八年级数学三角形的概念复习

合集下载

八年级直角三角形复习课说课稿9篇

八年级直角三角形复习课说课稿9篇

八年级直角三角形复习课说课稿9篇教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。

教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。

教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。

教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8、二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积. 2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD=,求:(1)弦AB的长;(2)CD的长.八年级直角三角形复习课说课稿(精选篇2)一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

人教版八年级下册数学三角形的整章知识点和对应练习(无答案)

人教版八年级下册数学三角形的整章知识点和对应练习(无答案)

一、三角形的概念【知识概述】1.三角形的定义:由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示△ABC中,边:AB,BC,AC 或c,a,b.顶点:A,B,C .内角:∠A ,∠B ,∠C.3.三角形的分类(1) 按角分:①锐角三角形②直角三角形③钝角三角形(2) 按边分:①三等边都不相等的三角形②等腰三角形:底边和腰不相等的等腰三角形,等边三角形二、三角形的边三角形的三边关系:(证明所有几何不等式的唯一方法)(1) 三角形任意两边之和大于第三边:b+c>a(2) 三角形任意两边之差小于第三边:b-c<a【例题精讲】1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是( )2.以下列各组线段的长为边长,能组成三角形的是( )A.2,3,5 B.3,4,5 C.3,5,10 D.4,4,83.一个三角形的三边长分别为4,7,x,那么x的取值范围是( )A.3<x<11 ; B.4<x<7 ; C.-3<x<11 ; D.x>3一个三角形的两边长分别为4,7,最大边长为x,那么x的取值范围是( )A.3<x<11 ; B.7<x<11 ; C.-3<x<11 ; D.x>74.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①② B.①③④ C.③④ D.①②④5.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.6.用一条长为20cm的绳子围成一个一个等腰三角形(1)如果腰长是底边长的2倍,那么各边长是多少?(2)能围成有一边长是4cm的等腰三角形吗?为什么?7.已知a,b,c是△ABC的三边长。

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

2024_2025学年八年级数学上学期期中核心考点专题01三角形的基础含解析新人教版

期中考点专题01 三角形的基础重点突破三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

三角形特性三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。

三角形三边的关系(重点(1)三角形的随意两边之和大于第三边。

三角形的随意两边之差小于第三边。

(这两个条件满意其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b三角形的分类:三角形按边的关系分类如下:三角形按角的关系分类如下:三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

