用向量法证明平面
证明面面平行的方法

证明面面平行的方法面面平行是几何学中的一个重要概念,它指的是两个平面在空间中没有交点,且它们的法向量平行。
在实际问题中,我们常常需要证明两个平面是平行的,下面将介绍几种常用的方法来证明面面平行的情况。
首先,最直接的方法是利用平面的法向量来进行证明。
设有两个平面分别为平面α和平面β,它们的法向量分别为n1和n2。
要证明这两个平面平行,只需证明它们的法向量平行即可。
具体来说,如果n1与n2平行,则可以得出平面α和平面β是平行的。
因此,我们可以通过计算这两个法向量的夹角来判断它们是否平行。
若夹角为0度或180度,则说明这两个法向量平行,从而得出这两个平面是平行的。
其次,我们可以利用平面上的直线来证明平面的平行关系。
如果两个平面平行,那么它们在空间中的任意一条直线在这两个平面上的投影也是平行的。
因此,我们可以通过构造一条直线,然后在这两个平面上找到它们的投影,如果这两个投影是平行的,那么就可以得出这两个平面是平行的结论。
另外,我们还可以利用平行四边形的性质来证明平面的平行关系。
如果在空间中存在两个平行四边形,那么它们所在的平面也是平行的。
因此,我们可以通过构造平行四边形来证明两个平面的平行关系。
具体来说,我们可以在这两个平面上分别找到两个平行四边形,如果这两个平行四边形是平行的,那么就可以得出这两个平面是平行的结论。
最后,我们还可以利用向量的线性组合来证明平面的平行关系。
如果两个平面平行,那么它们上任意一点的法向量之间存在线性关系。
因此,我们可以通过选取这两个平面上的三个点,然后计算它们的法向量,如果这三个法向量之间存在线性关系,那么就可以得出这两个平面是平行的结论。
综上所述,我们可以利用平面的法向量、平面上的直线投影、平行四边形的性质以及向量的线性组合等方法来证明两个平面的平行关系。
在实际问题中,我们可以根据具体情况选择合适的方法来进行证明,以便更加方便和准确地得出结论。
通过掌握这些方法,我们可以更好地理解和运用平面的平行关系,为解决实际问题提供更多的思路和方法。
向量在平面几何中的应用

例如,向量数量积对应着几何中的长度. 如图: 平行四边行ABCD中,
设 AB a, AD b ,则
AC AB BC a b
DB AB AD a b
2
AB
2
a
|
AB |2
2
AD
2
b
|
AD |2
向量 AB, AD 的夹角为 ∠BAD.
例1.如图,已知平行四边形ABCD中,E、F在 对角线BD上,并且BE=FD,求证AECF是平 行四边形。
AM AB BM
AB yBD
D C
M
AB y( AD AB)
A
B
(1 y) AB y AD
根据平面向量基本定理知,这两个分解
式是相同的,所以
x 1 y
x y
解得
x
1 2
y
1 2
所以点M是AC、BD的中点,即两条对 角线互相平分.
例3.已知正方形ABCD,P为对角线AC上任意 一点,PE⊥AB于点E,PF⊥BC于点F,连接 DP、EF,求证DP ⊥EF。
2
2
AB2 BC2 CD2 DA2 2( a b )
AC2 BD2 a b 2 a b 2
2
a
2ab
2
b
2
a
2ab
2
b
2 a 2
2
b
2
a
2
b
2
∴ AB2 BC2 CD2 DA2 AC2 BD2
例5 如图, ABCD中,点E、F分别是AD 、 DC边的中点,BE 、 BF分别与AC交于R 、 T 两点,你能发现AR 、 RT 、TC之间的关系吗?
0
所以DP EF
利用空间向量证明空间中的直线和平面位置关系

利用空间向量证明空间中的直线和平面位置关系空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立。
空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广。
【知识回顾】1.确定空间直角坐标系必须有三个要素,即:原点、坐标轴方向、单位长。
2.从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,则就建立了空间直角坐标系。
点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy 平面、 yoz 平面、和 Zox 平面.3.已知M 为空间一点.过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R,这三点在x 轴、y 轴和z 轴上的坐标分别为x,y,z.于是空间的一点M 就唯一确定了一个有序数组x,y,z.这组数x,y,z 就叫做点M 的坐标,并依次称x,y,z 为点M 的横坐标.纵坐标和竖坐标.坐标为x,y,z 的点M 通常记为M(x,y,z).4.空间向量的坐标运算:(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则:222123||a a a a a a =⋅=++,222123||b b b b b b =⋅=++a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3,a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 5.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,则一条直线的方向向量可以有无数个. (2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 6. 共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量 7. 叫做共线向量(或平行向量),记作a ∥b . 8. 面向量:平行于同一平面的向量,叫做共面向量.9. 共面向量定理:如果两个向量a 、b 不共线,那么向量p 与向量a 、b 共面的 充要条件是存在有序实数组(x ,y ),使得p =x a + y b . 9.利用向量处理求解立体几何问题: (1)直线与平面的位置关系:①若a ∥n ,即a =λn , 则 L ∥ α ②若a ⊥n ,即a·n = 0,则a ∥ α.(2) 平面与平面的位置关系:平面α的法向量为n 1 ,平面β的法向量为n 2 ①若n 1∥n 2,即n 1=λn 2,则α∥β ; ②若n 1⊥n 2,即n 1 ·n 2= 0,则α∥β10.点到平面的距离:A 为平面α外一点, n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.= = , 即:AB →在法向量n 上投影的绝对值。
第10讲 用空间向量研究直线、平面的位置关系4种常见方法归类(解析版)-新高二数学暑假自学课讲义

