高考数学二轮复习考点解析2:一元二次函数性质及其综合考查
2023年人教版高中数学第二章一元二次函数方程和不等式必考知识点归纳

(名师选题)2023年人教版高中数学第二章一元二次函数方程和不等式必考知识点归纳单选题1、设a<b<0,则下列不等式中不一定正确的是( ) A .2a >2b B .ac <bc C .|a|>-b D .√−a >√−b 答案:B分析:利用不等式的性质对四个选项一一验证: 对于A ,利用不等式的可乘性进行证明; 对于B ,利用不等式的可乘性进行判断; 对于C ,直接证明;对于D ,由开方性质进行证明.对于A ,因为a<b<0,所以2ab >0,对a<b 同乘以2ab ,则有2a >2b ,故A 成立; 对于B ,当c>0时选项B 成立,其余情况不成立,则选项B 不成立; 对于C ,|a|=-a>-b ,则选项C 成立;对于D ,由-a>-b>0,可得√−a >√−b ,则选项D 成立. 故选:B2、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .3、已知实数a,b 满足a +b =ab (a >1,b >1),则(a −1)2+(b −1)2的最小值为( ) A .2B .1C .4D .5 答案:A分析:将a -1和b -1看作整体,由a +b =ab (a >1,b >1)构造出(a −1)(b −1)=1,根据(a −1)2+(b −1)2≥2(a −1)(b −1)即可求解.由a +b =ab (a >1,b >1)得a +b −ab −1=−1,因式分解得(a −1)(b −1)=1, 则(a −1)2+(b −1)2≥2(a −1)(b −1)=2,当且仅当a =b =2时取得最小值. 故选:A .4、已知x >2,则x +4x−2的最小值为( ) A .6B .4C .3D .2 答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0, ∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6,当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6, 故选:A .5、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C.6、已知0<x <2,则y =x√4−x 2的最大值为( ) A .2B .4C .5D .6 答案:A分析:由基本不等式求解即可 因为0<x <2, 所以可得4−x 2>0, 则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号, y =x√4−x 2的最大值为2. 故选:A .7、已知a,b 为正实数,且a +b =6+1a+9b ,则a +b 的最小值为( )A .6B .8C .9D .12 答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b≥6(a +b )+16,则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8,当且仅当a =2,b =6取到最小值8. 故选:B.8、关于x 的不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞),则实数a 的取值范围为( ) A .[√24,+∞)B .(−∞,√24]C .[−√24,√24]D .(−∞,−√24]∪[√24,+∞) 答案:A分析:不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞),即对于∀x ∈R ,ax 2−|x|+2a ≥0恒成立,即a ≥|x |x 2+2,分x =0和a ≠0两种情况讨论,结合基本不等式即可得出答案. 解:不等式ax 2−|x|+2a ≥0的解集是(−∞,+∞), 即对于∀x ∈R ,ax 2−|x|+2a ≥0恒成立, 即a ≥|x |x 2+2,当x =0时,a ≥0, 当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |,因为1|x |+2|x |≤2√x ⋅2|x|=√24, 所以a ≥√24, 综上所述a ∈[√24,+∞). 故选:A.9、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx =t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√y x 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2= m m 2−2m+2=1m+2m−2≤2√m⋅2m−2=2√2−2=√2+12,当且仅当m =2m ⇒√yx =√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D.10、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A11、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( ) A .(-∞,1]B .