考查题型考查题型一三角形的个数问题典例1.(2024·西林县期中)如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个【答案】D【提示】依据三角形的定义解答即可,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中的三角形有:△ABC,△BCD,△BCE,△ABE,△CDE共5个.故选D.【名师点拨】本题考查了三角形的概念,由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边,相邻边的公共端点叫做三角形的顶点.相邻两条边组成的角,叫做三角形的内角,简称为三角形的角.变式1-1.(2024·秦皇岛市期中)图中三角形的个数是()A.3个B.4个C.5个D.6个【答案】D【解析】图中的三角形有: △ABD, △ADE, △AEC, △ABE, △ADC, △ABC,共6个.故选D.变式1-2.(2024·洛阳市期末)图中三角形的个数是()A.4个B.6个C.8个D.10个【答案】C【提示】依据三角形的定义即可得.【详解】图中的三角形是,共8个故选:C.【名师点拨】本题考查了三角形的定义,驾驭理解三角形的概念是解题关键.变式1-3.(2024·恩施市期中)如图,图中三角形的个数有()A.6个B.8个C.10个D.12个【答案】B【解析】试题解析:以O为一个顶点的有△CBO、△CDO、△ABO、△ADO,不以O为顶点的三角形有△CAD、△CBA、△BCD、△BAD,共有8个.故选B.考查题型二三角形的分类典例2(2024·石家庄市期末)在△ABC中,∠A=20°,∠B=60°,则△ABC的形态是()A.等边三角形 B.锐角三角形C.直角三角形 D.钝角三角形【答案】D【解析】试题提示:依据三角形的内角和定理求出∠C,即可判定△ABC的形态.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.变式2-1.(2024·黄冈市期中)一个三角形三个内角的度数之比为1:2:3,则这个三角形肯定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】试题提示:依据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形.故选B.变式2-2.(2024·深圳市期中)在△ABC中,若∠A:∠B:∠C=1:3:5,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形态不确定【答案】C【提示】依据∠A:∠B:∠C=1:3:5,可设∠A=x°,∠B=3x°,∠C=5x°,再依据三角形内角和为180°可得方程x+3x+5x=180,解方程算出x的值,即可推断出△ABC的形态.【详解】解:∵∠A:∠B:∠C=1:3:5,∴设∠A=x°,∠B=3x°,∠C=5x°,∴x+3x+5x=180,解得:x=20,∴∠C=5×20°=100°,∴△ABC是钝角三角形.故选:C.【名师点拨】本题考查三角形内角和定理,关键是利用方程思想列出三个角的关系式.变式2-3.(2024·石家庄市期末)下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.【答案】A【提示】依据三角形按角分类的方法一一推断即可.【详解】视察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型.故选A.【名师点拨】本题考查了三角形的分类,解题的关键是娴熟驾驭基本学问,属于中考常考题型.考查题型三构成三角形的条件典例3.(2024·宜兴市期末)下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm【答案】B【提示】依据三角形的随意两边之和大于第三边对各选项提示推断后利用解除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【名师点拨】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.变式3-1.(2024·太仓市)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18【答案】B【解析】试题提示:依据题意,要分状况探讨:①、3是腰;②、3是底.必需符合三角形三边的关系,随意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .变式3-2.(2024·兰州市期末)等腰三角形的一边长为4,另一边长为9,则这个三角形的周长为( )A .22B .17C .13D .17或22【答案】A【提示】分4是腰长和底边两种状况探讨求解即可.【详解】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选A .【名师点拨】本题主要考查了三角形三边关系,难点在于分状况探讨并利用三角形的三边关系推断是否能组成三角形.cm cm长的两根木棒首尾相接成一个三角形的变式3-3.(2024·哈尔滨市期中)下列长度的四根木棒中,能与49,是()A.4cm B.5cm C.9cm D.13cm【答案】C【提示】依据三角形三边关系:三角形随意两边之和大于第三边,逐一推断选项,即可.【详解】∵4+4<9,cm cm长的木棒首尾相接,不能组成三角形,∴4cm,49,∴A错误;∵5+4=9,cm cm长的木棒首尾相接,不能组成三角形,∴5cm,49,∴B错误;∵9+4>9,cm cm长的木棒能组成三角形,∴9cm,49,∴C正确;∵4+9=13,cm cm长的木棒,不能组成三角形,∴13cm,49,∴D错误;故选C.【名师点拨】本题主要考查三角形的三边关系,驾驭“三角形随意两边之和大于第三边”,是解题的关键.m-=,且m,n恰好是等腰△ABC的两条边的边长,变式3-4.(2024·濮阳市期末)若实数m,n满意20则△ABC的周长是( )A.12 B.8 C.10 D.10或8【答案】C【提示】依据非负数的性质求出,m n的值,依据等腰三角形的性质求解即可.m-=【详解】20m n∴==2,4,当三角形的腰长为2时,224+=,构不成三角形;++=.当三角形的腰长为4时,三角形的周长为:44210故答案选:C.【名师点拨】考查非负数的性质以及等腰三角形的性质,驾驭三角形的三边关系是解题的关键.考查题型四三角形第三边的取值范围典例4.(2024·三明市期末)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【答案】C【提示】依据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此依据选项即可推断. 【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,视察只有C选项符合,故选 C.【名师点拨】本题考查了三角形三边的关系,娴熟驾驭三角形三边之间的关系是解题的关键.a的三条线段能组成一个三角形,则a的值可以是()变式4-1.