四大谱图解析PPT课件

合集下载

波谱四种谱图的综合解析26页PPT

波谱四种谱图的综合解析26页PPT


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本析
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克

有机四大谱课件

有机四大谱课件

8
二、紫外吸收光谱(UV)
基本原理
物质分子吸收一定波长的紫外光时,分子中的价电子
从低能级跃迁到高能级而产生的吸收光谱叫紫外光谱。
*
* E n

电子跃迁的类型有: *, *, n *, n *。
9
电荷迁移跃迁 用光照射化合物时,电子从给予体向与接受 体相联系的轨道上的跃迁称为电荷迁移跃迁。 这种跃迁谱带较宽,吸收强度大。
核磁样品制备
试样浓度:5~10%;需要纯样品15~30 mg;傅立 叶变换核磁共振波谱仪需要纯样品1 mg ; 标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳; 氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物
黄石理工学院医学院药学系
4-2 影响化学位移的因素
(1)取代基电负性影响:
磁能级的跃迁,从而产生吸收信号。这种原子核
对射频电磁波辐射的吸收称为核磁共振(nuclear magnetic resonance, NMR)。
黄石理工学院医学院药学系
核磁共振条件
(1) 核有自旋(磁性核) (2)外磁场,能级裂分; (3)照射频率与外磁场的比值0 / H0 = / (2 )
常用于高分子有机化合物的测定。 熔 融 法:对于熔点较低,而且热稳定性好的样品,可以 采用此法。 溶液成膜法:将试样溶解于沸点较低的溶剂中,然后将溶液 分布在成膜介质(水银、玻璃、塑料、金属板) 上,让溶剂蒸发后形成试样膜。
4、图谱解析
100 90 80
2924 3005 3062 1595
Transmittance %
液膜厚度的选择: 脂肪族碳氢化合物 ~0.02mm 卤化物、芳香族化合物 ~0.01mm 含氧、氮的有机物 ~0.005mm 含硅、氟的有机物 ~0.03mm ② 溶液法

波谱四种谱图的综合解析

波谱四种谱图的综合解析

A: CH3 - CH (COOH) - O-Ph-Cl
最后对其推导的结构再进一步确认
• 推导成功!你将得到鲜花和掌声!
从估计分子式:C9H9ClO3中减去—Cl、—C6H4-、 >CH-CH3、—COOH基团,只剩下—O—基团, 因此,可拼出以下结构:
H3CHC
O
Cl
H3CHC Cl
OCOOHຫໍສະໝຸດ COOHAB
检查 MS 谱, m/e=155 、 128 、 111 均含有 C1 原子, 说明 C1 原子与苯环直接相连,因此 C1 原子上的 孤对电子与苯环发生 p-π 共轭,所以不易被丢失, 上述三个离子的裂解可有下图得到合理的解释, 所以未知物的结构应是A:
• 由 IR 谱在 32002500 cm-1 的宽 峰 和 接 近 1700 cm-1 的 强 峰 可 推测分子中可 能含有 -COOH , 在 1200-1250 附 近的强峰可推 测分子中可能 含 有 醚 键 (C-O-C);
• 从 1H-NMR 谱的高场到低场各峰的积分曲线高度比 为3:1:2:2:1,估计分子中可能是9个H,再估计 C 数 为 ( 200-9-16×3-35 ) /12=9 , 估 计 分 子 式 : C9H9ClO3 • 不饱和度=1+n4+1/2×(n3-n1) =1+9+1/2×(0-9-1)=5;
四种谱图的综合解析
• 其它辅助参考: • 物理常数的测定:熔点、沸点、比重、 折射率… … • 元素分析:C、H、N、S、O、P、F、Cl、 Br、I … … • 物理状态的观察:液、固、气味、灼烧--特证火焰颜色… …
四种谱图的综合解析
例1:由如下四种谱图解析C5H10O的结构