(-∞,1) C .(3,+∞)D .[3,+∞) 答案:D分析:根据充分条件列不等式,由此求得a 的取值范围. |x −1|<a 成立的充分条件是0<x <4,则a >0,|x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3.故选:D12、若x >1,则x +1x−1的最小值等于( )A .0B .1C .2D .3 答案:D分析:将x +1x−1变形为x −1+1x−1+1,即可利用均值不等式求最小值.因为x >1,所以x −1>0,因此x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3,当且仅当x −1=1x−1,即x =2时,等号成立,所以x +1x−1的最小值等于3. 故选:D. 双空题13、用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的宽为________m ;高为________m . 答案: 32 3分析:先表示出框架的面积函数关系式,再利用基本不等式求最值可得设窗户的宽为x ,则其高为6−2x ,要使阳光充足,只要面积最大,S =x(6−2x)=2x(3−x)≤2×[x+(3−x)2]2=92,当且仅当x =32时等号成立,这时高为3m .所以答案是:(1). 32 (2). 3小提示:本题考查利用基本不等式求最值成立条件. 用基本不等式求最值问题:已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2√p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)14、若实数x ,y 满足x >y >0,且log 2x +log 2y =2,则2x +1y 的最小值为______;x−y(x+y )2的最大值为______.答案: √2 18分析:根据题意,x >y >0,且log 2x +log 2y =2,由对数的运算得出xy =4,利用基本不等式的性质直接求解可得2x +1y 的最小值,通过转化x−y(x+y)2=x−y(x−y)2+4xy =1(x−y)+16x−y,再运用基本不等式即可求得答案.解:∵log 2x +log 2y =2,∴xy =4, 实数x 、y 满足x >y >0,∴ 2x +1y ⩾2√2x ·1y =√2(当且仅当x =2√2,y =√2时等式成立),x−y (x+y)2=x−y (x−y)2+4xy =1(x−y)+16x−y⩽18,当且仅当x =2√2+2,y =2√2−2时等式成立. 所以答案是:√2,18.小提示:本题考查利用基本不等式求最值,涉及对数函数的运算,考查学生的转化思想.15、已知关于x 的不等式ax 2+4ax −3<0,若不等式的解集为{x |x <−3 或x >−1},则a 的值为_________;若此不等式在R 上恒成立,则a 的取值范围为_________. 答案: −1 (−34,0]分析:由题意可得−3和−1是方程ax 2+4ax −3=0的两个根,然后利用根与系数的关系列方程组可求得a 的值;由于不等式在R 上恒成立,所以分a =0和a ≠0两种情况求解即可. 因为不等式ax 2+4ax −3<0的解集为{x |x <−3 或x >−1}, 所以−3和−1是方程ax 2+4ax −3=0的两个根,且a <0, 所以{−3+(−1)=−4aa −3×(−1)=−3a ,解得a =−1;因为不等式ax 2+4ax −3<0在R 上恒成立, 所以当a =0时,−3<0符合题意,当a ≠0时,则{a <0Δ=16a 2+12a <0,解得−34<a <0,综上,a 的取值范围为(−34,0]. 所以答案是:−1,(−34,0].16、若x ∈R 且x >0,则xx 2+1有最______值,且此最值是______. 答案: 大 12##0.5分析:由于x >0,故x +1x ≥2,进而x x 2+1=1x+1x≤12,进而得答案.解:因为x ∈R 且x >0,所以x +1x≥2√x ⋅1x=2,当且仅当x =1x=1等号成立,所以xx 2+1=1x+1x≤12故xx 2+1有最大值,最大值为12.所以答案是:大;1217、若x >0,则x +1x 的最小值为______,此时x =______. 答案: 2 1分析:由基本不等式可得.因为x >0,所以x +1x ≥2√x ⋅1x =2,当且仅当x =1x ,即x =1时等号成立. 所以答案是:2;1. 解答题18、已知x,y 都是正数,且x +y =1, (1)求1x +4y 的最小值; (2)求1x +x y 的最小值. 答案:(1)9 ;(2)3 .分析:(1) 利用1的代换将式子变形,再用基本不等式求最小值;(2) 先将式子中的1用x+y代换,展开整理,再用基本不等式求最小值.(1) 1x +4y=(x+y)(1x+4y)=5+4xy+yx.因为x,y都是正数,所以由基本不等式得,4x y +yx≥2√4xy⋅yx=4,所以1x +4y≥9,当且仅当x=13,y=23时等号成立.所以1x +4y的最小值为9 .(2) 1x +xy=x+yx+xy=1+yx+xy.因为x,y都是正数,所以由基本不等式得,y x +xy+≥2√yx⋅xy=2,所以1x +xy≥3,当且仅当x=12,y=12时等号成立.