(2024·龙岩市期中)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【提示】依据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【名师点拨】本题考查了三角形三边关系,能依据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,留意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.变式4-2.(2024·齐齐哈尔市期末)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为A.2 B.3 C.5 D.13【答案】B【提示】依据“三角形两边之和大于第三边, 两边之差小于第三边”,可得x的取值范围,一一推断可得答案. 【详解】解:依据“三角形两边之和大于第三边, 两边之差小于第三边”可得:13-2<x<13+2,即11<x<15,因为取正整数,故x的取值为12、13、14,即这样的三角形共有3个.故本题正确答案为B.【名师点拨】本题主要考查构成三角形的三边的关系.变式4-3.(2024·广州市期中)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A .5或7B .7或9C .7D .9【答案】B 【详解】依据三角形三边关系可得:5<第三边<11,依据第三边长为奇数,则第三边长为7或9.故选B.考查题型五 三角形三边关系的应用典例5.(2024·德州市期末)已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A .7B .8C .9D .10【答案】C【提示】依据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再依据第三边是整数,从而求得周长.【详解】设第三边为x ,依据三角形的三边关系,得:4-1<x <4+1,即3<x <5,∵x 为整数,∴x 的值为4.三角形的周长为1+4+4=9.故选C.【名师点拨】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.变式5-1.(2024·汕头市期中)已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b - 【答案】B【提示】依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,得到a+b-c >0,b -a -c <0,再依据肯定值的性质进行化简计算.【详解】依据三角形的三边关系,得a+b-c>0,b -a -c <0.∴原式= a+b-c −(a +c −b)= 22b c -.故选择B 项.【名师点拨】本题考查三角形三边关系和肯定值,解题的关键是娴熟驾驭三角形三边关系.变式5-2.(2024·保定市期末)如图,为估计池塘岸边A ,B 的距离,小明在池塘的一侧选取一点O ,测得OA=15米,OB=10米,A ,B 间的距离可能是( )A.30米B.25米C.20米D.5米【答案】C【解析】设A,B间的距离为x.依据三角形的三边关系定理,得:15-10<x<15+10,解得:5<x<25,所以,A,B之间的距离可能是20m.故选C.变式5-3.(2024·滨州市期末)若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【提示】依据非负数的和为零,可得每个非负数同时为零,可得a、b的值,依据等腰三角形的判定,可得三角形的腰,依据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【名师点拨】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.变式5-4.(2024·南开区期末)假如一等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为()A.13 B.5 C.5或13 D.1【答案】A【详解】设等腰三角形的腰长为x,则底边长为x﹣12或x+12,当底边长为x﹣12时,依据题意,2x+x﹣12=27,解得x=13,∴腰长为13;当底边长为x+12时,依据题意,2x+x+12=27,解得x=5,因为5+5<17,所以构不成三角形,故这个等腰三角形的腰的长为13,故选A.考查题型六三角形的稳定性典例6.(2024·路北区期中)下列图形具有稳定性的是()A.B.C.D.【答案】A【提示】依据三角形具有稳定性,四边形具有不稳定性进行推断即可得.【详解】A、具有稳定性,符合题意;B、不具有稳定性,故不符合题意;C、不具有稳定性,故不符合题意;D、不具有稳定性,故不符合题意,故选A.【名师点拨】本题考查了三角形的稳定性和四边形的不稳定性,正确驾驭三角形的性质是解题关键.变式6-1.(2024·乌鲁木齐市期末)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等【答案】C【解析】试题提示:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形态就不会变更.解:这样做的道理是三角形具有稳定性.故选:C.变式6-2.(2024·安阳市期末)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B变式6-3.(2024·济南市期末)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是()A.三角形的稳定性B.垂线段最短C.两点确定一条直线D.两点之间,线段最短【答案】A【提示】依据点A、B、O组成一个三角形,利用三角形的稳定性解答.【详解】解:一扇窗户打开后,用窗钩将其固定,正好形成三角形的形态,所以,主要运用的几何原理是三角形的稳定性.故答案选A.【名师点拨】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.变式6-4.(2024·深圳市期末)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的依据是( )A.两点之间的线段最短B.长方形的四个角都是直角C.三角形有稳定性D.长方形是轴对称图形【答案】C【详解】用木条EF固定长方形门框ABCD,使其不变形的依据是三角形具有稳定性.故选:C.【名师点拨】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.变式6-5.(2024·抚顺市期中)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性【答案】D【提示】依据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选:D.【名师点拨】此题考查三角形的性质,关键是依据三角形的稳定性解答.。