第10讲用空间向量研究直线、平面的位置关系4种常见方法归类1.理解与掌握直线的方向向量,平面的法向量.2.会用方向向量,法向量证明线线、线面、面面间的平行关系;会用平面法向量证明线面和面面垂直,并能用空间向量这一工具解决与平行、垂直有关的立体几问题.知识点1空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点,(1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta .(3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.注意点:(1)空间中,一个向量成为直线l 的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l 平行或重合.(2)直线上任意两个不同的点都可构成直线的方向向量.与直线l 平行的任意非零向量a 都是直线的方向向量,且直线l 的方向向量有无数个.(3)空间任意直线都可以由直线上一点及直线的方向向量唯一确定.2.空间平面的向量表示式①如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb.②如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC的向量表示式.③由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.注意点:(1)平面α的一个法向量垂直于平面α内的所有向量.(2)一个平面的法向量有无限多个,它们相互平行.易错辨析:(1)空间中给定一个点A 和一个方向向量能唯一确定一条直线吗?答案:能(2)一个定点和两个定方向向量能否确定一个平面?答案:不一定,若两个定方向向量共线时不能确定,若两个定方向向量不共线能确定.(3)由空间点A 和直线l 的方向向量能表示直线上的任意一点?答案:能知识点2空间平行、垂直关系的向量表示1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.2、利用待定系数法求法向量的步骤3、求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n的坐标时,可令x,y,z中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为04、用空间向量证明平行的方法(1)线线平行:证明两直线的方向向量共线.(2)线面平行:①证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.②证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.③先求直线的方向向量,然后求平面的法向量,证明直线的方向向量与平面的法向量垂直.在证明线面平行时,需注意说明直线不在平面内.(3)面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题.5、用空间向量证明垂直的方法(1)线线垂直:证明两直线的方向向量互相垂直,即证明它们的数量积为零.(2)线面垂直:①基向量法:选取基向量,用基向量表示直线所在的向量,证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.②坐标法:建立空间直角坐标系,求出直线方向向量的坐标,证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.③法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.考点一:求直线的方向向量例1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD PC 的一个方向向量.【答案】1)-【分析】建立如图所示的空间直角坐标系,根据方向向量的定义可得.【详解】如图所示,建立空间直角坐标系A -xyz ,则(0,0,1)P ,C ,所以1)PC =-即为直线PC 的一个方向向量.变式1.(2023春·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y =________.【答案】-2012【分析】由直线的方向向量平行的性质即可求解.【详解】∵直线的方向向量平行,∴8532x y ==-,∴20,12x y =-=,故答案为:20-;12.变式2.(2022秋·广西钦州·高二校考阶段练习)已知直线l 的一个法向量是)n =,则l 的倾斜角的大小是()A .π3B .2π3C .π6D .π2【答案】A【分析】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =,根据直线方向向量与法向量的关系得到得到y =,即可求解.【详解】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =.则0u n y ⋅=-=,即y =,则tan y xθ==又[)0,πθ∈,解得π3θ=,故选:A.变式3.【多选】(2022秋·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC 上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是()A .1AA B .1C EC .ABD .1A A【答案】ABD【分析】结合立体图形,得到平行关系,从而确定答案.【详解】因为111////C E AA A A ,所以1AA ,1C E ,1A A都可作为直线1AA 的方向向量.故选:ABD.变式4.(2023春·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于()A .0B .1C .2D .3【答案】A【分析】根据//m AB求解即可.【详解】由题知:()1,2,3AB y z =---,因为//m AB ,所以213123y z -==---,解得33,22y z ==,所以0y z -=.故选:A考点二:求平面的法向量例2.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知(2,0,0)A ,(0,2,0)B ,(0,0,2)C ,则平面ABC 的一个法向量可以是()A .(1,1,1)---B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-【答案】A【分析】代入法向量的计算公式,即可求解.【详解】(2,2,0)AB =- ,(2,0,2)AC =- ,令法向量为(,,)m x y z = ,则220220x y x z -+=⎧⎨-+=⎩,y z x ∴==,可取(1,1,1)m =---.故选:A.变式1.(2023春·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是()A .()1,1,1B.C .111(,,)333D.(,)333-【答案】B【分析】待定系数法设平面ABC 的一个法向量为n,由法向量的性质建立方程组解出分析即可.【详解】设平面ABC 的一个法向量为(),,n x y z =,又()()0,1,1,1,1,0AB BC =-=- ,由0000AB n AB n y z x y BC n BC n ⎧⎧⊥⋅=-+=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⋅=⎩⎪⎪⎩⎩ ,即x y z ==,又因为单位向量的模为1,所以B 选项正确,故选:B.变式2.