2.4 幂函数与二次函数-2020-2021学年新高考数学一轮复习讲义
(完整版)高考数学第一轮复习幂函数与二次函数

∴2m=0,∴m=0.
则f(x)=-x2+3在(-5,-3)上是增函数.
3.图中C1,C2,C3为三个幂函数y=xk在第一象限内的图象,则解
析式中指数k的值依次可以是( )
(A) 1, 1 ,3
2
(C) 1 , 1,3
2
(B) 1,3, 1
2
(D) 1 ,3, 1
2
【解析】选A.设C1,C2,C3对应的k值分别为k1,k2,k3,则
k1<0,0<k2<1,k3>1,故选A.
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数 a的取值范围是______. 【解析】二次函数f(x)的对称轴是x=1-a, 由题意知1-a≥3,∴a≤-2. 答案:(-∞,-2]
5.设函数f(x)=mx2-mx-1,若f(x)<0的解集为R,则实数m的取
(A)a>0,4a+b=0
(B)a<0,4a+b=0
(C)a>0,2a+b=0
(D)a<0,2a+b=0
(2)已知函数f(x)=x2+2ax+3,x∈[-4,6]. ①当a=-2时,求f(x)的最值; ②求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数; ③当a=-1时,求f(|x|)的单调区间.
【解析】设f(x)=xn,则 3 ( 3 )n ,
3
即
3
1n
32
,
1
n
1, n
2,f
x
x 2 .
2
2.函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-3)
2025高考数学一轮复习-2.4-幂函数与二次函数【课件】

单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
提醒:幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内.
2.二次函数
(1)二次函数解析式的三种形式
一般式:f(x)=
ax2+bx+c(a≠0)
.
顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为 (m,n) .
两根式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2 为 f(x)=0 的两根.
课堂考点突破
——精析考题 提升能力
考点一 幂函数的图象与性质
【题组练透】
1.(多选)已知幂函数 f(x)的图象经过点(4,2),则下列选项正确的有( AC ) A.f(x)为增函数
B.f(x)为偶函数
C.若 x≥9,则 f(x)≥3
D.若
x2>x1>0,则fx1+2 fx2>f
x1+x2 2
【解析】 设幂函数 f(x)=xα,将点(4,2)的坐标代入函数 f(x)=xα 得 2=4α,则 α=12,
则 a,b,c 的大小关系为( D ) A.c<b<a B.a<b<c C.b<c<a D.a<c<b 【解析】 由图可知,a<0,b>1>c>0,故 a<c<b.故选 D.
4.函数 f(x)=2x2-mx+3 在[-2,+∞)上单调递增,则实数 m 的取值范围是 _____(_-__∞__,__-__8_] _________________.
适用于新教材2024版高考数学一轮总复习:幂函数与二次函数课件北师大版

1
3
-
y= 的图象比 y=x-1 的图象更接近 y 轴,所以经过Ⅳ“卦
限”;在直线 x=1 的右侧,幂函数的指数越小图象越接近
1
3
-
1
x 轴,因为-1<- <0,所
3
1
3
-
以 y= 的图象位于 y=x-1 和 y=1 之间,所以经过Ⅷ“卦限”.所以函数 y= 的
图象在第一象限中经过的“卦限”是Ⅳ,Ⅷ.
2.二次函数在闭区间上的最值
设二次函数f(x)=ax2+bx+c(a>0),x∈[m,n],
(1)当-2 ≤m 时,最小值为
(2)当
m<-2
≤
f(m),最大值为 f(n);
+
时,最小值为
2
+
(3)当 2 <-2 ≤n 时,最小值为
(4)当- >n 时,最小值为
2
f(-2 ),最大值为
f(-2 ),最大值为
f(n),最大值为 f(m).
f(n);
f(m);
自主诊断
题组一 思考辨析(判断下列结论是否正确,正确的画“ ”,错误的画“×”)
1
3
1.函数 y=2 是幂函数.
( × )
3
2
2.函数 y= 是奇函数,且在(0,+∞)上单调递增.
( × )
3.若二次函数 y=ax2+bx+c(a≠0)的图象不经过第一象限,则 a<0.
