小学数学十种图形求面积法汇总
求图形面积的10种方法

求图形面积的10种方法我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
三道例题例1 如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。
因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。
解:S△ABE=S△ADF=S四边形AECF=12。
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如图那样重合.求重合部分(阴影部分)的面积。
阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积。
一句话:半圆的面积+正方形的面积=总面积。
各种形状的面积计算公式

各种形状的面积计算公式
一、正方形。
1. 公式:面积 = 边长×边长,用字母表示为S = a×a=a^2(其中S表示面积,a 表示正方形的边长)。
二、长方形。
1. 公式:面积 = 长×宽,用字母表示为S = a×b(其中S表示面积,a表示长,b 表示宽)。
三、三角形。
1. 公式:面积 = 底×高÷2,用字母表示为S=(1)/(2)ah(其中S表示面积,a表示底,h表示高)。
四、平行四边形。
1. 公式:面积 = 底×高,用字母表示为S = ah(其中S表示面积,a表示底,h 表示高)。
五、梯形。
1. 公式:面积=(上底 + 下底)×高÷2,用字母表示为S=((a + b)h)/(2)(其中S 表示面积,a表示上底,b表示下底,h表示高)。
六、圆形。
1. 公式:面积=π×半径的平方,用字母表示为S=π r^2(其中S表示面积,r表示半径,π通常取3.14)。
面积公式大全

面积公式大全在数学中,面积是描述一个平面图形所占据的空间大小的概念。
计算面积是数学中的一个重要问题,不同的图形有不同的计算方法。
下面我们将介绍一些常见图形的面积公式,希望对大家有所帮助。
1. 矩形的面积公式。
矩形是最简单的图形之一,其面积可以通过长度和宽度相乘来计算,即。
面积 = 长×宽。
2. 正方形的面积公式。
正方形是一种特殊的矩形,其四边相等。
因此,正方形的面积可以用边长的平方来表示,即。
面积 = 边长×边长。
3. 三角形的面积公式。
对于任意三角形,可以利用其底和高来计算面积,即。
面积 = 底×高÷ 2。
4. 圆的面积公式。
圆的面积公式是数学中的经典问题,其面积可以通过半径的平方乘以π来计算,即。
面积 = π×半径×半径。
5. 梯形的面积公式。
梯形是一个有两个平行边的四边形,其面积可以通过上底和下底的平均值乘以高来计算,即。
面积 = (上底 + 下底)×高÷ 2。
6. 平行四边形的面积公式。
平行四边形的面积可以通过底和高来计算,即。
面积 = 底×高。
7. 椭圆的面积公式。
椭圆的面积公式是一个复杂的问题,其面积可以通过长轴和短轴的乘积再乘以π来计算,即。
面积 = π×长轴×短轴。
8. 正多边形的面积公式。
对于正多边形,可以利用边长和周长来计算面积,即。
面积 = 周长×边长÷ 2。
以上就是一些常见图形的面积公式,希望能对大家有所帮助。
在实际问题中,计算面积是一个常见的数学运算,掌握好面积公式对于解决实际问题非常重要。
希望大家能够通过实际练习加深对面积公式的理解,提高数学水平。
小学数学必会图形求面积的个方法图文并茂,太神奇了

小学数学必会图形求面积的10个方法!图文并茂,太神奇了!01小学数学学过的几何图形有三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形,这些几何图形一般称为基本图形或规则图形,我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
02常用的基本方法1 相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
小学四年级必会图形求面积的10个方法!

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有1相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积。
一句话:半圆的面积+正方形的面积=总面积2相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
必会图形求面积的10个方法!图文并茂【小学数学】

必会图形求面积的10个方法!图文并茂,太神奇了!【小学数学】我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
02PART ONE常用的基本方法1. 相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积。
一句话:半圆的面积+正方形的面积=总面积2. 相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例如:下图,求阴影部分的面积。
一句话:先求出正方形面积再减去里面圆的面积即可。
3. 直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积。
例如:下图,求阴影部分的面积。
(完整版)各种图形面积计算公式

各种图形面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh各种图形体积计算公式平面图形名称符号周长C和面积S1、正方形a—边长C=4aS=a22、长方形a和b-边长C=2(a+b)S=ab3、三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)4、四边形d,D-对角线长α-对角线夹角S=dD/2·sinα5、平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα6、菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα7、梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mhd-直径C=πd=2πrS=πr2=πd2/49、扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)10、弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/311、圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/412、椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)圆形的面积=。
面积公式大全

面积公式大全
以下是一些常见的面积公式,其中涉及到圆的、长方形、正方形、平行四边形、三角形和梯形的面积计算。
这些公式可以帮助你在计算几何图形面积时,更加便捷、高效地解决问题。
1. 圆的面积公式:S = πr²,其中S代表面积,r代表半径。
2. 长方形的面积公式:S = l×w,其中S代表面积,l代表长,w代表宽。
3. 正方形的面积公式:S = a²,其中S代表面积,a代表边长。
4. 平行四边形的面积公式:S = a×h,其中S代表面积,a代表底边长度,h代表高。
5. 三角形的面积公式:S = 1/2×a×b,其中S代表面积,a代表底边长度,b代表高。
6. 梯形的面积公式:S = (上底+下底)×高÷2,其中S代表面积,a 和b分别代表上底和下底的长度,h代表高。
7. 圆环的面积公式:S = π×R² - π×r²,其中S代表面积,R和r分别代表大圆和小圆的半径。
8. 扇形的面积公式:S = 1/2×π×r²,其中S代表面积,r代表半径,θ代表弧度。
这些公式不仅仅适用于平面图形的面积计算,也同样适用于立体图形的体积计算,比如圆柱、长方体和正方体等的体积计算,只需将公式中的面积换成体积就可以了。
希望这些公式能帮助你在学习中更加轻松和自信!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学十种图形求面积方法汇总
求图形的面积是小学数学常考的一种题型。
在数学考试中,很多图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
基本图形我们都有固定的面积和周长公式,直接套用就可以计算。
那么,不规则图形的面积和周长怎么计算呢?
三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
面积及周长都有相应的公式直接计算,如下表:
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF
与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.
解:
S△ABE=S△ADF=S四边形AECF=12
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。