四大谱图解析

四大谱图解析
增色效应与减色效应 吸收峰吸收强度增加的现象叫增 色效应。 吸收峰吸收强度减小的现象叫减 色效应。
常用术语
吸收带:由相同的电子跃迁产生的吸收峰,叫.. R带:由化合物n→π* 跃迁产生的吸收带,它具有杂 原子和双键的共轭基团(醛、酮)。例:>C=O, —N=N—。 特点:a. 吸收峰出现区域在250nm~500nm。 b.摩尔吸光系数小,吸收强度在10 ~100,属 于禁阻跃迁。
影响紫外吸收的因素-溶剂效应
(2) * 跃迁,溶剂极性增加,吸收红移。
因为在多数π→π*跃迁中,激发态的极性要强于基态,极性大的 π*轨道与溶剂作用强,能量下降较大,而π轨道极性小,与极 性溶剂作用较弱,故能量降低较小,致使π及π*间能量差值变 小。因此,π→π*跃迁在极性溶剂中的跃迁能△Ep小于在非极 性溶剂中的跃迁能△En。所以在极性溶剂中,π→π*跃迁产生 的吸收峰向长波长方向移动。
影响紫外吸收的因素-溶剂效应
1. 在极性溶剂和非极性溶剂中测试,非极性化合物λ max无 明显差异。 2.在极性溶剂和非极性溶剂中测试,极性化合物λmax一般有变 化. 溶剂效应:在不同的溶剂中谱带产生的位移称为溶剂效应。 是由于不同极性的溶剂对基态和激发态样品分子的生色团 作用不同或稳定化程度不同所致。 极性溶剂使R带(250~500nm)蓝移,使K带(210~250)红移。
紫外吸收与分子结构关系 • (2)、简单的不饱和化合物:
• 简单烯烃、炔烃 • 简单醛酮 • n—π*跃迁在紫外区,为弱吸收
紫外吸收与分子结构关系
简单烯烃、炔烃 孤立的 * 跃迁在近紫外区无吸收。 例:CH2=CH2 max= 165nm HC≡CH max= 173nm
位于真空紫外区,助色基团的存在可以使波长红移 当烯烃双键上引入助色基团时,π→π* 吸收将发生红移, 甚至移到近紫外光区。原因是助色基团中的n电子可以产 生p-π共轭,使π→π* 跃迁能量降低,烷基可产生超共轭效 应,也可使吸收红移,不过这种助色作用很弱

四大谱图详解

四大谱图详解

影响紫外吸收的因素-PH值影响
苯酚的紫外光谱
苯胺的紫外光谱
紫外吸收与分子结构关系
(1).饱和烃及其衍生物 (用于紫外吸收测试溶剂) (2).简单的不饱和化合物 (3).共轭系统的紫外吸收光谱 (4).芳环化合物的紫外吸收光谱
紫外吸收与分子结构关系
(1)、饱和烃及其取代衍生物
① * 跃迁
吸收波长 < 150nm,在远紫外区。
分类: E1 带:180nm,ε=60000; E2 带:203nm,ε=8000
特点: a. 苯环上有助色团取代时,E 带长移,但吸收带波长一般不
超过210nm。 b. 苯环上有发色团取代并和苯环共轭时,E2 带长移与 发色
团的K带合并,统称K带,同时也使B带长移。
影响紫外吸收的因素
返回
• 共轭效应:红移 • 助色团的影响 • 超共轭效应 :烷基与共轭体系相连时,可以使波长产生少
丙酮紫外吸收的
1-己烷 2-95%乙醇 3-水
紫外吸收与分子结构关系
(3)共轭系统的紫外吸收光谱
• 共轭双烯 • α,β—不饱和醛、酮 • α、β-不饱和羧酸、酯、酰胺
紫外吸收与分子结构关系
共轭双烯:
π →π共轭,最高占有轨道能级升高,最低空轨道能级降低, π →π*跃迁△E降低,
共轭体系的形成使吸收移向长波方向,强度也随之增大
增色效应与减色效应 吸收峰吸收强度增加的现象叫增色 效应。 吸收峰吸收强度减小的现象叫减色 效应。
常用术语
吸收带:由相同的电子跃迁产生的吸收峰,叫..
R带:由化合物n→π* 跃迁产生的吸收带,它具有杂原 子和双键的共轭基团(醛、酮)。例:>C=O, —N=N—。 特点:a. 吸收峰出现区域在250nm~500nm。