1
2
(3)易知函数 y= 的定义域为[0,+∞),且在定义域内为增函数,所以
+ 1 ≥ 0,
2020版高考数学北师大版(理)一轮复习课件:2.4 幂函数与二次函数 .pdf

知识梳理 考点自诊
×
√
-9-
×
×
√
知识梳理 考点自诊
2.已知函数y=x2+ax+6在
) C
A.a≤-5 B.a≤5 C.a≥-5 D.a≥5
-10-
内是增函数的,则a的取值范围为(
3.如图是①y=xa;②y=xb;③y=xc在第一象限的图像,则a,b,c的大小 关系为( D )
A.a>b>c B.a<b<c C.b<c<a D.a<c<b 解析:根据幂函数的性质,可知选D.
2.4 幂函数与二次函数
-2-
知识梳理 考点自诊
1.幂函数 (1)幂函数的定义
(1)幂函数的定义:形如 y= xα (α∈R)的函数称为幂函数,其 中x是 自 变 量 ,α是 常 数 .
(2)五种幂函数的图像
知识梳理 考点自诊
-3-
(3)五种幂函数的性质
R
R
R [0,+∞) {x|x∈R,且x≠0}
考点1
考点2
考点3
-14-
对点训练1已知幂函数
(n∈Z)的图像关于y
轴对称,且在(0,+∞)内是减少的,则n的值为( B )
A.-3 B.1 C.2 D.1或2
解析:因为f(x)为幂函数,所以n2+2n-2=1,
解得n=1或n=-3.
又幂函数f(x)在(0,+∞)内是减少的,
所以n2-3n<0.
所以舍去n=-3,得n=1.当n=1时,n2-3n=-2,满足题意.故选B.
知识梳理 考点自诊
-11-
4.(2018湖南长郡中学三模,1)集合{y∈N+|y=-x2+6,x∈N}的真子
2021届新高考数学一轮专题复习(新高考版)第07讲 幂函数与二次函数(讲义版)

第07讲-幂函数与二次函数一、考情分析1.通过具体实例,结合y=x,y=1x,y=x2,y=x,y=x3的图象,理解它们的变化规律,了解幂函数;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.二、知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域R值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a对称轴 x =-b2a 顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是增函数 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是减函数 [微点提醒]1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎨⎧a >0,Δ<0时恒有f (x )>0,当⎩⎨⎧a <0,Δ<0时,恒有f (x )<0.三、 经典例题考点一 幂函数的图象和性质【例1-1】(2019·河北省沧州市一中高一月考)已知幂函数()y f x =的图象过点(8,)m 和(9,3),则实数m 的值为( ) A .2 B .12C .3D .22【答案】D 【解析】设()a f x x ,依题意可得93α=,所以12α=.所以12()f x x =.故所求实数12(8)822m f ===.【例1-2】(2020·土默特左旗金山学校高一开学考试(文))函数43y x =的图像大致是( )A .B .C .D .【答案】A【解析】43y x ==∴该函数的定义域为R ,所以排除C ;因为函数为偶函数,所以排除D ; 又413>,43y x ∴=在第一象限内的图像与2y x 的图像类似,排除B.规律方法 1.对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 考点二 二次函数的解析式【例2-1】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.【解析】 法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.【例2-2】(2020·四川省泸县第一中学高一期中)已知函数()()220f x ax ax b a =-+>在区间[]1,3-上的最大值为5,最小值为1.(1)求a 、b 的值及()f x 的解析式; (2)设()()f x g x x=,若不等式()330x xg t -⋅≥在[]0,2x ∈上有解,求实数t 的取值范围. 【解析】()22f x ax ax b =-+对称轴方程为1x =, 因为()f x 在区间[]1,3-上的最大值为5,0a >, 故1x =时,()f x 取得最小值为1,即顶点为(1,1),1x =-或3x =,()f x 取得最大值5. ()11(1)35f a b f a b ⎧=-+=⎨-=+=⎩,解得12a b =⎧⎨=⎩, 21,2,()22a b f x x x ∴===-+.(2)()()222,(3)323x x x f x g x x g x x ==+-=+-, ()23332303x x x x x g t t -⋅=+--⋅≥, 即2221(3)3x x t ≤+-在[]0,2x ∈上有解, 令[]11,0,2,[,1]39x m x m =∈∈ 22111()2212(),[,1]229h m m m m m =-+=-+∈max ()1t h m ≤=时,不等式()330x x g t -⋅≥在[]0,2x ∈上有解. ∴实数t 的取值范围1t ≤.规律方法 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:考点三 二次函数的图象及应用【例3-1】(2020·全国高一专题练习)函数y =ax 2+bx 与y =ax +b(ab≠0)的图象只可能是( ) A .B .C .D .【答案】D【解析】令()()()2,0f x ax bx g x ax b ab ==≠++,()f x 的对称轴为2ba-。
高考数学总复习(一轮)(人教A)教学课件第二章 函 数第4节 幂函数与二次函数

一
章
[课程标准要求]
2
3
1.通过具体实例,结合 y=x,y= ,y=x ,y= ,y=x 的图象,理解它
们的变化规律,了解幂函数.2.理解二次函数的图象和性质,能
用二次函数、方程、不等式之间的关系解决简单问题.