所以1x +xy的最小值为3.19、设f(x)=ax2+(1-a)x+a-2.(1)若命题“对任意实数x,f(x)≥-2”为真命题,求实数a的取值范围;(2)解关于x的不等式f(x)<a-1(a∈R).答案:(1)a≥13(2)答案见解析分析:(1)根据“对任意实数x,f(x)≥-2”为真命题,知ax2+(1-a)x+a-2≥-2,即ax2+(1-a)x+a≥0,此时对a进行分类讨论,再结合判别式Δ即可求出a的范围.(2)由f(x)<a-1得ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0,对a进行分类讨论,即可求出不等式f(x)<a-1的解集.(1)∵命题“对任意实数x,f(x)≥-2”为真命题,∴ax2+(1-a)x+a-2≥-2恒成立,即ax2+(1-a)x+a≥0恒成立. 当a=0时,x≥0,不满足题意;当a≠0时,知{a>0,Δ≤0,即{a>0,(1-a)2-4a2≤0,解得a≥13.故实数a的取值范围为a≥13.(2)∵f(x)<a-1(a∈R),∴ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0.当a=0时,x<1,∴不等式的解集为{x|x<1};当a>0时,ax2+(1-a)x-1<0⇒(ax+1)(x-1)<0,此时方程(ax+1)(x-1)=0的解分别为-1a,1,∵-1a <1,∴不等式的解集为{x|-1a<x<1},当a<0时,不等式可化为(ax+1)(x-1)<0,①当a=-1时,-1a=1,∴不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,此时不等式的解集为{x|x>−1a或x<1};③当a<-1时,-1a <1,此时不等式的解集为{x|x>1或x<−1a}20、已知二次函数y=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①y<0的解集为{x|−1<x<3};②a=−1;③y的最小值为−4.(1)请写出满足题意的两个条件的序号,并求a,b,c的值;(2)求关于x的不等式y≥(m−2)x+2m2−3(m∈R)的解集.答案:(1)满足题意的条件为①③,a=1,b=−2,c=−3;(2)答案见解析﹒分析:(1)分别假设条件①②和条件②③符合题意,根据二次函数性质和题意即可判断满足题意的条件,根据二次函数的图象性质即可求出a、b、c的值;(2)化简不等式,根据m的范围讨论不等式解集即可.(1)假设条件①②符合题意.∵a=−1,二次函数图象开口向下,∴y<0的解集不可能为{x|−1<x<3},不满足题意.假设条件②③符合题意.由a=−1,知二次函数图象开口向下,y无最小值,不满足题意.∴满足题意的条件为①③.∵不等式y<0的解集为{x|−1<x<3},∴−1,3是方程ax2+bx+c=0的两根,∴−1+3=2=−ba ,−1×3=ca,即b=−2a,c=−3a.∴函数y=ax2+bx+c在x=−b2a=1处取得最小值,∴a+b+c=−4a=−4,即a=1,∴b=−2,c=−3.(2)由(1)知y=x2−2x−3,则y≥(m−2)x+2m2−3,即x2−mx−2m2≥0,即(x+m)(x−2m)≥0.∴当m<0时,不等式的解集为{x|x≤2m或x≥−m};当m=0时,不等式的解集为R;当m>0时,不等式的解集为{x|x≥2m或x≤−m}.。
湖北黄岗中学高考数学二轮复习考点解析一元二次函数性质及其综合考查

湖北黄岗中学高考数学二轮复习考点分析2:一元二次函数性质及其综合考察一、一元二次函数图象与性质:(学生画出函数图象,写出函数性质)二 .高考题热身1.若不等式 x2+ ax+ 10 对于全部 x( 0,1〕建立,则 a 的取值范围是()2A. 0 B.–2 C.- 5D.-3 22.已知函数21212则() f(x)=ax +2ax+4(a>0), 若 x<x, x +x =0 ,A .f(x)<f(x) B.f(x1)=f(x ) C.f(x )>f(x ) D.f(x)与 f(x )的大小不可以确立12212123.过点(- 1, 0)作抛物线y x2x1的切线,则此中一条切线为( A )2x y 2 0( B)3x y 3 0 (C) x y 1 0 (D) x y 1 0 3.设a 0,f (x) ax2bx c,曲线 y f ( x) 在点P( x0, f (x0))处切线的倾斜角的取值范围为0,,则点P到曲线y f ( x) 对称轴距离的取值范围是()41.[ 0,1bD . 0,b 1A. 0,B ] C. 0,22a2a2a4.设b0 ,二次函数y ax2bx a 2 1 的图像为以下之一()则 a 的值为(A)1(B)1(C)1 5(D ) 1 522| x 2 |25.不等式组log 2 ( x21)1的解集为 ()(A) (0, 3 );(B) ( 3 ,2);(C) ( 3 ,4);(D) (2,4)。