有机化学的四谱综合解析PPT课件

有机化学的四谱综合解析PPT课件
17
活泼氢反应
重水交换 分子中如果有活泼氢: —OH、—NH2、—COOH等 本身化学位移较大,易辨认 加入重水(D2O)后,信号减弱或消失 酰胺质子交换速度慢,不易消失 易形成分子内氢键的活泼氢也难消失
18
核磁共振碳谱
19
核磁共振发展初期,大家更多关注13C NMR 大部分有机化合物都具有碳骨架或碳原子 但是这些碳原子以12C为主,它不是磁性核 13C的天然丰度只有12C的1.1% 13C在核磁共振上的灵敏度只有1H的1.6% 13C的整个灵敏度只有1H的1/5700
——The Nobel Prize in Chemistry 1991
40
COSY谱图
堆积图
平面等值线图
41
1-氯-2-丙醇 1H-1H COSY图
42
1-氯-2-丙醇的 1H-13C COSY图
43
波谱综合解析
波谱解析的基本知识 波谱解析的基本步骤 波谱解析的技巧策略 实例 习题
44
波谱解析的基本步骤
1、鉴别谱图中真实谱峰 2、计算不饱和度 3、掌握影响化学位移的因素
34
4、分子对称性分析:
若谱线数目等于元素组成式中碳原子数目, 说明分子无对称性;若谱线数目小于元素组 成中的碳原子数目,说明分子有一定的对称 性,这在推测结构时应予以重视。如果化合 物中碳原子数目较多时,应考虑到不同碳原 子的值可能偶合重合。
20世纪70年代开始,由于傅立叶变换仪器的 使用,可同时激发所有的13C核而使得13C NMR迅速得到广泛应用 其发展地位已经接近1H NMR
20
核磁共振碳谱
选用核磁共振碳谱的优点在于: ①每种有机化合物必定含有碳元素; ②化学位移分布在很宽的范围内; ③能够区别分子中有微小差异的碳原子,还 能观察到不与氢核相连的碳原子; ④能提供碳骨架信息。

NMR,VU,IR,MS四大图谱解析

NMR,VU,IR,MS四大图谱解析

13C-NMR谱图解析13C-NMR谱图解析流程1.分于式的确定2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性.若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L<m,表示分子有一定的对称性,L值越小,分子的对称性越高。

3.标出各谙线的化学位移Qc,确定谙线的归属在结构鉴定中,常用的13C-NMR技术是宽带去偶和偏共振去偶。

根据宽带去偶谱测定的化学位移,偏共振去偶谱中各类碳的偶合谱线数,以及峰高相对和对称状况,对各谱线作大体归属,从而辨别碳核的类型和可能的官能团。

结构比较复杂的化合物,根据上述方法对13C-NMR谱线归属碰到困难时,可借助测定T1值作进一步的辨别,特别在归属不同季碳的谱线时,T1值的测定更有其实用价值。

另外,在1H-NMR谱线归属明确的情况下,还可采用质子选择去偶技术来归属难以辨认的13C-NMR 谱线。

在偏共振去偶时出现的虚假远程偶合现象也可以为归属某些特殊结构单元提供有用的信息,1H谱与13C谱相结合,有利于彼此信号归属。

各类碳核的化学位移范围如下图所示:表1基团类型Qc/ppm烷0-60炔60-90烯,芳香环90-160羰基1604.组合可能的结构式在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。