积累·必备知识
回顾教材,夯实四基
1.幂函数
(1)幂函数的定义
一般地,函数y=xα叫做幂函数,其中x是 自变量 ,α是常数.
2
2
所以 f(x)=a(x- ) +8.因为 f(2)=-1,所以 a(2- ) +8=-1,
2
2
解得 a=-4,所以 f(x)=-4(x- ) +8=-4x +4x+7.
法三
(利用“零点式”解题)
由已知f(x)+1=0的两根为x1=2,x2=-1,
故可设f(x)+1=a(x-2)(x+1)(a≠0),
2
即 y= x -x-4.
(2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离
等于2,则二次函数的解析式为
2
Hale Waihona Puke 2y= x +x- 或 y=- x -x+
.
解析:(2)因为二次函数的图象过点(-3,0),(1,0),
所以可设二次函数为y=a(x+3)(x-1)(a≠0),
位置.
(3)三看特殊点:看函数图象上的一些特殊点,如函数图象与y轴
的交点、与x轴的交点、函数图象的最高点或最低点等.
新高考数学一轮复习考点知识归类讲义 第10讲 幂函数与二次函数

新高考数学一轮复习考点知识归类讲义第10讲幂函数与二次函数1.幂函数(1)定义形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+n (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx+c (a >0)f (x )=ax 2+bx+c (a <0) 图象定义域 (-∞,+∞) (-∞,+∞) 值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a 成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴(简记为“指大图高”).[典例]1.(2022·全国·高三专题练习)若幂函数()m n(m,n∈N*,m,n互质)的图像如图f x x所示,则()A.m,n是奇数,且m<1n>1B.m是偶数,n是奇数,且mn<1C.m是偶数,n是奇数,且mnD.m是奇数,n是偶数,且m>1n【答案】C【解析】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.2.(2022·全国·高三专题练习)幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6B .1C .6D .1或﹣6 【答案】B 【解析】∵幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∴2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数 1m ∴=或6m =-当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去 因此:m =1 故选:B3.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a << 【答案】D 【解析】因幂函数()()1nf x m x =-的图象过点(),8m ,则11m -=,且8n m =,于是得2m =,3n =,函数3()f x x =,函数()f x 是R 上的增函数,而20.32log 0.300.312<<<<,则有20.32(log 0.3)(0.3)(2)f f f <<,所以c b a <<. 故选:D [举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x = 【答案】D 【解析】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足. 故选:D2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数 【答案】D 【解析】设幂函数的解析式为y x α=,将点(的坐标代入解析式得3α=12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数, 故选:D.3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( )A .(0,2)B .[0,1)C .[1,2)D .(1,2] 【答案】C 【解析】函数2()-=a f x x 单调递减可得20a -<及2a <;函数4()-⎛⎫= ⎪⎝⎭xg x a 单调递减可得014a <<,解得04a <<,若函数2()-=a f x x与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减,可得02a <<,由题可得所求区间真包含于()0,2, 结合选项,函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是C.故选:C.4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =,对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确; 对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x =='切线方程为0)y x x -,又因为切线过点1(0,)2P ,所以01)2x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+, 即选项C 正确; 对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=-⎪⎝⎭⎝⎭212024x x +=-==-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12 【解析】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭故答案为:12.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 【答案】1,1-(答案不唯一) 【解析】因为幂函数()mf x x =在()0,∞+上单调递增,所以0m >,因为幂函数()ng x x =在()0,∞+上单调递减,所以0n <,又因为()()y f x g x =-是奇函数,所以幂函数()f x 和幂函数()g x 都是奇函数,所以m 可以是1,n 可以是1-.故答案为:1,1-(答案不唯一). 7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.【答案】[)1,-+∞ 【解析】由题设,99999999(1)(2)1x x x --≤+,而9999y x =在R 上递增,当12x x ->即1x <-时,99999999(1)(2)01x x x -->>+,原不等式不成立; 当12x x -≤即1x ≥-时,99999999(1)(2)01x x x --≤≤+,原不等式恒成立. 