八年级上册数学三角形知识点总结

八年级上册数学三角形知识点总结

八年级上册数学三角形知识点总结一、三角形的概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三个顶点、三条边和三个角。

例如,三角形ABC,顶点为A、B、C,边为AB、BC、AC,角为∠A、∠B、∠C。

2. 三角形的表示方法。

- 用符号“△”表示三角形,如△ABC。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角(即每个角都小于90°)的三角形。

- 直角三角形:有一个角是直角(等于90°)的三角形。

直角三角形可以用“Rt △”表示,如Rt△ABC,直角所对的边称为斜边,另外两条边称为直角边。

- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。

2. 按边分类。

- 不等边三角形:三条边都不相等的三角形。

- 等腰三角形:有两条边相等的三角形。

相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

- 等边三角形:三条边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角也相等,并且每个角都是60°。

三、三角形的三边关系。

1. 定理。

- 三角形任意两边之和大于第三边,即a + b>c,a + c>b,b + c>a(设三角形三边为a、b、c)。

- 三角形任意两边之差小于第三边,即a - b<c,a - c<b,b - c<a。

- 例如,一个三角形的三边分别为3、4、5,因为3+4>5,3 + 5>4,4+5>3,且3 - 4<5,3 - 5<4,4 - 5<3,所以能构成三角形。

2. 应用。

- 判断三条线段能否组成三角形。

例如,三条线段长分别为2、3、6,因为2+3 = 5<6,不满足三边关系定理,所以不能组成三角形。

- 求三角形第三边的取值范围。

已知三角形两边长分别为5和8,则第三边x的取值范围是8 - 5<x<8 + 5,即3<x<13。

最新人教版八年级数学上册知识点总结归纳【最新整理】

最新人教版八年级数学上册知识点总结归纳【最新整理】

最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。

组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。

2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。

2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。

3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。

3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。

在生产生活中,需要稳定的东西一般都制成三角形的形状。

4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。

三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。

按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。

特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。

6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。

专题1-9 《直角三角形》全章复习与巩固(知识讲解)-八年级数学下册(湘教版)

专题1-9 《直角三角形》全章复习与巩固(知识讲解)-八年级数学下册(湘教版)

1.9 《直角三角形》全章复习与巩固(知识讲解)【复习目标】1.了解直角三角形的概念,理解直角三角形的性质和判定;2.能用直角三角形的性质和判定解决简单问题;3.会运用直角三角形的知识解决有关问题.【知识梳理】要点一、直角三角形定义1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.要点二、直角三角形性质(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.要点三、直角三角形的判定(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.要点四、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点五、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.【典型例题】类型一、直角三角形的性质1.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求CD的长.【答案】CD=a【思路点拨】根据三角形的外角的性质得∠DAC=30°,再根据含30°角的直角三角形的性质可得DC=a.解:∵∠ABC=∠ACB=15°∴∠DAC=30°∵CD是腰AB上的高AB=AC=2a∴AC=2CD∴CD=a【点拨】此题主要考查含30°的直角三角形的性质,解题的关键是利用等腰三角形得出含30°角的直角三角形.2 已知,在,ABC中,,ACB,90°,CD,AB垂足为D,BC,6,AC,8,求AB与CD 的长.【答案】AB=10∠CD=4.8.解∠在△ABC中∠∠ACB=90°∠CD⊥AB垂足为D∠BC=6∠AC=8∠由勾股定理得∠AB=∵S△ABC=12AB•CD=12AC•BC∠∴CD=AC BCAB⋅=8610⨯=4.8∠【点拨】在直角三角形ABC中∠利用勾股定理求出AB的长∠再利用等面积法求出CD的长即可.3.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点. 求证:CD⊥AB.【思路点拨】由∠ACB=90°,M为AB的中点.根据直角三角形斜边上的中线等于斜边的一半得到CM12=AB=BM,再根据在直角三角形中,30°所对的边等于斜边的一半得到CB12=AB=BM,则CM=CB,而D为MB的中点,根据等腰三角形的性质即可得到结论.解∵∠ACB=90°,M为AB中点,∴CM12=AB=BM.∵∠ACB=90°,∠A=30°,∴CB12=AB=BM,∴CM=CB.∵D为MB的中点,∴CD⊥BM,即CD⊥AB.【点拨】本题考查了含30°的直角三角形的性质:30°所对的边等于斜边的一半;也考查了直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质.类型二、直角三角形全等的判定——“HL”4、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .5、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:AD BC BD DB ⎧⎨=⎩=ED AC AE AB ⎧⎨⎩==,(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等;(4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等.A.2个B.3个C.4个D.5个 【答案】C .解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .6、 如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( ) A .∠A=∠D B .∠ABC=∠DCBC .OB=OD D .OA=OD O BC DA【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证.【答案与解析】解:∵AB⊥AC于A,BD⊥CD于D∴∠A=∠D=90°(A正确)又∵AC=DB,BC=BC∴△ABC≌△DCB(HL)∴∠ABC=∠DCB(B正确)∴AB=CD又∵∠AOB=∠C∴△AOB≌△DOC(AAS)∴OA=OD(D正确)C中OD、OB不是对应边,不相等.故选C.【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、直角三角形的折叠问题7.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.类型四、直角三角形的性质和判定综合运用8.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.。