5.确定结构式用全部光谱材料和化学位移经验计算公式验证并确定惟一的或可能性最大的结构式,或与标准谱图和数据表进行核对。

经常使用的标准谱图和数据表有:经验计算参数1.烷烃及其衍生物的化学位移一般烷烃灸值可用Lindeman-Adams经验公式近似地计算:∑Qc5.2=nA-+式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。

表2注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。

取代烷烃的Qc为烷烃的取代基效应位移参数的加和。

(完整版)四大波谱基本概念以及解析

(完整版)四大波谱基本概念以及解析

四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。

其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。

在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。

在质谱计的离子源中有机化合物的分子被离子化。

丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。

它还会发生一些化学键的断裂生成各种r =£碎片离子。

带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。

由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。

质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。

这就是磁场的重要作用,即对不同质荷比离子的色散作用。

(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。

(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。

就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。

从提高灵敏度和分辨率来讲,需要提高加速电压。

这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量红移
• 空间效应:空间位阻,构型 外部因素:溶剂效应 ,温度,pH值影响
.
24
影响紫外吸收的因素-共轭效应
π*
E
E
π
共轭系统的能级示意图 及共轭多烯的紫外吸收
.
25
影响紫外吸收的因素-助色基的影响
•(2)核间相对位移引起的振动
•(3)………………….. …..转动。这三种运动能量是量子化的, 并对应有一定能级。
.
8
A
.
电子能级间的能量差一 般为1~20电子伏特 (eV)
振动能级间的能量差约 为0.05~1 eV
转动能级间的能量差小 于0.05 eV
9
紫外吸收光谱的产生
紫外光谱产生:分子在入射光的作用下发生了电子 能级间的跃迁,吸收了特定波长的光波形成
增色效应与减色效应
吸收峰吸收强度增加的现象叫增色 效应。
吸收峰吸收强度减小的现象叫减色
.
19
效应。
常用术语
吸收带:由相同的电子跃迁产生的吸收峰,叫..
R带:由化合物n→π* 跃迁产生的吸收带,它具有杂原 子和双键的共轭基团(醛、酮)。例:>C=O, —N=N—。 特点:a. 吸收峰出现区域在250nm~500nm。