(2023春·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ⊥平面BCD ,=90BDC ∠︒,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为()A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,0【答案】B【分析】根据题意,设1BD AB CD ===,可得A 、C 、D 的坐标,由此可得向量DC 、AD的坐标,由此可得关于x 、y 、z 的方程组,利用特殊值求出x 、y 、z 的值,即可得答案.【详解】根据题意,设1BD AB CD ===,则()0,1,0D ,()1,1,0C ,()0,0,1A ,则()1,0,0DC = ,()0,1,1AD =- ,设平面ACD 的一个法向量为(),,m x y z=,则有00DC m x AD m y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1y =,可得1z =,则()0,1,1m = .故选:B .变式3.(2023秋·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为()A .1个B .2个C .3个D .4个【答案】C【分析】根据空间直线的方向向量的概念以及平面的法向量的定义判断可得答案.【详解】设正方体的棱长为a ,则(0,,0)D a ,1(0,,)D a a ,1(0,0,)DD a = ,则1DD与(0,0,1)平行,故直线1DD 的一个方向向量为(0,0,1),故①正确;因为(,0,0)B a ,1(,,)C a a a ,所以1(0,,)BC a a = ,因为1BC与(0,1,1)平行,所以直线1BC 的一个方向向量为(0,1,1),故②正确;因为(0,0,0)A ,(0,,0)D a ,所以(0,,0)AD a = ,因为AD 是平面11ABB A 的一个法向量,且AD与(0,1,0)平行,所以平面11ABB A 的一个法向量为(0,1,0),故③正确;因为(,,0)C a a ,(0,,0)D a ,所以(,0,0)CD a =-,因为(1,1,1)(,0,0)(1,1,1)0CD a a ⋅=-⋅=-≠ ,所以CD与(1,1,1)不垂直,所以(1,1,1)不是平面1B CD 的一个法向量,故④不正确.故选:C变式4.(2023·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:平面BHD 的一个法向量___________;【答案】()(答案不唯一)【分析】利用向量法得出平面BHD的一个法向量.【详解】由题意可知23CH OC DH===,则(),0,1,0,0,,333H B D⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭0,0,3HD⎛⎫= ⎪⎪⎝⎭,1,3BH⎛⎫=- ⎪⎪⎝⎭.设(),,n x y z=为平面BHD的一个法向量,则3n HD zn BH x y⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,不妨设1x=,则()n=.故平面BHD的一个法向量为().故答案为:()(答案不唯一)变式5.(2023春·高二课时练习)在棱长为2的正方体1111ABCD A B C D-中,E,F分别为棱1111,A D A B的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B的一个法向量;(2)平面BDEF的一个法向量.【答案】(1)(2,2,0)=-AC(答案不唯一)(2)(2,2,1)n=--(答案不唯一)【分析】(1)利用线面垂直的判定定理求解法向量;(2)利用空间向量的坐标运算求平面的法向量.【详解】(1)由题意,可得()()()()()0,0,0,2,2,0,2,0,0,0,2,0,1,0,2D B A C E ,连接AC ,因为底面为正方形,所以AC BD ⊥,又因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且1BD DD D = ,则AC ⊥平面11BDD B ,∴(2,2,0)=-AC 为平面11BDD B 的一个法向量.(答案不唯一).(2)(2,2,0),(1,0,2).DB DE ==设平面BDEF 的一个法向量为(,,)n x y z =,则,0220,,120,.02y x n DB x y x z z x n DE =-⎧⎧⋅=+=⎧⎪⎪∴∴⎨⎨⎨+=-⋅=⎩⎪⎪⎩⎩令2x =,得2, 1.y z =-=-∴(2,2,1)n =--即为平面BDEF 的一个法向量.(答案不唯一).变式6.【多选】(2023春·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB = ,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是()A .AB与AC 是共线向量B .与AB同向的单位向量是,55⎛⎫ ⎪ ⎪⎝⎭C .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-【答案】BCD【分析】A :由向量共线定理,应用坐标运算判断是否存在R λ∈使AB AC λ= ;B :与AB同向的单位向量是||ABAB 即可判断;C :由投影向量的定义可解;D :应用平面法向量的求法求平面ABC 的一个法向量,即可判断.【详解】A :若AB与AC 共线,存在R λ∈使AB AC λ= ,则2120λλλ=-⎧⎪=⎨⎪=⎩无解,故不共线,错误;B :与AB同向的单位向量是||AB AB ==,正确;C:由cos ,11||||AB BCAB BC AB BC ⋅==-,则BC 在AB方向上的投影向量是()cos ,2,1,0AB BC AB BC AB ⎛=⨯-- ⎝⎭,正确;D :若(,,)m x y z = 是面ABC 的一个法向量,则2020m AB x y m AC x y z ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令=2y -,则(1,2,5)m =- ,正确.故选:BCD变式7.(2023春·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面α,β的法向量,则平面α,β交线的方向向量可以是()A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,1【答案】B【分析】根据平面的交线都与两个平面的法向量垂直求解.【详解】因为四个选项中,只有()()()0,1,02,0,20,1,00⋅=⋅=a ,()()()0,1,03,0,00,1,00⋅=⋅=b ,所以平面α,β交线的方向向量可以是()0,1,0故选:B变式8.(2023秋·福建南平·高二统考期末)已知四面体ABCD 的顶点坐标分别为()0,0,2A ,()2,2,0B ,()1,2,1C ,()2,2,2D .(1)若M 是BD 的中点,求直线CM 与平面ACD 所成的角的正弦值;(2)若P ,A ,C ,D 四点共面,且BP ⊥平面ACD ,求点P 的坐标.