八年级数学上册知识点总结(第11.12章)

八年级数学上册知识点总结(第11.12章)

第十一章三角形11.1 与三角形有关的线段第1课时三角形的边1. 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类①三角形的任意两边之和大于第三边。

②三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

**已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b要求会的题型:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

第2课时三角形的高、中线与角平分线1. 三角形的高:从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD 叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

122. 三角形的中线:连接△ABC 的顶点A 和它所对的对边BC 的中点D ,所得的线段AD 叫做△ABC 的边BC 上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线:∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

Q
P
B
C
本题源自《教材帮》
深化练习 3
如图,已知△ABC中,AB=AC=10,BC=8,点D为AB的中点,点P在线段BC上以每秒
3个单位长度的速度由点B向点C运动,同时点Q在线段CA上由点C向点A以每秒a个单
位长度的速度运动,设运动时间为t秒.
A
解:(1)由题意得:BP=3t.
∵BC=8,
∴CP=BC-BP=8-3t.
A
∠ACN=∠M+∠N =80° ,∠BCN=∠ACB-∠ACN=20° .
M
C
本题源自《教材帮》
重点解析 6
动脑想一想,动手练一练
6、如图,沿着AM折叠,使得点D落在BC的N点处,如果AD=7cm,DM=5cm,
∠DAM=30°,则AN、NM的长度以及∠NAM的度数分别是多少?
A
D
解:∵△ADM沿着AM折叠得到△ANM,
∴△BCD的面积和△ACE的面积相等.
∴四边形AECD的面积
=△ACD的面积+△ACE的面积
=△ACD的面积+△BCD的面积 =△ABC的面积= 1 ×4×4=8cm2.
2
D
C
B
本题源自《教材帮》
深化练习 1
如图,已知△ABD≌△ACE,点B、D、E、C在同一条直线上.
(1)∠BAE和∠CAD有什么关系?说明理由; A
位长度的速度运动,设运动时间为t秒.
A
(1)求CP的长(用含有t的式子表示); (2)若以点C、P、Q为顶点的三角形和以点B、D、P 为顶点的三角形全等,且∠B和∠C是对应角,求a和t 的值.
D
Q
P
B
C
本题源自《教材帮》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的概念(复习)重点难点分析一、三角形的概念三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

如图02-1:△ABC有三个顶点:点A,点B,点C,有三条边:AB, AC,BC。

有三个内角:∠A,∠B,∠C。

还有三个外角:分别延长AB、BC、CA。

所得∠1、∠2、∠3叫做三角形的外角。

三角形中边与角的位置关系:如图1,BC边叫做∠A的对边,AC边叫做∠B的对边,AB边叫做∠C的对边。

AB、AC边叫做∠A的邻边,BA、BC边叫做∠B的邻边,CA、CB边叫做∠C的邻边。

二、三角形的三条重要线段1.三角形的角平分线三角形的角平分线定义:三角形一个角的平分线与这个角对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

每一个三角形都有三条角平分线。

且三条角平分线相交于一点,这点叫做三角形的内心,如图02-2,如果AD、BE、CF分别是△ABC的角平分线,那么有:2. 三角形的中线三角形的中线定义:在三角形中,连结一个顶点和它的对边中点的线段,叫做三角形的中线。

每一个三角形都有三条中线,且三条中线相交于一点,这点叫做三角形的重心,如图02-3。

如果AD、BE、CF分别是△ABC的中线,那么有:3.三角形的高三角形的高定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高。

每一个三角形都有三条高线,三条高线或延长线也相交于一点,这点叫做三角形的垂心,如图02-4,当△ABC为锐角三角形时,三条高都在三角形内部。

如果AD、BE、CF是三角形的三条高,那么有:AD⊥BC于D BE⊥AC于E CF⊥AB于F。

当△ABC为直角三角形时,有两条高恰好是它的两条边,那AC边上的高是BC边,BC边上的高是AC边,AB边上的高是CD。

当△ABC为钝角三角形时,有两条高在三角形的外部与两条边的延长线相交,即:BC边上的高AD,AC边上的高为BE,AB边上的高是CF。

注意:三角形的角平分线,中线和高都是线段,在画图时不能画成直线,射线。

三、三角形三条边的关系1.三角形按边分类:不等边三角形:三条边都不相等的三角形叫做不等边三角形。

等腰三角形:有两条边相等的三角形叫做等腰三角形。

等边三角形:三条边都相等的三角形叫做等边三角形。

三角形按边的相等关系分类:2.三角形三边的关系:对于任何一个三角形,如果把任意两个顶点看作定点,联结这两个定点的线有两条,一条是线段,另一条是折线,由公理“联接两点的所有线中,线段最短”得出:如图02-5由此得出:定理:三角形两边之和大于第三边。