6.一元二次方程ax22x10,( a0) 有一个正根和一个负根的充足不用要条件是:()A.a 0B.a 0C.a1 D .a 1已知方程 (x 22x m)(x22x n)0 的四个根构成一个首项为17.4的等差数列 ,则m n ()A1B3C1D34288.已知 Ax ||2 x 1| 3,Bx | x 2 x 6 , A IB ()A .3,2U1,2B.3, 2 U 1, C.3, 2U1,2D., 3 U 1,2f ( x)( x 1) 2, x19. 设函数4 x 1, x 1 ,则使得 f ( x)1的自变量 x 的取值范围为 ( )A ., 20,10 B ., 20,1 C ., 21,10 D . [2,0] 1,109.函数 f ( x)x 22ax3 在区间[ 1, 2]上存在反函数的充足必需条件是()A. a(,1]B.a [2, ) C. a[1,2]D . a (,1] [ 2,)10.已知函数 f (x)在x1处的导数为 3,则f (x) 的分析式可能为()A . f (x) ( x 1) 2 3( x 1)B . f (x)2( x1)C . f (x)2(x 1) 2D . f ( x)x 111. 定义在 R 上的偶函数 f(x) 知足 f(x) =f(x+2) ,当 x ∈ [3, 5]时, f(x)=2 - |x - 4|,则()A . f(sin)<f(cos ) B . f(sin1)> f(cos1)66C .f(cos2)<f(sin 2) D . f(cos2)>f(sin2)3312.命题 p :若 a 、 b ∈ R ,则 |a|+|b|>1 是 |a+b|>1 的充足而不用要条件;命题:函数 y= | x1 |2 的定义域是(-∞,-1 ] ∪ [3,+∞ ) .则()qA .“ p 或 q ”为假B .“ p 且 q ”为真C . p 真 q 假D . p 假 q 真13. .已知对于 x 的方程 x2- (2 m - 8)x + m2- 16 = 0 的两个实根x 1、x 2 知足 x 1 < 23 < x 2 ,1m7则实数 m 的取值范围 _______________. {m |}2 214.已知 a,b 为常数,若 f (x)x 24x 3,f ( axb ) x 210 x 24 ,则 5a b =2。
第二章 一元二次函数、方程和不等式(综合检测)【一轮复习讲义】2024

第二章 一元二次函数、方程和不等式综合检测(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前 考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时 选出每小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 用橡皮擦干净后 再选涂其他答案标号。
回答非选择题时 将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后 将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题 每小题5分 共40分.在每小题给出的四个选项中 只有一项是符合题目要求. 1.设集合01x M x x ⎧⎫=≥⎨⎬-⎩⎭ 1,02x N y y x ⎧⎫⎪⎪⎛⎫==≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭则M N ⋂=( ) A .[]0,1 B .{}0 C .()0,1 D .(]0,12.设x ∈R 则“()50x x -<”是“11x -<”的( )A .既不充分也不必要条件B .必要不充分条件C .充要条件D .充分不必要条件3.不等式2420x x a ---≤有解 则实数a 的取值范围是( )A .{}2a a ≥-B .{}2a a ≤-C .{}6a a ≥-D .{}6a a ≤- 4.已知22a b k += 若224911a b +≥+恒成立 则k 的最大值为( ) A .4 B .5 C .24 D .255.设圆柱的体积为V 当其表面积最小时 圆柱的母线长为( )A .3232πVB .32π3V C .32πV D .34πV 6.已知3log 2x = 4log 3y = 2334z ⎛⎫= ⎪⎝⎭则x 、y 、z 的大小关系为( ) A .x y z >> B .y x z >> C .z y x >> D .y z x >>7.在ABC 中 角A B C 的对边分别为a b c 且2cos 2c B a b =+ 若ABC 的面积312S c = 则ab 的最小值为( )A .13B .3C .12 D .168.已知抛物线2:2(0)C y px p => 过坐标原点O 作两条相互垂直的直线分别与抛物线C 相交于()()1122,,,M x y N x y 两点(M N 均与点O 不重合).若直线MN 恒过点(8,0) 则122x x +的最小值为( )A .162B .122C .102D .62对的得5分 部分选对的得2分 有选错的得0分. 9.已知a b c ∈R 下列叙述正确的是( )A .若a b > 0c > 则ac bc >B .若0a b >> 则11a b >C .若01a << 则2a a >D .()221222a b a b ++≥--10.已知幂函数()f x 的图象经过点4,2 则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫ ⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+ D .若210x x >> 则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭11.