【答案】3(2)482,,333⎛⎫ ⎪⎝⎭【分析】(1)由题意分别求出向量()1,0,0CM = 和平面ACD 的一个法向量()1,1,1n =--,再用直线与平面所成的角的正弦值公式代入计算即可;(2)由题意,(),,BP n λλλλ==--,于是点P 的坐标为()2,2,λλλ+--,由P ,A ,C ,D 四点共面,可设AP xAD y AC =+ ,将,AP AD AC ,坐标分别代入即可解得23λ=-,从而求得点P 的坐标.【详解】(1)由题意,()1,2,1AC =- ,()2,2,0AD = ,()2,2,1M ,()1,0,0CM =,可设平面ACD 的法向量(),,n x y z =,则00n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20220x y z x y +-=⎧⎨+=⎩,化简得z xy x=-⎧⎨=-⎩.令1x =,则1y =-,1z =-,可得平面ACD 的一个法向量()1,1,1n =--,设直线CM 与平面ACD ,则sin 3CM n CM n θ⋅===⋅ ,即直线CM 与平面ACD(2)由题意,(),,BP n λλλλ==-- ,于是点P 的坐标为()2,2,λλλ+--,又P ,A ,C ,D 四点共面,可设AP xAD y AC =+,即()()()2,2,22,2,01,2,1x y λλλ+---=+-,即222222x y x y y λλλ+=+⎧⎪-=+⎨⎪--=-⎩,解得23λ=-,所以所求点P 的坐标为482,,333⎛⎫⎪⎝⎭.变式9.(2023春·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面α内,()3,1,2=n 是平面α的一个法向量,则下列点P 中,在平面α内的是()A .()1,1,1P -B .31,3,2P ⎛⎫ ⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫--- ⎪⎝⎭【答案】A【分析】根据每个选项中P 点的坐标,求出AP的坐标,计算AP n ⋅ ,根据结果是否等于0,结合线面垂直的性质,即可判断点P 是否在平面α内.【详解】对于选项A ,()1,5,1AP =-- ,所以1351120AP n ⋅=-⨯+⨯-⨯= ,根据线面垂直的性质可知AP α⊂,故()1,1,1P -在平面α内;对于选项B ,11,9,2AP ⎛⎫=-- ⎪⎝⎭ ,则11391202AP n ⋅=-⨯+⨯+⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫ ⎪⎝⎭不在平面α内;对于选项C ,11,3,2AP ⎛⎫=-- ⎪⎝⎭ ,则11331202AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫- ⎪⎝⎭不在平面α内;对于选项D ,113,3,4AP ⎛⎫=-- ⎪⎝⎭ ,则113331204AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,4P ⎛⎫--- ⎪⎝⎭不在平面α内;故选:A变式10.(2023春·河南·高二临颍县第一高级中学校联考开学考试)已知点()01,2,3P -在平面α内,平面{}00P n P P α=⋅= ∣,其中()1,1,1n =-是平面α的一个法向量,则下列各点在平面α内的是()A .()2,4,8-B .()3,8,5C .()2,3,4-D .()3,4,1-【答案】B【分析】由法向量的定义结合数量积运算确定y =x+z ,再判断选项.【详解】设(),,P x y z 是平面α内的一点,则()01,2,3P P x y z =+--,所以()()()1230x y z +--+-=,即y =x+z ,选项B 满足.故选:B考点三:用空间向量证明平行问题(一)判断直线、平面的位置关系例3.(2023秋·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,则()A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交【答案】A【分析】直线的一个方向向量()257,,a = ,平面α的一个法向量为()111,,u →=-,计算数量积,即可判断出结论.【详解】 直线的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,2570a u →→∴⋅=+-=,∴a u →→⊥,l α∴∥或l ⊂α,故选:A变式1.(2023春·高二单元测试)若平面α与β的法向量分别是()1,0,2a =-,()1,0,2b =-r,则平面α与β的位置关系是()A .平行B .垂直C .相交不垂直D .无法判断【答案】A【分析】利用平面法向量的位置关系,即可判断两平面的位置关系.【详解】因为()1,0,2a =- ,()1,0,2b =-r是平面α与β的法向量,则a b =-,所以两法向量平行,则平面α与β平行.故选:A变式2.(2023春·山东菏泽·高二统考期末)已知平面α与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面α与平面ABC 的位置关系是________.【答案】平行【分析】分别计算AB m ⋅ ,AC m ⋅ ,可得0m AB ⋅= ,0m AC =⋅ ,从而可知m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,所以可得平面α与平面ABC 平行.【详解】平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,()220410AB m =⨯⨯=⋅++- ,()2116410AC m =⨯+-⨯+⨯=⋅,所以m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,平面ABC 的一个法向量为(2,1,4)m =-,又因为平面α与平面ABC 是不重合的两个平面所以平面α与平面ABC 平行.故答案为:平行.变式3.(2023秋·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -''''中,222AA AB AD '===,以点D 为坐标原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD '所在法向量为(,,)x y z ,则::x y z =__________.【答案】2:2:1【分析】利用法向量的求法进行求解即可【详解】由题意得()1,0,0A ,()0,1,0C ,()0,0,2D ',()1,1,0AC =- ,()1,0,2AD '=-,因为平面ACD '的法向量为(),,n x y z = ,则00AC n AD n '⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z -+=⎧⎨-+=⎩,取()20x k k =≠,则2,y k z k ==,故::2:2:1x y z =故答案为:2:2:1变式4.【多选】(2023春·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是()A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-,则l //αC .