综上,解集为[)1,-+∞. 故答案为:[)1,-+∞8.(2022·全国·高三专题练习)如图是幂函数iy x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______.【答案】3x (答案不唯一) 【解析】设幂函数()f x x α=,由题意,得()f x x α=为奇函数,且在定义域内单调递增,所以21n α=+(N n ∈)或mnα=(,m n 是奇数,且互质), 所以满足上述条件的幂函数可以为()3f x x =.故答案为:3x (答案不唯一).10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【解】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t =,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0=t 时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,. ➢考点2 二次函数的解析式[名师点睛]求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______ 【答案】f (x )=-4x 2+4x +7. 【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为2(1)122x +-==,所以m =12. 又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=21()82a x -+.因为f (2)=-1,所以21(2)812a -+=-,解得a =-4, 所以f (x )=214()82x --+=-4x 2+4x +7. 法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=. 解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7. 故答案为:f (x )=-4x 2+4x +7.2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式. 【解】解:因为()f x 为二次函数,所以设()2f x ax bx c =++,因为()00f =,所以0c ,所以()2f x ax bx =+,所以()()()()()22212121442f x a x b x ax a b x a b +=+++=++++,因为()()22132f x f x x x +-=++,所以()()223432ax a b x a b x x ++++=++,所以31a =,43a b +=,2a b +=,所以13a =,53b =,所以()21533f x x x =+. [举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( ) A .()236f x x x =-+B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =- 【答案】A 【解析】对于函数12x y a -=+,当1x =时,023y a =+=, 所以函数12x y a -=+过定点P ()1,3,设以P ()1,3为顶点且过原点的二次函数()()213f x a x =-+,因为()f x 过原点()0,0,所以()20013a =-+,解得:3a =-,所以()f x 的解析式为:()()2231336f x x x x =--+=-+,故选:A.2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( )A .221x x -+B .221x x ++C .2221x x -+D .2221x x +- 【答案】B 【解析】设()()20f x ax bx c a =++≠,则()2f x ax b '=+,由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________. 【答案】2()1f x x x =-+【解析】解:由题意,设2()(0)f x ax bx c a =++≠, 因为(0)1f =,即1c =,所以2()1f x ax bx =++,所以()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦,从而有220a a b =⎧⎨+=⎩,解得1,1a b ==-,所以2()1f x x x =-+, 故答案为:2()1f x x x =-+.➢考点3 二次函数的图象与性质是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. [典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③ 【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得00ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求;若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求; 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤B .12a ≤-C .1a ≤-D .2a ≤- 【答案】D【解析】解:因为()221f x x ax =+-的对称轴为x a =-,开口向上,所以1a -≥,解得1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的充要条件为1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为2a ≤-;故选:D3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增, ∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a -≤,即1a ≥-,同时 需满足1(2)()02f f -->,即1(4)(21)04a a +-<, 解得142a -<<, 综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________. 