已知236a b == 则a b 满足( )A .a b <B .111a b +<C .4ab >D .4a b +>12.若0a b << 且222a b += 则( )A .2b 1<<B .1b a ->C .3ab a b ++≤D .2a b +≤第Ⅱ卷三、填空题:本题共4小题 每小题5分 共20分13.已知函数248y mx mx m =-++的定义域为R 则实数m 的范围________.14.已知P 是ABC 的边BC 上任一点 且满足AP xAB y AC =+ x y R +∈、 则14x y+的最小值为___________. 15.已知正数,x y 满足221x y += 则11x y+的最小值为__________.16.平面向量a b 满足1a = 2b = 7a b -= 对于任意实数k 不等式1ka tb +>恒成立 则实数t 的取值范围是________.程或演算步骤. 17. 已知a b c 、、均为正数 证明:2222111()63a b c a b c+++++≥ 并确定a b c 、、为何值时 等号成立.18.设()()212f x ax a x a =+-+-.(1)若不等式()2f x ≥-对一切实数x 恒成立 求实数a 的取值范围;(2)解关于x 的不等式()()1R f x a a <-∈.19.水培植物需要一种植物专用营养液 已知每投放(04a a <≤且R)a ∈个单位的营养液 它在水中释放的浓度(y 克/升)随着时间(x 天)变化的函数关系式近似为()y af x = 其中()[](]2046154102x x x f x x x +⎧∈⎪⎪-=⎨⎪-∈⎪⎩,,,, 若多次投放 则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和 根据经验 当水中营养液的浓度不低于4(克/升)时 它才能有效.(1)若只投放一次4个单位的营养液 则有效时间最多可能持续几天?(2)若先投放2个单位的营养液 6天后再投放m 个单位的营养液 要使接下来的4天中 营养液能够持续有效 试求m 的最小值.20.已知函数()2f x x ax a =++ x ∈R(1)若方程()0f x =有两根 且两根为12,x x 求2212x x +的取值范围;(2)已知[]0,1P = 关于x 的不等式()0f x >的解为Q 若P Q =∅ 求实数a 的取值范围.21.农田节水灌溉的目的是节约水资源、土地资源 节省时间和劳动力 提高灌溉质量和灌溉效率 提高农作物产量和质量 实现增产增效.如图 等腰梯形ABCD 是一片农田 为了实现节水灌溉 BC 为农田与河流分界的部分河坝 BC 长为800米 ∠B =75°.现在边界BC 上选择一点Q 修建两条小水渠QE QF 其中E F 分别在边界AB DC 上 且小水渠QE QF 与边界BC 的夹角都是60°.(1)探究小水渠QE QF 的长度之和是否为定值?若是 求出该定值;若不是 请说明理由.(2)为实现高效灌溉 现准备在区域AEQFD 内再修建一条小水渠EF 试问当点Q 在何处时 三条小水渠(QE QF EF )的长度之和最小 最小值为多少?22.设0a > 0b > 函数2()f x ax bx a b =--+.(1)求不等式()(1)f x f <的解集;(2)若()f x 在[]0,1上的最大值为b a - 求b a的取值范围; (3)当[0,]x m ∈时 对任意的正实数a b 不等式()(1)|2|f x x b a ≤+-恒成立 求m 的最大值.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全) 单选题1、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,求出m,n的值,根据x+y,x−y的范围,即可求出答案.设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,所以{m−n=3m+n=−2,解得:{m=12n=−52,3x−2y=12(x+y)+52(x−y),,因为−1≤x+y≤1,1≤x−y≤5,所以3x−2y=12(x+y)+52(x−y)∈[2,13],故选:A.2、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.3、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.4、若不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,则a的最小值是()A.0B.−2C.−52D.−3答案:C解析:采用分离参数将问题转化为“a≥−(x+1x )对一切x∈(0,12]恒成立”,再利用基本不等式求解出x+1x的最小值,由此求解出a的取值范围.