若两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//αβD .若平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面α的法向量,则1u t +=【答案】ACD【分析】利用空间向量共线定理判断A 即可;由,a μ的关系式即可判断B ;由12,n n 的关系即可判断选项C,利用平面内法向量的性质即可判断D.【详解】因为两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,所以a b =-,所以,a b 共线,又直线1l ,2l 不重合,所以12//l l ,故A 正确;因为直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-且53a μ=-,所以l α⊥,故B 不正确;两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则有212n n =-,所以//αβ,故C 正确;平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,所以()(),,1,1,11,1,0B B A C --==又向量()11,,n u t = 是平面α的法向量,所以1111010100AB n AB n u t u BC n BC n ⎧⎧⊥⋅=-++=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⊥=⎩⎪⎪⎩⎩则1u t +=,故D 正确,故选:ACD.(二)已知直线、平面的平行关系求参数例4.(2022秋·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =- ,平面α的法向量()222,,n x x x =+-,若直线//l 平面α,则x =______.【答案】2【分析】线面平行时,直线的方向向量垂直于平面的法向量,即它们的数量积为零,根据数量积的坐标表示列出方程求解即可.【详解】解:若直线//l 平面α,则0s n ⋅=,22220x x x x ∴-++-=-=,解得2x =,故答案为:2.变式1.(2023秋·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面α的一个法向量(,4,2)n x =-,若//l α,则实数x =_______.【答案】10【分析】根据直线与平面平行,得到直线的方向向量与平面的法向量垂直,进而利用空间向量数量积为0列出方程,求出x 的值.【详解】因为//l α,所以直线l 的方向向量与平面α的法向量垂直,即(,4,2)(1,2,1)820n d x x ⋅=-⋅-=--=,解得:10x =.故答案为:10变式2.(2022秋·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s →=,平面α的法向量()21,,n x x x →=--,若直线l α∥,则x =___________.【答案】1【分析】结合已知条件可得s n →→⊥,然后利用垂直向量的数量积为0即可求解.【详解】由题意可知,s n →→⊥,因为()1,1,1s →=,()21,,n x x x →=--,从而210s n x x x →→⋅=+--=,解得1x =.故答案为:1.变式3.(2023春·上海·高二校联考阶段练习)已知平面α的一个法向量为()11,2,3n =-,平面β的一个法向量为()22,4,n k =--,若//αβ,则k 的值为______【答案】6【分析】因为法向量定义,把//αβ转化为12//n n,可得k 的值.【详解】因为平面α的一个法向量为()11,2,3n =- ,平面β的一个法向量为()22,4,n k =--,又因为//αβ,所以12//n n,可得()()342k -⨯-=,即得6k =.故答案为:6.(三)证明直线、平面的平行问题例5.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;【解析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()10,0,4A ,()2,0,0B ,()0,2,2M ,()1,1,0N ,()1,0,4P .取向量()2,0,0AB = 为平面11ACC A 的一个法向量,()0,1,4PN =-,∴()0210400PN AB ⋅=⨯++-=⨯⨯,∴PN AB ⊥ .又∵PN ⊄平面11ACC A ,∴PN ∥平面11ACC A .变式1.(2023·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ⊥底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;【解析】连接OC ,因为//,AO BC AO BC =,所以四边形OABC 为平行四边形,所以//AB OC ,所以OC AD ⊥,以OC ,OD ,OP 分别为x ,y ,z轴建立空间直角坐标系,则(P ,()0,1,0A -,()1,1,0B -,()1,0,0C.11,22CE ⎛⎫=- ⎪ ⎪⎝⎭,(0,1,PA =-,(1,1,PB =- ,设平面PAB 的一个法向量为()1,,n x y z =,则1100PA n y PB n x y ⎧⋅=--=⎪⎨⋅=--=⎪⎩ ,则0x =,令1z =-,y =平面PAB的一个法向量()11n =-,1022CE n ⋅== ,则1CE n ⊥ ,又CE ⊄平面PAB ,所以//CE 平面PAB .变式2.(2023·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114AC =.证明://DE 平面11ACC A ;【解析】证明:在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,2BC =,AB =114AC =.所以114AC AC ==,则222AC AB BC =+,则AB BC ⊥,则如下图,以B 为原点,1BC BA BB ,,为x y z ,,轴建立空间直角坐标系,设1BB h =,则()()()00000200A B C ,,,,,,,,()()()()()111000200010A h B h C h D E h ,,,,,,,,,,,,所以()1DE h =,()()12000AC AA h =-=,,,,,设平面11ACC A 的一个法向量为()n x y z =,,,所以1200AC n x AA n hz ⎧⋅=-=⎪⎨⋅==⎪⎩ ,令1y =,则0x z ==,即)0n =,,所以())1000DE n h ⋅=⋅==,,得DE n ⊥,又DE ⊄平面11ACC A ,所以//DE 平面11ACC A ;变式3.