【答案】[0,1]【解析】对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,即1122()()()()f x g x f x g x --<,令2()()()21F x f x g x x a x =-=--,即12()()F x F x <只需在[0,2]上单调递增即可,当1x =时,()1F x =,函数图象恒过()1,1;当1x >时,2()22F x x ax a =-+; 当1x <时,2()22F x x ax a =+-; 要使()F x 在区间[0,2]上单调递增,则当2x ≤1<时,2()22F x x ax a =-+的对称轴1x a =≤,即1a ≤;当1x ≤0<时,2()22F x x ax a =+-的对称轴0x a =-≤,即0a ≥; 且12121212a a a a +⨯-≤-⨯+, 综上01a ≤≤ 故答案为:[0,1]. [举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x > 【答案】B 【解析】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项; 故选:A.3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是()A .k ≤-8B .k ≥4C .k ≤-8或k ≥4D .-8≤k ≤4 【答案】C【解析】函数2()28f x x kx =--对称轴为4kx =, 要使()f x 在区间[-2,1]上具有单调性,则24k≤-或14k ≥,∴8k ≤-或4k ≥ 综上所述k 的范围是:k ≤-8或k ≥4. 故选:C.4.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( )A .(1)(4)(2)f f f <<B .(4)(1)(2)f f f <<C .(4)(2)(1)f f f <<D .(2)(4)(1)f f f << 【答案】B【解析】因为(1)(3)f f =,所以二次函数2()f x ax bx c =++的对称轴为2x =, 又因为0a <,所以(4)(3)(2)f f f <<,又(1)(3)f f =,所以(4)(1)(2)f f f <<. 故选:B.5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关 【答案】AB【解析】二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =-1, 当x 1+x 2=-2时,x 1,x 2关于x =-1对称,则有f (x 1)=f (x 2),B 正确;当x 1+x 2>-2时,而x 1<x 2,则x 2必大于-1,于是得x 2-(-1)>-1-x 1,有| x 2-(-1)|>|-1-x 1|, 因此,点x 2到对称轴的距离大于点x 1到对称轴的距离,即f (x 1)<f (x 2),A 正确,C 错误; 显然当a >0时,f (x 1)与f (x 2)的大小只与x 1,x 2离-1的远近有关,与a 无关,D 错误. 故选:AB6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .5 【答案】BC【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC.7.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______.【答案】[2,0]-【解析】当0a =时,()61f x x =-,在(,1)-∞上为增函数,符合题意,当0a ≠时,要使函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则需满足0a <且对称轴为612a x a+=-≥,解得:2a ≥-,即20a -≤<, 综上所述:实数的取值范围是:[2,0]-.故答案为:[2,0]-8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____.【答案】[]1,3【解析】函数f (x )=x 2﹣2x 的对称轴方程为x =1,在[﹣1,1]上为减函数,且值域为[﹣1,3],当x ≥1时,函数为增函数,且(3)3f =∴要使函数f (x )=x 2﹣2x 在定义域[﹣1,n ]上的值域为[﹣1,3],实数n 的取值范围是[1,3].故答案为:[1,3]9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围. 【解】(1)由题意得:()02f c ==,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=- 所以22a =,1a b +=-,解得:1a =,2b =-,所以函数()f x 的解析式为()222f x x x =-+.(2)()()()222g x f x mx x m x =-=-++,对称轴为22m x +=,要想函数()()g x f x mx =-在区间[]12-,上是单调函数,则要满足212m +≤-或222m +≥,解得:4m ≤-或2m ≥,故实数m 的取值范围是(][),42,-∞-+∞.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k ,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x =+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪ ⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围. 【解】(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则 0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =, 所以2(1)2f x x x =++.(2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要 21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦。
2020高考数学一轮复习第二章函数、导数及其应用2.4二次函数与幂函数课件文

2.形如 y=xα(α∈R)才是幂函数,如 y=3x 2 不是幂函数.
【小题热身】
1.判断下列说法是否正确(请在括号中打“√”或“×”). (1) 二 次 函 数 y = ax2 + bx + c , x∈[a , b] 的 最 值 一 定 是 4ac-b2 4a .( × ) (2)二次函数 y=ax2+bx+c,x∈R,不可能是偶函数.( × ) (3)二次函数 y=x2+mx+1 在[1,+∞)上单调递增的充要条件 是 m≥-2.( √ ) (4)幂函数的图象不可能出现在第四象限.( √ ) (5)当 n>0 时,幂函数 y=xn 在(0,+∞)上是增函数.( √ )
C.210,+∞ D.-210,0
解析:由题意知aΔ><00,,
即a1>-02,0a<0,
得
1 a>20.
答案:C
1
1
5.[教材改编]设 a=2 2 ,b=1.8 3 ,则 a,b 的大小关系是
________.
1
1
1
1
1
解析:∵2 2 >1.8 2 >1.8 3 ,∴2 2 >1.8 3 ,即 a>b.
b<a<c.
答案:A
1
1
3.若(a+1) 2 <(3-2a) 2 ,则实数 a 的取值范围是________.
