用法向量求二面角和证明两平面垂直

合集下载

32(二)向量方法证明空间线面垂直关系

32(二)向量方法证明空间线面垂直关系

学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0, ∴平面BEF ⊥平面ABC .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0; ③若n 是平面α的法向量,a 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A.1 B.2 C.3 D.4 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确. 2.已知两直线的方向向量为a ,b ,则下列选项中能使两直线垂直的为( ) A.a =(1,0,0),b =(-3,0,0) B.a =(0,1,0),b =(1,0,1) C.a =(0,1,-1),b =(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A.-2 B.2 C.6 D.10 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1) C.n 1=(1,1,1),n 2=(-1,2,1) D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A , ∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确; ∵AP →是平面ABCD 的法向量, ∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________. 答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0. ∴2cos 2x -cos x =0, ∴cos x =0或cos x =12.又x ∈[0,π], ∴x =π2或x =π3.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________. 答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e =0,即e =a 2. ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。

面面垂直判定定理的证明方法

面面垂直判定定理的证明方法

面面垂直判定定理的证明方法
1. 嘿,你知道吗?可以通过定义来证明面面垂直呀!就好比一面墙和地面,墙直直地立在地面上,这面和地面不就是垂直的嘛!定义就是如果两个平面相交,所成的二面角是直二面角,那这两个平面就垂直啦,简单吧?
2. 还有用判定定理哦!如果一个平面经过另一个平面的一条垂线,那就垂直!好比盖房子的时候,有根柱子直直地立在地上,那靠着柱子的墙板和地面不就垂直咯!
3. 哎呀呀,也可以用两个平面的法向量来判断呀!法向量就像两个平面的“方向使者”,如果它们垂直,那平面也就垂直啦!就像两个领队相互对着干,他们带领的队伍不也就对立啦,哈哈!
4. 嘿,你想过没?通过直线与平面垂直的性质定理也能证明书哦!如果一条直线垂直于一个平面,而这条直线又在另一个平面内,那这两个平面就垂直喽!就好像你站在一块木板上,木板靠在墙上,那你和墙壁不就联系起来垂直咯!
5. 哇哦,还可以利用面面垂直的传递性呢!如果平面A 垂直于平面B,平面 B 又垂直于平面 C,那平面 A 不就和平面 C 垂直啦!这就好像接力赛
一样,一环扣一环,酷不酷!
6. 哈哈,别忘了还有一种方法呢,那就是通过一些常见几何图形的性质呀!比如正方体,那些面的垂直关系一眼就能看出来啦!是不是很有意思呀?
我觉得呀,这些证明方法都超有用,能让我们更好地理解和运用面面垂直判定定理呢!。

立体几何中的向量公式

立体几何中的向量公式

向量法解立体几何用传统的方法解立体几何需要烦琐的分析、复杂的计算。

而用向量法解题思路清晰、过程简洁。

对立体几何的常见问题都可以起到化繁为简,化难为易的效果。

一. 证明两直线平行已知两直线a 和b , b D C a B A ∈∈,,,,则⇔b a //存在唯一的实数λ使CD AB λ=二. 证明直线和平面平行1。

已知直线αα∈∈⊄E D C a B A a ,,,,,且三点不共线,则a ∥⇔α存在有序实数对μλ,使CE CD AB μλ+=2。

已知直线,,,a B A a ∈⊄α和平面 α的法向量n ,则a ∥n AB ⊥⇔α三.证明两个平面平行已知两个不重合平面βα,,法向量分别为n m ,,则α∥n m //⇔β四.证明两直线垂直 已知直线b a ,。

b D C a B A ∈∈,,,,则0=•⇔⊥CD AB b a五。

证明直线和平面垂直已知直线α和平面a ,且A 、B a ∈,面α的法向量为m ,则m AB a //⇔⊥α六.证明两个平面垂直已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥⇔⊥βα七.求两异面直线所成的角已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ为:CDAB •=θcos八.求直线和平面所成的角AB已知A ,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为:1.⎪⎭⎫ ⎝⎛•2,0π时-=2πθ 2.⎪⎭⎫ ⎝⎛∈ππ,2时2πθ-= 九.求二面角1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ的大小为:=θ2.已知二面角,βα--l n m ,分别为面βα,的法向量,则二面角的平面角θ的大小与两个法向量所成的角相等或互补。