因为不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,所以a≥−(x+1x )对一切x∈(0,12]恒成立,所以a≥[−(x+1x )]max(x∈(0,12]),又因为f(x)=x+1x 在(0,12]上单调递减,所以f(x)min=f(12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法.5、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .6、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t1=sa ,t2=sb,v=2st1+t2=2s sa+sb=21a+1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b <2√ab=√ab ,故选:D. 多选题9、若a >0,b >0,a +b =2,则( )A .ab ≤1B .√a +√b ≤√2C .a 2+b 2≥2D .1a +1b ≥2 答案:ACD分析:根据基本不等式依次讨论各选项即可得答案.对于A ,由基本不等式得,2=a +b ≥2√ab 则ab ≤1,当且仅当a =b =1时等号成立,故A 正确; 对于B ,令a =32, b =12时,√a +√b =√6+√22>√2=√2+√22,故√a +√b ≤√2不成立,故B 错误;对于C ,由A 选项得ab ≤1,所以a 2+b 2=(a +b)2−2ab =4−2ab ≥2,当且仅当a =b =1时等号成立,故C 正确;对于D ,根据基本不等式的“1”的用法得(1a +1b )(a+b 2)=12(1a +1b )(a +b ) =12(1+1+b a +a b ) =1+12(b a +ab )≥1+12⋅2√1=2,当且仅当ba =ab ,即a =b =1时等号成立,故D 正确. 故选:ACD .10、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC .11、不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},则下列结论正确的是( ) A .a +b =0B .a +b +c >0 C .c >0D .b <0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可. 解:因为不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},所以a <0,且{−ba=−1+2=1>0c a =−2<0,所以{b >0,b =−a,c >0, 所以a +b =0,c >0,b >0,故AC 正确,D 错误.因为二次函数y =ax 2+bx +c 的两个零点为−1,2,且图像开口向下, 所以当x =1时,y =a +b +c >0,故B 正确. 故选:ABC . 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z=x+2y的最小值是32.所以答案是:32.14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2.所以答案是:6解答题15、已知一元二次函数f(x)=ax2+bx+c (a>0,c>0)的图像与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,c=12时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.答案:(1)(12,1);(2)(c,1a);(3)a∈(0, 18];(4)m≤−2 或 m=0 或m≥2.分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点, ∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1). (2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=c a ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴a =c 16+c2≤2√16c=18,故a ∈(0, 18].(4)∵f(c)=0,∴ac 2+bc +c =0,又∵c >0,∴ac +b +1=0, 要使m 2−2k m ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2; 当m <0时,m ≤(2k)min =−2;当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立. 从而实数m 的取值范围为m ≤−2 或 m =0 或m ≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高考数学高中复习2.3《二次函数与一元二次方程、不等式》知识点讲解PPT课件

类题通法 解分式不等式的基本方法就是利用符号法则,将分式不等式转化 为两个整式不等式组或转化为与其同解的整式不等式(组).
二、易错易混 3.当 x∈{x|1<x<2}时,不等式 x2+mx+4<0 恒成立,则实数 m 的 取值范围是( ) A.{m|-5≤m≤-4} B.{m|m≤-4} C.{m|m≤-5} D.{m|m<-5}
答案:C 解析:令 y=x2+mx+4,由题意知 x=1 与 x=2 时,y 的值恒小 于等于 0,即 1+m+4≤0 且 4+2m+4≤0,所以 m≤-5 且 m≤-4. 所以 m≤-5.故选 C.