1
解析:易知函数 y=x 2 的定义域为[0,+∞),在定义域内为增 函数,
所以 a3+ -12≥ a≥0, 0, a+1<3-2a,
解得-1≤a<23.
答案:-1,23
悟·技 1.利用幂函数的单调性比较幂值大小的技巧 在比较幂值的大小时,必须结合幂值的特点,转化为同指数幂, 再选择适当的函数,借助其单调性进行比较.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4幂函数与二次函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较2.二次函数的图象和性质概念方法微思考1.二次函数的解析式有哪些常用形式?提示(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-m)2+n(a≠0);(3)零点式:y=a(x-x1)(x-x2)(a≠0).2.已知f (x)=ax2+bx+c(a≠0),写出f (x)≥0恒成立的条件.提示a>0且Δ≤0.3.函数y=2x2是幂函数吗?提示不是.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c (a ≠0),x ∈[m ,n ]的最值一定是4ac -b 24a.( × )(2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ ) (3)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ )(4)二次函数y =x 2+mx +1在[1,+∞)上单调递增的充要条件是m ≥-2.( √ )题组二 教材改编2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32 D .2 答案 C解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝⎛⎭⎫12α. ∴k =1,α=12.∴k +α=32.3.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .[3,+∞) B .(-∞,3] C .(-∞,-3) D .(-∞,-3]答案 D解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧,∴-2a ≥6,解得a ≤-3,故选D.4.函数f (x )=x 2-2x +3在闭区间[0,3]上的最大值为________.最小值为________. 答案 6 2解析 f (x )=(x -1)2+2,0≤x ≤3,∴x =1时,f (x )min =2,x =3时,f (x )max =6. 题组三 易错自纠5.幂函数f (x )=21023a a x -+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .6 答案 C解析 因为a 2-10a +23=(a -5)2-2,f (x )=25)2(a x --(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6,又(a -5)2-2为偶数,所以只能是a =5,故选C.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.7.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,确定下列各式的正负:b ________0,ac ________0,a -b +c ________0.答案 > < <解析 ∵a <0,-b2a >0,c >0,∴b >0,ac <0.设y =f (x )=ax 2+bx +c , 则a -b +c =f (-1)<0.幂函数的图象和性质1.(2019·武汉模拟)若幂函数的图象经过点⎝⎛⎭⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,+∞) D .(-∞,0)答案 D解析 设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).故选D.2.幂函数223m m y x--=(m ∈Z )的图象如图所示,则实数m 的值为( )A .3B .0C .1D .2答案 C解析 ∵函数在(0,+∞)上单调递减, ∴m 2-2m -3<0,解得-1<m <3.∵m ∈Z ,∴m =0,1,2.而当m =0或2时,f (x )=x-3为奇函数,当m =1时,f (x )=x-4为偶函数.∴m =1.3.已知幂函数f (x )=(n 2+2n -2)23n nx -(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.4.若11--33(+1)<(3-2)a a ,则实数a 的取值范围是____________. 答案 (-∞,-1)∪⎝⎛⎭⎫23,32解析 不等式11--33(+1)<(3-2)a a 等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.求二次函数的解析式例1 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2,∴f (x )=x 2-2x +3. (2)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a ,由已知f (x )=ax 2+bx +1, 所以a =1,b =2a =2,故f (x )=x 2+2x +1. 思维升华 求二次函数解析式的方法跟踪训练1 (1)(2020·青岛模拟)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=______. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x .(2)二次函数f (x )满足f (2)=f (-1)=-1,且f (x )的最大值是8,则f (x )=________. 答案 -4x 2+4x +7 解析 方法一 (利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二 (利用顶点式) 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.