(2023春·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;【解析】因为PA ⊥底面ABC ,90BAC ∠=︒,建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB ==-,设(,,)n x y z =为平面BDE 的法向量,则0n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)n = ,又11,1,22MN ⎛⎫=- ⎪⎝⎭ ,可得0MN n ⋅=,因为MN ⊄平面BDE ,所以//MN 平面BDE ,变式4.(2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;【解析】证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()0,2,0D ,()002P ,,,()2,4,0C ,()1,2,1M ,()2,1,0E ,()1,0,1DM =,易知平面PAB 的一个法向量为()0,2,0AD = ,故0DM AD ⋅=,则DM AD ⊥ ,又DM ⊂/平面PAB ,故//DM 平面PAB .变式5.(2023·四川成都·校考一模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,AD MN ⊥,2AB =,4AD AP ==,M ,N 分别是BC ,PD 的中点.求证:MN ∥平面PAB ;【解析】(1)由题意,在矩形ABCD 中,2AB =,4AD AP ==,AB AD ⊥,M ,N 分别是BC ,PD 的中点,∴11222BM CM BC AD ====,2AB CD ==,在四棱锥P ABCD -中,面PAD ⊥平面ABCD ,面PAD ⋂面ABCD AD =,AB AD ⊥,∴AB ⊥面PAD ,PA ⊂面PAD ,∴PA AB ⊥,取AP 中点E ,连接BE ,由几何知识得BE MN ∥,∵AD MN ⊥,∴AD BE ⊥,AD AB⊥∵BE ⊂面PAB ,AB ⊂面PAB ,AB BE B = ∴AD ⊥面PAB ,∴PA AD⊥以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系如下图所示,∴()()()()()()()0,0,0,2,0,0,2,4,0,0,4,0,0,0,4,2,2,0,0,2,2A B C D P M N ,∴()2,0,2MN =- ,面PAB 的一个法向量为()0,4,0AD =,∵2004200MN AD ⋅=-⨯+⨯+⨯=,∴MN ∥平面PAB .变式6.(2021·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F AG ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .【答案】证明见解析【分析】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,令1,,AB a BC b BB c ===写出EF 、EG uu ur 、PQ 、PR ,进而求面EFG 、面PQR 的法向量m 、n ,根据所得法向量的关系即可证结论.【详解】构建以D 为原点,1,,DA DC DD为x 、y 、z轴正方向的空间直角坐标系,如下图示,设1,,AB a BC b BB c ===(,,1)a b c >,又1111A E A F AG ===,1CP CQ CR ===,∴(,0,1)E b c -,(,1,)F b c ,(1,0,)G b c -,(0,,1)P a ,(0,1,0)Q a -,(1,,0)R a ,∴(0,1,1)EF = ,(1,0,1)EG =- ,(0,1,1)PQ =--,(1,0,1)PR =- ,设(,,)m x y z = 是面EFG 的一个法向量,则00EF m y z EG m z x ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,令1x =,(1,1,1)m =- ,设(,,)n i j k = 是面PQR 的一个法向量,则00PQ n j k PR n i k ⎧⋅=--=⎪⎨⋅=-=⎪⎩ ,令1i =,(1,1,1)n =- ,∴面EFG 、面PQR 的法向量共线,故平面//EFG 平面PQR ,得证.变式7.(2023·上海普陀·ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F.求证:平面BDE ∥平面B 1D 1F ;【解析】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图则B (1,0,0),D (0,1,0),E (0,0,2),B 1(1,0,4),D 1(0,1,4),F (1,1,2),∵()10,1,2DE FB ==-,∴DE ∥FB 1,1//,DE FB DE ⊄ 平面11B D F ,1FB ⊂平面11B D F ,//DE ∴平面11B D F ,同理//BD 平面11B D F ,∵BD ⊂平面BDE ,DE ⊂平面BDE ,BD DE D ⋂=平面BDE ,∴平面//BDE 平面11B D F .考点四:利用空间向量证明垂直问题(一)判断直线、平面的位置关系例6.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,则()A .12l l ⊥B .1l ∥2l C .1l 与2l 相交不平行D .1l 与2l 重合【答案】A【分析】由题意可得0a b ⋅= ,即得a b ⊥,从而得12l l ⊥,即得答案.【详解】解:因为直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,(1,3,1)(8,2,2)8620a b ⋅=--⋅=--=所以a b ⊥ ,即12l l ⊥.故选:A.变式1.(2022秋·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=-,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,则直线l 和平面α位置关系是()A .l α⊥B .//l αC .l α⊂D .不确定【答案】A【分析】根据题意判断直线l 的方向向量和平面α的法向量的关系,即可判断直线l 和平面α位置关系.【详解】由题意直线l 的方向向量为e (2,3,1)=- ,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,可知e 2n =-,故l α⊥,故选:A变式2.【多选】(2022秋·广东珠海·高二珠海市斗门区第一中学校考期末)已知v为直线l 的方向向量,12,n n 分别为平面α,β的法向量(α,β不重合),那么下列说法中正确的有().A .12n n αβ⇔∥∥B .12n n αβ⊥⇔⊥C .1v n l ⇔ α∥∥D .1v n l ⊥⇔⊥ α【答案】AB【分析】根据法线面垂直平行的性质及法向量、方向向量的概念即可选出选项.【详解】解:若12n n∥,因为α,β不重合,所以αβ∥,若αβ∥,则12,n n 共线,即12n n∥,故选项A 正确;若12n n ⊥,则平面α与平面β所成角为直角,故αβ⊥,若αβ⊥,则有12n n ⊥,故选项B 正确;若1v n ∥,则l α⊥,故选项C 错误;若1v n ⊥,则l α∥或l ⊂α,故选项D 错误.故选:AB变式3.