即-=πθ注:如何判断二面角的平面角和法向量所成的角的关系。

(1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。

面面垂直的证明方法

面面垂直的证明方法

面面垂直的证明方法面面垂直,也就是指两个平面相交成直角(即垂直)的情况。

要证明两个平面是垂直的,一般可以使用以下几种方法:方法一:平面法向量垂直首先,我们知道一个平面可以用它的法向量来表示。

设平面P1的法向量为n1,平面P2的法向量为n2。

要证明P1和P2垂直,只需证明它们的法向量n1和n2垂直即可。

设向量n1=(a1,b1,c1),向量n2=(a2,b2,c2)。

那么,n1和n2垂直的充要条件是它们的内积等于零,即a1*a2+b1*b2+c1*c2=0。

根据这个条件,我们可以证明P1和P2是垂直的。

方法二:平面上的两个向量垂直另一种证明方法是通过平面上的两个向量来证明两个平面垂直。

设平面P1上的两个向量为u1和v1,平面P2上的两个向量为u2和v2。

要证明P1和P2垂直,只需证明u1和u2垂直,并且v1和v2垂直即可。

假设向量u1=(a1,b1,c1),向量u2=(a2,b2,c2),向量v1=(d1,e1,f1),向量v2=(d2,e2,f2)。

根据两个向量垂直的条件,我们有a1*a2+b1*b2+c1*c2=0以及d1*d2+e1*e2+f1*f2=0。

通过这两个条件,我们可以证明u1和u2垂直,并且v1和v2垂直。

因此,根据平面上的两个向量垂直的充要条件,P1和P2是垂直的。

方法三:平面上的一个向量和另一个平面的法向量垂直还有一种证明方法是通过平面上的一个向量和另一个平面的法向量来证明两个平面垂直。

设平面P1上的向量为u1,平面P2的法向量为n2。

要证明P1和P2垂直,只需证明u1和n2垂直即可。

假设向量u1=(a1,b1,c1),法向量n2=(a2,b2,c2)。

根据向量垂直的条件,我们有a1*a2+b1*b2+c1*c2=0。

根据这个条件,我们可以证明u1和n2垂直。

因此,根据平面上的一个向量和另一个平面的法向量垂直的充要条件,P1和P2是垂直的。

使用以上三种方法之一,我们可以证明两个平面是垂直的。

平面与平面垂直的判定定理

平面与平面垂直的判定定理

2023年度:平面与平面垂直的判定定理一、定义在三维空间中,如果两个平面之间的夹角为90度,则称这两个平面是垂直的。

二、定理两个平面垂直的充分必要条件是:它们的法向量互相垂直。

证明:设两个平面分别为平面P1和平面P2,它们的法向量分别为n1和n2,夹角为α。

则有:cosα = n1·n2 / |n1||n2|其中,·表示向量的点积,|n1|和|n2|表示向量n1和n2的模。

当两个平面垂直时,α=90°,则有:cos90°=0即:n1·n2 = 0即两个平面的法向量互相垂直。

反之,若两个平面的法向量互相垂直,则有:n1·n2 = 0即:cosα = n1·n2 / |n1||n2| = 0 / (|n1||n2|) = 0即两个平面的夹角为90度,证毕。

三、应用该定理可以用来解决以下问题:1. 判断两个平面是否垂直。

给定两个平面的法向量,在计算它们的点积和模的前提下,判断它们是否垂直即可。

2. 求两个平面的交线。

对于两个不相交的平面,它们的交线可以通过它们的法向量和一个公共点求解得到。

3. 求一个平面在另一个平面上的投影。

将需要投影的平面的法向量沿着另一个平面的法向量分解,得到该平面在另一个平面上的投影向量。

4. 计算两个平面的夹角。

给定两个平面的法向量,在计算它们的点积和模的前提下,计算它们的夹角即可。

总结1. 本文档所涉及简要注释如下:- 平面:指在三维空间中,由无数个相互平行的直线组成的集合。

- 夹角:指两条直线或两个平面之间的夹角。

- 法向量:指垂直于平面的向量,其长度等于平面到原点的距离。

2. 本文档所涉及的法律名词及注释:- 三维空间:指以任意三个互不共线的点为基准点所构成的空间。

- 点积:指向量的数量积,是指两个向量对应分量的乘积之和。

- 模:指向量的长度,是指向量末尾点到原点的距离。

- 公共点:指两个平面的交线上的任意一个点。

证明平面与平面垂直(空间向量)

证明平面与平面垂直(空间向量)