又根据题意函数有最大值8, 所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 二次函数的图象和性质命题点1 二次函数的图象例2 (1)一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )答案C解析若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A;若a<0,一次函数y=ax+b为减函数,二次函数y=ax2+bx+c的图象开口向下,故可排除D;对于选项B,看直线可知a>0,b>0,从而-b2a<0,而二次函数的对称轴在y轴的右侧,故应排除B,选C.(2)如图是二次函数y=ax2+bx+c图象的一部分,已知图象过点A(-3,0),对称轴为直线x=-1,给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.(填序号)答案①④解析图象与x轴交于两点,∴b2>4ac,①正确;对称轴为直线x=-1,∴-b2a=-1,即2a-b=0,②错误;f (-1)>0,∴a-b+c>0,③错误;开口向下,a<0,b=2a,∴5a<2a=b,④正确,故正确的结论是①④.命题点2二次函数的单调性例3(1)函数f (x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a的取值范围是()A.[-3,0) B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0].若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________.答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a=-1,∴a =-3. (2)二次函数f (x )=ax 2+bx +c (x ∈R )的最小值为f (1),则f (2),f ⎝⎛⎭⎫-32,f (3)的大小关系是( ) A .f (2)<f ⎝⎛⎭⎫-32<f (3) B .f ⎝⎛⎭⎫-32<f (2)<f (3) C .f (3)<f (2)<f ⎝⎛⎭⎫-32 D .f (2)<f (3)<f ⎝⎛⎭⎫-32 答案 D解析 由已知可得二次函数f (x )图象开口向上,对称轴为x =1, ∵⎪⎪⎪⎪-32-1>|3-1|>|2-1|,∴f (2)<f (3)<f ⎝⎛⎭⎫-32. 命题点3 二次函数的值域、最值例4 (2019·福州模拟)已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.思维升华 解决二次函数图象与性质问题时要注意:(1)抛物线的开口方向,对称轴位置,定义区间三者相互制约,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.跟踪训练2 (1)已知函数f (x )=ax 2+bx +c ,若a >b >c ,且a +b +c =0,则函数f (x )的图象可能是( )答案 D解析 由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除A ,C.又f (0)=c <0,所以排除B ,故选D.(2)若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(-∞,0) D .(-∞,2)答案 A解析 二次函数y =kx 2-4x +2图象的对称轴为x =2k ,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2,当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞). (3)设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1; 当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,当t ≤0时,f (x )min =t 2+1,当0<t <1时,f (x )min =1,当t ≥1时,f (x )min =t 2-2t +2.例 (1)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫-∞,12 解析 由题意知2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,符合题意,a ∈R ; 当x ≠0时,a <32⎝⎛⎭⎫1x -132-16, 因为1x∈(-∞,-1]∪[1,+∞),所以当x =1时,不等号右边式子取最小值12,所以a <12.综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. (2)函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则实数a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎡⎦⎤1a ,a , 显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8成立, 所以有a 2+3a -2≤8,解得-5≤a ≤2, 又a >1,所以1<a ≤2, 所以a 的最大值为2.(3)(2019·河北武邑调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是________. 答案 (-∞,-2)解析 由题意知f (x )在R 上是增函数,结合f (-4t )>f (2m +mt 2)对任意实数t 恒成立,知-4t >2m +mt 2对任意实数t 恒成立,∴mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2).素养提升 逻辑推理是指从一些事实命题出发,依据逻辑规则推出另一个命题的思维过程,逻辑推理也是我们解决数学问题最常用、最重要的手段.二次函数的恒成立问题的求解中处处渗透了逻辑推理,此类题目可帮助我们养成严谨、缜密的思维习惯.1.(2019·济南质检)若f (x )是幂函数,且满足f (4)f (2)=3,则f ⎝⎛⎭⎫12等于( ) A .3 B .-3 C.13 D .-13答案 C解析 设f (x )=x α,则4α2α=2α=3,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12α=13.2.函数13y =x 的图象是( )答案 B解析 由函数图象上的特殊点(1,1),可排除A ,D ;由特殊点(8,2),⎝⎛⎭⎫18,12,可排除C ,故选B. 3.若幂函数f (x )=(m 2-4m +4)·268m m x -+在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.6.(2020·福州模拟)若二次函数y =x 2+ax +1对于一切x ∈⎝⎛⎦⎤0,12恒有y ≥0成立,则a 的最小值是( ) A .0 B .2 C .