推理:三角形两边之差小于第三边。

说明:定理及推论是指任意三角形三条边所具有的性质,同时又说明只有具有“两条线段之和大于第三条线段”或“两条线段之差小于第三条线段”的三条线段才能组成三角形图形,否则是组不成三角形的。

例如:三条线段的长分别为3cm,5cm和10cm,就不能组成三角形图形,不信你自己动手试试。

四、三角形的内角和1.三角形内角和定理:三角形三个内角的和等于180°。

此定理对任意三角形都成立,证明方法很多,可用已学过的平行线的性质,介绍几种添加辅助线的方法。

方法一:如图02-6,过△ABC中的顶点A作EF//BC,由平行线的性质,可推出∠1=∠B,∠2=∠C。

因为∠1+∠BAC+∠2=180°,所以∠BAC+∠B+∠C=180°。

方法二:02-7,延长△ABC中的BC到D,过C点作CE//AB,由平行线的性质可推出∠1=∠B,∠2=∠A,因为∠1+∠2+∠ACB=180°,所以∠A+∠B+∠ACB=180°。

方法三,如图02-8,在△ABC中BC边上任取一点D,过点D作DE//AB 交AC于E,过点D作DF//AC交AB于F,由平行线的性质可推出:∠1=∠C,∠3=∠B,∠2=∠4=∠A,因为∠1+∠2+∠3=180°,所求∠A+∠B+∠C=180°此定理是我们求三角形内角度数的重要途径。

2.三角形按角分类说明:三角形有两种分类方法,一种是按边分类,另一种是按角分类,两种分类方法分辩清楚。

3.三角形内角和定理的推论推论1.直角三角形的两个锐角互余即:如图02-9在△ABC中,∠C=90°那么∠A+∠B=90°推论2.三角形的一个外角等于和它不相邻的两个内角的和。