1.利用空间向量证明面面垂直通常可以有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度..用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.4.若平面α与β的法向量分别是a=(4,0,-2),b=(1,0,2),则平面α与β的位置关系是( )A.平行 B.垂直C.相交不垂直 D.无法判断解析:∵a·b=4×1+0+(-2)×2=0.∴a⊥b,∴α⊥β.答案:B面面垂直.在正方体ABCD-A1B1C1D1中,E为CC1的中点,证明:平面B1ED⊥平面B1BD.【证明】 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E (0,1,12),DB 1→=(1,1,1),DE →=(0,1,12),设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .图3-2-124.在正方体ABCD -A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD .[证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝ ⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .例3:如图3-2-12,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .【解答】 由题意得AB ,BC ,B 1B 两两垂直,以B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·AA 1→=0n 1·AC →=0⇒⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0n 2·AE →=0⇒⎩⎪⎨⎪⎧-2x +2y +z =0,-2x +12z =0. 令z =4,得x =1,y =-1.∴n 2=(1,-1,4).∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C .如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .思路探究:要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n 1,n 2,证明n 1·n 2=0.[解] 由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝ ⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧n 1·AA 1→=0,n 1·AC →=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE →=0⇒⎩⎨⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0, 令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0. ∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .6.如图, 正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别是棱AB 、BC 的中点,EF ∩BD =G .求证:平面B 1EF ⊥平面BDD 1B 1.[证明] 以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,由题意知:D (0,0,0)、B 1(22,22,4)、E (22,2,0)、F (2,22,0),B 1E →=(0,-2,-4)、EF →=(-2,2,0). 设平面B 1EF 的一个法向量为n =(x ,y ,z ). 则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0. 解得x =y ,z =-24y ,令y =1得n =(1,1,-24), 又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+(-24)×0=0,即n ⊥AC →.∴平面B 1EF ⊥平面BDD 1B 1. 10.如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0.∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .11.在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,侧棱长为3,E 、F 分别是AB 1、CB 1的中点,求证:平面D 1EF ⊥平面AB 1C .证明:把正四棱柱如图放置在坐标系中,则各点坐标为A (2,0,0),C (0,2,0),B 1(2,2,3),D 1(0,0,3),E (2,22,32),F (22,2,32). 假设平面AB 1C 的法向量为n 1=(1,λ1,u 1),则n 1应垂直于AC →和AB 1→, 而AC →=(-2,2,0),AB 1→=(0,2,3),∴n 1·AC →=-2+2λ1=0, n 1·AB 1→=2λ1+3u 1=0. ∴λ1=1,u 1=-63. ∴n 1=(1,1,-63).再设平面D 1EF 的法向量为n 2=(1,λ2,u 2),则n 2应垂直于D 1E →、D 1F →. 而D 1E →=(2,22,-32),D 1F →=(22,2,-32),n 2·D 1E →=2+22λ2-32u 2=0,∴n 2·D 1F →=22+2λ2-32u 2=0.∴λ2=1,u 2= 6. ∴n 2=(1,1,6). 由于n 1·n 2=1+1-63·6=0, ∴n 1⊥n 2.∴平面D 1EF ⊥平面AB 1C .2.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为三角形A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.[证明] 如图,建立空间直角坐标系.则A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,3),C 1(0,1,3),因为D为BC的中点,所以D点坐标为(1,1,0),所以BC→=(-2,2,0),AD→=(1,1,0),AA1→=(0,0,3),因为BC→·AD→=-2+2+0=0,BC→·AA1→=0+0+0=0,所以BC→⊥AD→,BC→⊥AA1→,所以BC⊥AD,BC⊥AA1,又AD∩AA1=A,所以BC⊥平面ADA1,而BC⊂平面BCC1B1,所以平面A1AD⊥平面BCC1B1.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=3,AB=2,AC=2,A1C1=1,BDDC=12.证明:平面A1AD⊥平面BCC1B1.证明:如图,建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,3),C1(0,1,3).∵BD∶DC=1∶2,∴BD→=13BC→,∴D点坐标为(223,23,0),∴AD→=(223,23,0),BC→=(-2,2,0),AA1→=(0,0,3).∵BC→·AA1→=0,BC→·AD→=0,∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,∴BC⊥平面A1AD.又BC⊂平面BCC1B1,∴平面A1AD⊥平面BCC1B1.中等难度建系10.如图3-2-16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3-2-16求证:平面DEA ⊥平面ECA .【答案】建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2, 则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0, 解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0), n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .2017·开封模拟)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB .图7-7-4求证:平面BCE ⊥平面CDE . 【导学号:97190251】[证明] 设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).所以BE →=(a ,3a ,a ),BC →=(2a,0,-a ),CD →=(-a ,3a,0),ED →=(0,0,-2a ). 设平面BCE 的法向量为n 1=(x 1,y 1,z 1), 由n 1·BE →=0,n 1·BC →=0可得 ⎩⎪⎨⎪⎧ax 1+3ay 1+az 1=0,2ax 1-az 1=0, 即⎩⎪⎨⎪⎧x 1+3y 1+z 1=0,2x 1-z 1=0.令z 1=2,可得n 1=(1,-3,2). 设平面CDE 的法向量为n 2=(x 2,y 2,z 2), 由n 2·CD →=0,n 2·ED →=0可得 ⎩⎪⎨⎪⎧-ax 2+3ay 2=0,-2az 2=0,即⎩⎪⎨⎪⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0). 因为n 1·n 2=1×3+1×(-3)=0. 所以n 1⊥n 2,所以平面BCE ⊥平面CDE .底面是梯形如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB . ∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ→=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC→=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .[跟踪训练] 如图7-7-5所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .图7-7-5证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[证明] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形,∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3).∴BD →=(-2,-1,0),P A →=(1,-2,-3).∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .4.在正三棱锥P-ABC 中,三条侧棱PA,PB,PC 两两垂直,G 是△PAB 的重心,E,F 分别为BC 、PB 上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF ⊥平面PBC.(2)求证:EG ⊥BC,PG ⊥EG.【证明】(1)如图,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别作为x 轴、y 轴、z 轴建立空间直角坐标系.设PA=PB=PC=3,则A(3,0,0),B(0,3,0),C(0,0,3),E(0,2,1),F(0,1,0),G(1,1,0),P(0,0, 0), 方法一:可得=(3,0, 0),=(1,0,0),故=3,所以PA ∥FG.而PA ⊥平面PBC,所以FG ⊥平面PBC.又FG ⊂平面GEF,所以平面GEF ⊥平面PBC.方法二:可得=(0,-1,-1),=(1,-1,-1).设平面GEF 的法向量是n =(x,y,z), 则有n ⊥,n ⊥,所以{y +z =0,x -y -z =0.令y=1,得z=-1,x=0,即n =(0,1,-1).显然=(3,0,0)是平面PBC的一个法向量.又n·=0,所以n⊥.所以平面GEF⊥平面PBC.(2)因为=(1,-1,-1),=(1,1,0),=(0,-3,3),所以·=1-1=0,·=3-3=0.所以EG⊥PG,EG⊥BC.。