3.二次函数与一元二次方程、不等式的解的对应关系
Δ=b2-4a0
y=ax2+bx+ c(a>0)的图象
ax2+bx+c= 0(a>0)的根
ax2+bx+ c>0(a>0)的解集
ax2+bx+ c<0(a>0)的解集
有 两 个 _不__相__等___ 有 两 个相__等__ 的 实
答案:{x|x<2 或 x≥5} 解析:移项得xx-+21-2≤0,整理得xx- -52≥0, 不等式等价于(x-5)(x-2)≥0 且 x-2≠0, 解得 x<2 或 x≥5, 故原不等式的解集是{x|x<2 或 x≥5}.
(2)不等式x2+x+x+2 1>1 的解集为________.
答案:{x|-1<x<1} 解析:∵x2+x+1=(x+12)2+34>0 ∴原不等式化为 x+2>x2+x+1 即 x2-1<0,解得-1<x<1 故原不等式的解集为{x|-1<x<1}.
答案:C 解析:M={x|4x2-4x-15>0}={x|x>52或 x<-32} N={x|x2-5x-6>0}={x|x>6 或 x<-1} ∴M∩N={x|x>6 或 x<-32}.
一元二次函数知识点汇总

一元二次函数知识点汇总1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
②对称轴为平行于y 轴(或重合)的直线,记作h x =.特别地,y 轴记作直线0=x . ③定点是抛物线的最值点[最大值(0<a 时)或最小值(0>a 时)],坐标为(h ,k )。
6.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故: ①0=b 时,对称轴为y 轴;②0>ab 时,对称轴在y 轴左侧;③0<ab 时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ① 0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b .8. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.图像特征如下:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 10.直线与抛物线的交点(或称二次函数与一次函数关系) (1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.而根的存在情况仍如(3)一样由根的判别式判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北黄岗中学高考数学二轮复习考点解析2:一元二次函数性质及其综合考查一、一元二次函数图象与性质:(学生画出函数图象,写出函数性质)二.高考题热身1.若不等式x2+ax+1≥0对于一切x∈(0,12〕成立,则a的取值范围是()A.0 B. –2 C.-5 2D.-32.已知函数f(x)=ax2+2ax+4(a>0),若x1<x2 , x1+x2=0 , 则( )A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定3.过点(-1,0)作抛物线21y x x=++的切线,则其中一条切线为(A)220x y++=(B)330x y-+=(C)10x y++=(D)10x y-+=3.设0a>,2()f x ax bx c=++,曲线()y f x=在点00(,())P x f x处切线的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P到曲线()y f x=对称轴距离的取值范围是()1.0,2A⎡⎤⎢⎥⎣⎦B.]21,0[a.0,2bCa⎡⎤⎢⎥⎣⎦1.0,2bDa⎡-⎤⎢⎥⎣⎦4.设0>b,二次函数122-++=abxaxy的图像为下列之一()则a的值为(A)1(B)1-(C)251--(D)251+-5.不等式组⎩⎨⎧>-<-1)1(log2|2|22xx的解集为 ( )(A) (0,3);(B) (3,2);(C) (3,4);(D) (2,4)。
6.一元二次方程2210,(0)ax x a++=≠有一个正根和一个负根的充分不必要条件是:()A.0a<B.0a>C.1a<- D.1a>7. 已知方程22(2)(2)0x x m x x n-+-+=的四个根组成一个首项为14的等差数列,则m n-=( )A 1B 34C 12D 388.已知{}{}2||21|3,|6,A x x B x x x =+>=+≤A B =( )A .[)(]3,21,2-- B.(]()3,21,--+∞ C. (][)3,21,2-- D.(](],31,2-∞-9. 设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为 ( )A .(][]10,02, -∞-B .(][]1,02, -∞-C .(][]10,12, -∞-D .[]10,1]0,2[ -9.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( ) A. a ∈-∞(,]1 B. a ∈+∞[,)2 C. a ∈[,]12 D . a ∈-∞⋃+∞(,][,)12 10.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( )A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f11. 定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( ) A .f (sin )<f (cos ) B .f (sin1)>f (cos1)C .f (cos)<f (sin) D .f (cos2)>f (sin2)12.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件;命题q :函数y=的定义域是(-∞,-1∪[3,+∞.则()A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真13. .已知关于x 的方程2x -(2 m -8)x +2m -16 = 0的两个实根 12x x 、满足 1x <23<2x ,则实数m 的取值范围_______________.17{|}22m m -<<14.已知b a ,为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5= 2 。
