中,∠ADC=60°,M 、N 分别为线段AB ,BC 上两点,且BM=CN ,且AN ,CM 所在直线相交于E.(1) 证明△BCM ≌△CAN ;(2) ∠AEM=°;(3) 求证DE 平分∠AEC ;(4) 试猜想AE ,CE ,DE 之间的数量关系并证明.~~第3题~~(2020衢江.中考模拟) 在△ABC 中,∠ACB =90°,AC =8,BC =6,点D 是射线CB 上一动点,以每秒2个单位长度的速度从C 出发向B 运动,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE 、DE 的交点分别为F ,G.设点D 运动的时间为t (s ).1122(1) ________(用含t的代数式表示).(2)当四边形是正方形时,求的长.(3)当t为何值时,为等腰三角形?~~第4题~~(2020常山.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,DE是△ABC的中位线,点F是BC边上的一个动点,连结AF交BD于点H,交DE于点G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数及函数的应用:4题(12+10+12+12=46分)占压轴分%(2017•杭州)22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a=﹣2,a=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x轴的交点是(﹣1,0)(2,0),当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;(3)当P在对称轴的左侧时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得x0<0;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0或x0>1.(2017•湖州)23.(10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为万元;放养20天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大并求出最大值.(利润=销售总额﹣总成本)解:(1)由题意,得:,解得,答:a的值为,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.(2017•嘉兴、舟山)24、(12分)如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s (千米)与时间t (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数21125s t bt c =++(b ,c 是常数)刻画.(1)求m 的值,并求出潮头从甲地到乙地的速度; (2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头千米共需多长时间(潮水加速阶段速度02(30)125v v t =+-,0v 是加速前的速度).(2017·台州)23、(12分)交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。
其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:[来源:学科网ZXXK](1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是________(只需填上正确答案的序号)①②③(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大最大流量是多少(3)已知q,v,k满足,请结合(1)中选取的函数关系式继续解决下列问题:①市交通运行监控平台显示,当时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值(1)③(2)解:∵q=-2v2+120v=-2(v-30)2+1800.∴当v=30时,q最大=1800.(3)解:①∵q=vk,∴k===-2v+120.∴v=-k+60.∵12≤v<18,∴12≤-k+60<18.解得:84<k≤96.②∵当v=30时,q最大=1800.又∵v=-k+60,∴k=60.∴d==.∴流量最大时d的值为米.二、几何:10题(12+10+12+10+12+10+14+12+14+14=120分)占压轴分%(2017•杭州)23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B 重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.(2017•衢州)23.(10分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.解:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.(2017•衢州)24.(12分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA 于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或(2017•嘉兴、舟山)23、(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A 重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH DM=4时,求DH的长.(2017•丽水)24、(12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF AF ⊥交AD 于点G ,设AD n AE =.(1)求证:AE GE =;(2)当点F 落在AC 上时,用含n 的代数式表示AD AB的值; (3)若4AD AB =,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.(2017 金华)23、 (10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG:S□ABCD=________ 。