(2023春·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=--,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥C .两个不同的平面,αβ的法向量分别是()()2,2,1,3,4,2u v =-=-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则l α∥【答案】AC【分析】根据条件,利用方向向量、法向量的定义与性质,结合空间向量的平行和垂直,对各选项逐项判断即可.【详解】解:对于A ,两条不重合直线1l ,2l 的方向向量分别是(2,3,1),(2,3,1)a b =-=--,则b a =-,所以//a b ,即12l l //,故A 正确;对于C ,两个不同的平面α,β的法向量分别是(2,2,1),(3,4,2)u v =-=-,则0u v =⋅,所以αβ⊥,故C 正确;对于B ,直线l 的方向向量(1,1,2)a =- ,平面α的法向量是(6,4,1)u =-,则16142(1)0a u ⋅=⨯-⨯+⨯-= ,所以a u ⊥,即//l α或l ⊂α,故B 错误;对于D ,直线l 的方向向量(0,3,0)a = ,平面a 的法向量是(0,5,0)u =-,则53u a =-,所以//μα ,即l α⊥,故D 错误.故选:AC .变式4.【多选】(2022·高二课时练习)下列命题是真命题的有()A .A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭r 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n ⎛⎫= ⎪⎝⎭ ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=rn u t 是平面α的法向量,则u +t =1【答案】ABD【分析】由基底的概念以及空间位置关系的向量证明依次判断4个选项即可.【详解】解:对于A ,A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,则,,BA BM BN共面,可得A ,B ,M ,N 共面,故A 正确;对于B ,2110a b ⋅=--=,故a ⊥ ,可得l 与m 垂直,故B 正确;对于C ,0110a n ⋅=-+= ,故a n ⊥,可得在α内或l ∥α,故C 错误;对于D ,()1,1,1AB =- ,易知AB n ⊥,故﹣1+u +t =0,故u +t =1,故D 正确.故选:ABD .(二)已知直线、平面的垂直关系求参数例7.(2023春·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面α的法向量为()1,2,0n = ,直线l 的方向向量为v,则下列选项中使得l α⊥的是()A .()2,1,0v =-B .()2,1,0v =C .()2,4,0v =D .()1,2,0v =-【答案】C【分析】根据法向量与方向向量的定义,即可求得本题答案.【详解】若l α⊥,则直线l 的方向向量v垂直于平面α,所以v与平面α的法向量()1,2,0n = 平行,显然只有选项C 中2v n = 满足.故选:C变式1.(江苏省扬州市2022-2023学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =-,平面α的法向量为()()2,,,n a b a b a b =--+∈R.若l α⊥,则3a b +的值为()A .5-B .2-C .1D .4【答案】A【分析】根据题意得到//e n ,进而得到方程组12a b a b -=⎧⎨+=-⎩,求得,a b 的值,即可求解.【详解】由直线l 的方向向量为()2,1,2e =-,平面α的法向量为()2,,n a b a b =--+ ,因为l α⊥,可得//e n ,所以2212a b a b--+==-,即12a b a b -=⎧⎨+=-⎩,解得13,22a b =-=-,所以193522a b +=--=-.故选:A.变式2.(2023春·高二课时练习)已知()()3,,,R u a b a b a b =-+∈ 是直线l 的方向向量,()1,2,4n =r是平面α的法向量.若l α⊥,则ab =______.【答案】27【分析】根据线面垂直的概念,结合法向量的性质可得u n ∥,进而求得,a b ,即得.【详解】∵l α⊥,∴//u n ,∴3124a b a b-+==,故612a b a b -=⎧⎨+=⎩,解得93a b =⎧⎨=⎩,∴27ab =.故答案为:27.变式3.(2022秋·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m 为()A .1B .2C .4D .54-【答案】C【分析】由l α⊥可知l 的方向向量为与平面α的法向量平行,再利用向量共线定理即可得出.【详解】l α⊥ ,l ∴的方向向量为()2,1,m 与平面α的法向量11,,22⎛⎫⎪⎝⎭平行,∴1(2,1,)(1,,2)2m λ=.∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得4m =.故选:C .变式4.(2023春·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC中,AB =,2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO λ=uu u r uuu r,若PA ⊥平面PBC ,则实数λ=()A .12B .13-C.4D.6【答案】D【分析】由正棱锥的结构特征构建空间直角坐标系,根据已知条件确定相关点坐标并求出面PBC 的法向量,结合线面平行及向量共线定理求参数λ即可.【详解】由题设,△ABC2DA DB DC ===,等边△ABC32=,在正棱锥中,以O 为原点,平行CB 为x 轴,垂直CB 为y 轴,OD 为z 轴,如上图示,则11(0,1,0),(,,0),(,,0),2222A B C D --,且)P ,所以)AP =,1,)2PB =,CB = ,若(,,)m x y z = 为面PBC的法向量,则1020PB m y z CB m ⎧⋅=+=⎪⎨⎪⋅==⎩ ,令1z =,则(0,,1)m = ,又PA ⊥平面PBC ,则AP km = 且k为实数,101k k λ⎧=⎪⎪=⎨⎪≤≤⎪⎩,故λ=.故选:D(三)证明直线、平面的垂直问题例8.(2023春·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .。
利用向量解决平面几何问题的方法与技巧

利用向量解决平面几何问题的方法与技巧平面几何是数学中的一个重要分支,它研究平面上的点、直线、圆等几何图形及其性质。
解决平面几何问题时,常常可以运用向量的概念和运算来简化计算和分析过程。
本文将介绍一些利用向量解决平面几何问题的方法与技巧。
一、向量的基本概念与运算在讨论向量解决平面几何问题之前,首先需要了解向量的基本概念和运算。
向量是具有大小和方向的量,可以表示为箭头形式或坐标形式。
向量的加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。