15.设函数f(x)=x 2+mx+n,2216)(x x x g -=若不等式()x g x f '≤≤)(0的解集为{x|2≤x ≤3或x=6},求m,n 的值. 三.典型例题例1.作出下列函数的图象(1)y=|x-2|(x +1);解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,6π6π32π32π2|1|--x ])这是分段函数,每段函数图象可根据二次函数图象作出(见图6)例2.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 解析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例3.(福建卷)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。
(I )求()f x 的解析式;(II )是否存在实数,m 使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。
解:(I )()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =22,()2(5)210().a f x x x x x x R ∴=∴=-=-∈(II )方程37()0f x x+=等价于方程32210370.x x -+=设32()21037,h x x x =-+则2'()6202(310).h x x x x x =-=-当10(0,)3x ∈时,'()0,()h x h x <是减函数;当10(,)3x ∈+∞时,'()0,()h x h x >是增函数。
101(3)10,()0,(4)50,327h h h =>=-<=>∴方程()0h x =在区间1010(3,),(,4)33内分别有惟一实数根,而在区间(0,3),(4,)+∞内没有实数根,所以存在惟一的自然数3,m =使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不同的实数根。
例4:已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R )(1)求证两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x轴上的射影A 1B 1的长的取值范围解: (1)证明由⎩⎨⎧-=++=bxy c bx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点(2)解设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-a b 2,x 1x 2c|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 22222224444()4()b c b ac a c ac a a a a ----=--== 22134[()1]4[()]24c c c a a a =++=++ ∵a >b >c ,a +b +c =0,a >0,c <0,∴a >-a -c >c ,解得a c∈(-2,-21) ∵]1)[(4)(2++=a c a c a c f 的对称轴方程是1=a cac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3)例5:已知f (x )=x 2+c ,且f [f (x )]=f (x 2+1) (1)设g (x )=f [f (x )],求g (x )的解析式;(2)设φ(x )=g (x )-λf (x ),试问 是否存在实数λ,使φ(x )在(-∞,-1)内为减函数,且在(-1,0)内是增函数点拨与提示:由f [f (x )]=f (x 2+1)求出c ,进而得到函数的解析式,利用导数研究函数的单调性.解: (1)由题意得f [f (x )]=f (x 2+c )=(x 2+c )2+c, f (x 2+1)=(x 2+1)2+c ,∵f [f (x )]=f (x 2+1)∴(x 2+c )2+c =(x 2+1)2+c ,∴x 2+c =x 2+1,∴c =1 ∴f (x )=x 2+1,g (x )=f [f (x )]=f (x 2+1)=(x 2+1)2+1 (2)φ(x )=g (x )-λf (x )=x 4+(2-λ)x 2+(2-λ) 若满足条件的λ存在,则φ′(x )=4x 3+2(2-λ)x∵函数φ(x )在(-∞,-1)上是减函数, ∴当x <-1时,φ′(x )<0 即4x 3+2(2-λ)x <0对于x ∈(-∞,-1)恒成立∴2(2-λ)>-4x 2, ∵x <-1,∴-4x 2<-4 ∴2(2-λ)≥-4,解得λ≤4 又函数φ(x )在(-1,0)上是增函数 ∴当-1<x <0时,φ′(x )>0 即4x 2+2(2-λ)x >0对于x ∈(-1,0)恒成立∴2(2-λ)<-4x 2, ∵-1<x <0,∴-4<4x 2<0 ∴2(2-λ)≤-4,解得λ≥4故当λ=4时,φ(x )在(-∞,-1)上是减函数,在(-1,0)上是增函数,即满足条件的λ存在例6. 已知t t f 2log )(=,t ∈[2,8],对于f(t)值域内的所有实数m ,不等式x m mx x 4242+>++恒成立,求x 的取值范围。
解:∵t ∈[2,8],∴f(t)∈[21,3]原题转化为:2)2()2(-+-x x m >0恒成立,为m 的一次函数(这里思维的转化很重要)当x =2时,不等式不成立。