-52 D .-3答案 C解析 设g (x )=x 2+ax +1,x ∈⎝⎛⎦⎤0,12,则g (x )≥0在x ∈⎝⎛⎦⎤0,12上恒成立,即a ≥-⎝⎛⎭⎫x +1x 在x ∈⎝⎛⎦⎤0,12上恒成立.又h (x )=-⎝⎛⎭⎫x +1x 在x ∈⎝⎛⎦⎤0,12上为单调递增函数,当x =12时,h (x )max =h ⎝⎛⎭⎫12,所以a ≥-⎝⎛⎭⎫12+2即可,解得a ≥-52.7.(多选)由于被墨水污染,一道数学题仅能见到如下文字,已知二次函数y =ax 2+bx +c 的图象过点(1,0),…,求证:这个二次函数的图象关于直线x =2对称.根据现有信息,题中的二次函数可能具有的性质是( ) A .在x 轴上截得的线段的长度是2 B .与y 轴交于点(0,3) C .顶点是(-2,-2) D .过点(3,0) 答案 ABD解析 由已知得⎩⎪⎨⎪⎧a +b +c =0,-b 2a=2,解得b =-4a ,c =3a ,所以二次函数为y =a (x 2-4x +3),其顶点的横坐标为2,所以顶点一定不是(-2,-2),故选ABD.8.(多选)已知函数f (x )=2x ,g (x )=x 2-ax ,对于不相等的实数x 1,x 2,设m =f (x 1)-f (x 2)x 1-x 2,n =g (x 1)-g (x 2)x 1-x 2,现有如下说法,其中正确的是( )A .对于不相等的实数x 1,x 2,都有m >0B .对于任意实数a 及不相等的实数x 1,x 2,都有n >0C .对于任意实数a 及不相等的实数x 1,x 2,都有m =nD .存在实数a ,对任意不相等的实数x 1,x 2,都有m =n 答案 AD解析 任取x 1≠x 2,则m =f (x 1)-f (x 2)x 1-x 2=2x 1-2x 2x 1-x 2=2>0,A 正确;由二次函数的单调性可得g (x )在⎝⎛⎭⎫-∞,a 2上单调递减,在⎝⎛⎭⎫a2,+∞上单调递增,可取x 1=0,x 2=a ,则n =g (x 1)-g (x 2)x 1-x 2=g (0)-g (a )0-a =0-00-a=0,B 错误;m =2,n =g (x 1)-g (x 2)x 1-x 2=x 21-ax 1-x 22+ax 2x 1-x 2=(x 1-x 2)(x 1+x 2-a )x 1-x 2=x 1+x 2-a ,则m =n 不恒成立,C 错误; m =2,n =x 1+x 2-a ,若m =n ,则x 1+x 2-a =2, 只需x 1+x 2=a +2即可,D 正确.9.若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________. 答案 9或25解析 y =8⎝⎛⎭⎫x -m -1162+m -7-8·⎝⎛⎭⎫m -1162, ∵值域为[0,+∞),∴m -7-8·⎝⎛⎭⎫m -1162=0,∴m =9或25.10.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.答案 ⎝⎛⎭⎫-22,0解析 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 11.(2019·广州质检)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ). (1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式; (2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-2)=1,即4a -2b +1=1, 所以b =2a .因为方程f (x )=0有且只有一个根, 所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2. 所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝⎛⎭⎫x -k -222+1-⎝⎛⎭⎫k -222. 由g (x )的图象知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8, 所以所求实数k 的取值范围为(-∞,8]∪[12,+∞). 12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15, ∴f (x )的值域为⎣⎡⎦⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1.13.(多选)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x -x 2,则下列说法正确的是( ) A .f (x )的最大值为14B .f (x )在(-1,0)上是增函数C .f (x )>0的解集为(-1,1)D .f (x )+2x ≥0的解集为[0,3] 答案 AD解析 ∵x ≥0时,f (x )=x -x 2=-⎝⎛⎭⎫x -122+14, ∴f (x )的最大值为14,A 正确;f (x )在⎝⎛⎭⎫-12,0上是减函数,B 错误; f (x )>0的解集为(-1,0)∪(0,1),C 错误; x ≥0时,f (x )+2x =3x -x 2≥0的解集为[0,3], x <0时,f (x )+2x =x -x 2≥0无解,故D 正确.14.如果函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,那么实数a =________. 答案 1解析 因为函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,所以函数的最大值在区间的端点取得.因为f (0)=-a ,f (2)=4-3a ,所以⎩⎪⎨⎪⎧ -a >4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1.15.(2020·石家庄模拟)若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 答案 [-2,0]解析 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由.解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧f (-1)=-2,f (1)=2,得a =-1(舍去); 当-1≤a ≤0时,由⎩⎪⎨⎪⎧f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧f (a )=-2,f (-1)=2,得a 不存在; 综上可得,存在实数a 满足条件,且a =-1.。