线线角、线面角,二面角(高考立体几何法宝)

线线角、线面角,二面角(高考立体几何法宝)

1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用法向量求二面角和证明两平面垂直
用法向量证明两平面垂直问题
要证两平面相互垂直,只需找出这两个平面的两个法向量,证明
这两个法向量相互垂直。
例1.如右图,△ABC是一个正三角形,EC⊥平面ABC,
BD∥CE,且CE=CA=2BD,M是EA的中点。
求证:(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA;
分析(3):建立如图所示右手直角坐标系 ,不妨设CA=2,

则CE=2,BD=1,C(0,0,0),A(3,1,0),B(0,2,0),

E(0,0,2),D(0,2,1),2,1,3EA ,2,0,0CE ,1,2,0ED , 分
别假设面CEA与面DEA的法向量是1111,,zyxn、3222,,zyxn,所以得
11111113203200xyzyxzz,22222
2222

3203202xyzxyyzzy










不妨取0,3,11n、2,1,32n,从而计算得021nn,所以两个法向量相互
垂直,两个平就相互垂直。
用法向量求二面角

如图,有两个平面α与β,分别作这两个平面的法向量1n与2n,

则平面α与β所成的角跟法向量1n与 2n所成的角相等或互补,所
以首先必须判断二面角是锐角还是钝角。
例2、如下图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=a,AD=3a,

sin∠ADC=55,且PA⊥平面ABCD,PA=a,求二面角P-CD-A的平面
角的余弦值。
分析:依题意,先过C点CE⊥AD,计算得ED=2a,BC=AE=a,
建立如图右角直角坐标系,则P(0,0,a),D(0,3a,0),

C(a,a,0),aaPD,3,0,aaaPC,,,
0,3,0aAD,
0,,aaAC

取平面ACD的一个法向量1,0,01n,设平面PCD的法

z
y
x
E
A

D
B

P

C

z
y
x

M
C

B

A

E
D
向量是、3222,,zyxn,所以得222222222302032ayazyxaxayazxz。
不妨取3,1,22n,从而计算得14143143,cos212121nnnnnn
易得二面角P-CD-A的平面角是锐角,所以其角的余弦是14143

相关文档
最新文档