214
正己烷 乙醇
186 339,665
异辛酯 乙醚
二氧杂环己烷
280 300,665 270
.
max
13000 10000 41 60 1000 150000 22 100 12
跃迁类型
* * n* n*
n*,n*
n*, n* n* n*
18
常用术语
红移与蓝移 吸收峰向长波方向移动的现象叫红 移。 吸收峰向短波方向移动的现象叫蓝 移,也叫紫移。
有机结构分析
四种常见谱(紫外、红外、核磁、 质谱)的解析
.
1
波谱产生原理
.
2
电磁波谱
区域 γ射线 X射线 远紫外 紫外 可见 红外 远红外 微波 无线电波
波长 10-3~0.1nm 0.1~10nm 10~200nm 200~400nm 400~800nm 0.8~50μm 50~1000μm 0.1~100cm
.
10
电子跃迁的类型
有机化合物中的电子 σ电子:形成单键的电子。 π电子:形成双键和叁键的电子。 n电子(孤电子对):没有形成化学键的电子,存在
于氧、氮、硫、氯、溴、碘原子上(统称杂原子)。
这些电子统称──价电子
.
11
电子跃迁的类型
• 电子从基态(成键轨道) 向激发态(反键轨道)的 σn 电子 跃迁(*, →*跃 迁)
产生的吸收带。例:芳香族包括杂环芳香族。
特点:a. 苯蒸汽及苯的非极性溶剂在 230~270nm 之间呈细微结构。(由电子 能级跃起引起的吸收叠加振动能级跃迁 引起的,是芳香化合物的重要特征。)
b. 苯在极性溶剂中呈一宽峰,重心 256nm,
ε=220。
.
22
常用术语
4. E带 产生:苯环中共轭体系的π→π* 跃进产生的吸收带。
存在于含有不饱和键的化合物中
.
13
电子跃迁的类型
• 2.N-Q跃迁 1)定义:分子中的电子由非键轨道向反键轨道的
跃迁。 2)分类:
a. n→σ* 跃迁:由n非键向σ* 的跃迁。存在于含
杂原子的饱和碳氢化合物中。
b. n→π* 跃迁:由n非键向π* 的跃迁。存在于含
杂原子的不饱和碳氢化合物中。
* 和 n* 跃迁,吸收波长:< 200nm (远紫外区); * 和 n* 跃迁,吸收波长: 200-400nm (近紫外区);
• 杂原子(末成键电子) 被激发向反键轨道的跃 迁 ( n *, n*跃 迁)
O π 电子
C
σn电子
.
12
电子跃迁的类型
• 1.N-V跃迁 1) 定义:分子中的电子由成键轨道向反键轨道的
跃迁。 2) 分类
(1)σ→σ* 跃迁:电子由σ成键轨道向σ*轨道的跃
迁。存在于饱和碳氢化合物中。
(2)π→π* 跃迁:由π成键轨道向π* 轨道的跃迁。
b.摩尔吸光系数小,吸收强度在10 ~100,属 于禁阻跃迁。
.
20
常用术语
• 2. K带 由共轭体系中π→π* 产生的吸收带。例:
• >C=C—C=C—C=C< 。 特点:a. 吸收峰出现区域:210~250nm,即在近紫 外区。 b. ε >104 。
.
21
常用术语
3. B带 产生:由苯环本身振动及闭合环状共轭双键π→π* 跃迁而
-F<-CH3<-Br<-OH<-OCH3<-NH2<-NHCH3<NH(CH3)2<-NHC6H5<-O-
.
16
苯 ( *) 204
254
270 苯酚
(—OH为助色团)
/nm
.
17
常用术语
常见生色团
ቤተ መጻሕፍቲ ባይዱ
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇
/nm 177 178 204
△ E = h ( h为普朗克常数)
表现形式:在微观上出现分子由较低的能级跃迁到 较高的能级; 在宏观上则透射光的强度变小。
若用一连续辐射的电磁波照射分子,将照射前
后光强度的变化转变为电信号,并记录下来,然后
以波长为横坐标,以吸收程度(吸光度 A)为纵坐
标,就可以得到一张光强度变化对波长的关系曲线
图——分子吸收光谱图。
1~100m
.
原子或分子的跃迁 核跃迁
内层电子跃迁 中层电子跃迁 外层(价)电子跃迁
分子转动和振动
核磁共振(核自旋跃迁)
3
.
4
四种仪器的概述及相应的谱图 解析
.
5
紫外光谱分析
.
6
• 概述 • 影响紫外吸收的因素 • 紫外吸收与分子结构关系 • 应用
.
7
紫外吸收光谱的产生
分子的三种运动状态: •(1)电子相对于原子核的运动
分类: E1 带:180nm,ε=60000; E2 带:203nm,ε=8000
特点: a. 苯环上有助色团取代时,E 带长移,但吸收带波长一般不
超过210nm。 b. 苯环上有发色团取代并和苯环共轭时,E2 带长移与 发色
团的K带合并,统称K带,同时也使B带长移。
.
23
影响紫外吸收的因素
返回
• 共轭效应:红移 • 助色团的影响 • 超共轭效应 :烷基与共轭体系相连时,可以使波长产生少
.
14
电子跃迁的类型
.
15
常用术语
生色团:分子中产生紫外吸收的主要官能团。都是不饱和基团, 含有π电子,可以发生π n→π * 、 n →π * 跃迁。(p76)
助色团:含有孤对电子,本身不产生紫外吸收的基团,但与生色 团相连时,可使生色团吸收峰向长波方向移动并提高吸收强度 的一些官能团,称之为助色团。常见助色团助色顺序为:
相关文档
最新文档