向量的数乘是将向量的长度进行拉伸或压缩的操作,结果仍是一个向量。
二、利用向量进行辅助构造1. 向量平移在解决平面几何问题时,有时可以通过向量平移来简化问题。
设有一个平面几何问题,已知点A,B,C等多个点,需要求得某个点D。
可以选择一个已知向量,用它将所有的点平移,然后通过平移后的点的位置关系来确定点D的位置。
2. 向量加法构造向量当需要得到几何图形中的一个向量时,可以利用已知向量进行向量加法构造。
例如,已知直线上的两个点A和B,需要求得直线上的另一个点C,可以利用已知向量AB和一条与直线垂直的向量得出向量AC,从而确定点C在直线上的位置。
三、利用向量进行问题的求解1. 直线和向量的关系在平面几何中,直线可以由点和向量唯一确定。
已知直线上的两点A和B,通过向量AB可以得到直线上的一个特征向量。
2. 平行和共线的判定利用向量的平行性质,可以方便地判定两条直线是否平行或共线。
若两个向量的方向相同或相反,则两条直线平行;若两个向量共线,则两条直线共线。
3. 角度和向量的夹角利用向量的内积,可以求得两个向量之间的夹角。
已知两个向量a和b,它们的夹角θ满足公式cosθ=(a·b)/(|a||b|)。
4. 平面和向量的关系在解决平面几何问题时,有时可以通过平面的法线向量来简化问题。
已知平面上的三个点A、B、C,可以通过向量AB和向量AC求得平面的法线向量,从而得到平面的方程。
用向量方法证明直线与平面的判定定理

用向量方法证明直线与平面的判定定理The line and plane identification theorem is a fundamental conceptin geometry that helps determine the relationship between a given line and plane in three-dimensional space. This theorem states that a line is either parallel to a plane, intersects a plane at a single point, or lies in the plane itself. To prove this theorem using vector methods, we can leverage the properties of vectors to establish the relationships between the line and the plane in question.直线与平面的判定定理是几何中的基本概念,有助于确定三维空间中给定直线与平面之间的关系。
该定理规定直线要么与平面平行、要么在平面上截取一个点、要么直线在平面内。
为了通过向量方法证明这个定理,我们可以利用向量的性质来建立直线与所讨论平面之间的关系。
Firstly, let's consider the case where the line is parallel to the plane.In this scenario, the direction vector of the line will be orthogonal to the normal vector of the plane. This means that the dot product of these two vectors will be zero, indicating orthogonality. By using this property and the parametric equations of the line and the equation of the plane, we can show that the line is indeed parallel to the plane.首先,让我们考虑直线与平面平行的情况。
1.4空间向量的应用-1.4.1用空间向量研究直线、平面的位置关系

面PCD的一个法向量为n2=(1,0,0),因为n1·n2=0,所以n1⊥n2.
探究一
探究二
探究三
探究四
素养形成
当堂检测
变式训练1如图所示,已知四边形ABCD是直角梯
1
形,AD∥BC,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
,试
2
建立适当的坐标系.
(1)求平面ABCD的一个法向量;
(2)求平面SAB的一个法向量;
(3)求平面SCD的一个法向量.
探究一
探究二
探究三
探究四
素养形成
当堂检测
解:以点A为原点,AD、AB、AS所在的直线分别为x轴、y轴、z轴,建
立如图所示的空间直角坐标系,
则 A(0,0,0),B(0,1,0),C(1,1,0),D
体的棱长为1,
则 D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),D1(0,0,1),
∴1 =(1,0,1),=(-1,1,0),设=(a,b,c),
1 · = 0,
则
· = 0,
+ = 0,
即
- + = 0,
取=(1,1,-1).
激趣诱思
知识点拨
2.空间直线的向量表示式
如图①,a 是直线 l 的方向向量,在直线 l 上取=a,设 P 是直线 l 上
的任意一点,则点 P 在直线 l 上的充要条件是存在实数 t,使得=ta,
即=t.如图②,取定空间中的任意一点 O,可以得到点 P 在直线 l
上的充要条件是存在实数 t,使 = +ta, ①
向量法证明点在平面内的方法

向量法证明点在平面内的方法1. 嘿,你看啊!可以通过向量的线性组合来证明呀!就好比在一个房间里,几个不同方向的力共同作用能让一个东西稳稳地待在那里,这就能说明这个东西在这个由这些力构成的平面内啦!比如有个点 P,向量 PA 和向量PB 能表示成其他向量的线性组合,那这不就说明点 P 在这个平面内嘛!2. 哇塞,还可以利用共面向量定理呢!这就像一群小伙伴手牵手围成一圈,他们就是在一个平面上呀!比如说已知三个向量共面,然后点就在这三个向量所确定的平面内呀,很神奇吧!3. 嘿呀,试试证明向量与平面内的某两个向量平行呀!这不就像火车在铁轨上跑,铁轨确定了,火车肯定就在这个平面内跑呀!像有个点对应的向量和平面内两个不共线向量平行,那点就在平面内咯!4. 还有呢,计算向量的数量积为 0 也行呀!就好像拔河的时候,两边力量抵消了,那肯定就在一个平面上呀!比如一个向量垂直于平面内另一个向量,这不就说明在平面内嘛!5. 哎呀呀,看看向量的坐标呀!如果坐标符合平面的表达式,那不就像密码对上了锁,点就在平面内啦!就像给定一个平面方程和点的坐标,代入一验证,对得上就说明在平面内呀!6. 嘿嘿,也可以通过已知条件去构造向量呀!这就好比搭积木,搭好了就能看出来点在不在平面内呢!比如根据一些已知信息构造出相关向量来证明点在平面内。
7. 哇哦,观察向量之间的关系呀!是不是很简单直接?就像观察一群人的关系一样清楚明白!比如发现某些向量之间有特定关系能证明点在平面内。
8. 哈哈,还能利用空间向量基本定理呀!这就如同有了一把万能钥匙,能打开证明点在平面内的大门哟!像找到合适的基底向量和点对应的向量的关系。
9. 总之呀,向量法证明点在平面内的方法有好多呢!我们要善于去发现和运用呀!只要多去尝试,就能轻松搞定啦!结论就是:学会这些方法,让我们在证明点在平面内时如有神助!。