即:如图02-10∠ACD是△ABC的一个外角,那么∠ACD=∠A+∠B。

推论3.三角形的一个外角大于任何一个和它不相邻的内角即:如图02-11∠ACD是△ABC的一个外角,那么∠ACD>∠A,∠ACD>∠B。

注意:三角形的任何一个外角与相邻内角是邻补角,与不相邻的两个内角和相等且大于任何一个不相邻的内角。

应用时要搞清楚外角与内角的位置关系,正确运用。

五、应用举例例1.填空题:已知△ABC中,a=6,b=14则C边的取值范围是____。

分析:根据三角形三边的关系,两边之和大于第三边、两边之差小于第三边列出不等式。

解:∵b-a<c<a+b ∴8<C<20为所求例2.填空题:已知一个等腰三角形的两边分别是9cm和7cm,则它的周长是______cm。

分析:若这个等腰三角形的腰长为9cm,则三边分别为9cm,9cm,7cm,满足两边之和大于第三边,若腰长为7cm,则三边分别为7cm,7cm,9cm,也成立。

解:这个等腰三角形的周长为25cm或23cm。

例3.已知一个等腰三角形ABC的周长为10cm,且三边长都是整数,求三边长.思路分析:在△ABC中,设AB=AC,则AB+AC+BC=10,即2AB+BC=10∴AB=2BC10∵三边长都为整数,∴BC必为偶数∴BC只能取2,4,6,8对应AB(AC)为4,3,2,1∵AB=AC=2,BC=6时,AB+AC<BC与定理三角形两边之和大于第三边矛盾∴此时△ABC不存在同理:AB=AC=1,BC=8时,△ABC也不存在故△ABC的三边长可能取值为:4cm,4cm,2cm或3cm,3cm,4cm 本例在求解过程中,未告知哪两边相等,必须假设两边相等,将三个未知量转化为二个,得出一个不定方程,进而根据正整数性质分别得出四组解,然后再结合三角形三边关系定理,把不合题意两组解除去.解题过程中,将矛盾不断转化,分类进行求解,做到了不重不漏.例4.如图,△ABC 的三条内角平分线相交于I ,IG ⊥BC 于G ,求证:∠BID= ∠CIG思路分析:从题设及观察图形可知∠CIG=90°-∠BCF (直角三角形两锐角互余)=90°-21∠ACB (角平分线定义) ∵∠ACB+∠ABC+∠BAC=180°(三角形内角和定理)∴∠ACB=180°-∠ABC -∠BAC (移项)∴∠CIG=90°-21(180°-∠ABC -∠BAC )(等量代换) =90°-90°+21∠ABC+21∠BAC (去括号) =21∠ABC+21∠BAC (合并同类项) ∵∠ABE=21∠ABC ,∠BAD=21∠BAC (角平分线定义) ∴∠CIG=∠ABE+∠BAD (等量代换)∵∠BID=∠ABE+∠BAD (三角形的一个外角等于和它不相邻的两个内角和) ∴∠CIG=∠BID (等量代换)本例从未知入手,结合图形及题设变换关系式,步步变换,推理有据,一步步向预定的目标推进,终于达到目的.这种思路是执果索因,沿着要什么,找什么的思路去求索,在求索的道路上,要观察图形,结合题设,联想定理,综合分析,有的放矢,求索道路愈来愈明朗化,趋近于要证的结论.这是我们求索几何思路十分有效的方法之一.同学们在今后学习与研究几何问题时,要有意识的这样求索,将会使你的数学素养不断提高,证题能力达到一个新的层次.学习时应注意的问题(1)三角形的角平分线、中线和高是线段,而不是射线,也不是直线。

(2)三角形两边的和大于第三边。

当a+b>c,b+c>a,c+a>b 都能成立时,以a 、b 、c 为三边,可以构成三角形。

若a 是最长的线段,且有b+c>a ,则以a 、b 、c 为三边,可以构成三角形。

若c 是最短线段,且有c>|a-b|时,以a 、b 、c 为三边,可以构成三角形。

(3)三角形的一个外角大于任一个与它不相邻的内角而不是三角形的外角大于它的每一个内角。

专题测试一、填空题1.如图1-1-13,AD 是△ABC 的角平分线,那么有∠ 21 ∠ .如图1-1-14,已知AD 、BE 、CF 是三角形ABC 的三条中线,那 么有AC=2 ,BD= ,21 AF . 2.如图1-1-15,已知BE ∥CD ,∠1=95°,∠2=28°,那么∠CAB= .3.在△ABC 中,AB=6,BC=11,那么 <AC< .4.如图1-1-16,已知在△ABC 中,BD 、CE 是AC 、AB 边上的高,BD 、CE 交于H ,图中 有 个直角三角形,它们是 .图1-1-14 图1-1-15 1-1-16图5.在上题中,如果∠DBC=32°,∠ECB=40°,那么∠DHC= ,∠EHD , ∠BCD= .6.如果等腰三角形的一边长是10cm ,另一边长是7cm ,那么这种三角形有 个, 它们的周长分别是 .7.已知在△ABC 中,∠C+∠A=2∠B ,∠C-∠A=80°,那么∠A= ,∠B= .二、选择题1.三角形的角平分线是( )(A )直线 (B )线段 (C )射线 (D )垂线段2.在锐角三角形中,任意两个锐有的和一定大于( ).(A )90° (B )105° (C )120° (D )130°3.在△ABC 中,∠A=∠B=2∠C ,那么这个三角形是( ).(A )Rt △ (B)钝角△ (C )锐角△ (D )不能确定4.如图1-1-17,在△ABC 中,∠A=70°,BO 、CO 分别是∠B 、∠C的平分线,那么∠BOC 的度数为( ).(A )55° (B )125° (C )110° (D )100°5.已知三角形三边长分别是4、1+2a 、9,那么,实数a 的取值范 图1-1-17 围是( ).(A )3<a<5 (B )2<a<6 (C)O<a<7 (D )5<a<126.一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是( ).(A )5或7 (B )7或9 (C )9或11 (D )117.下列说法中,正确的是( ).A 、 个锐角△,一定不是等腰△B 、个等腰△,一定是锐角△C 、 直角△,一定不是等腰△D 、个等边△,一定不是钝角△8.任意一个三角形的三个内角中,至少有( ).(A )一个锐角 (B )一个钝角 (C )两个锐角 (D )一个直角9.三角形的一个角等于其它两个角的差,那么这个三角形一定是( ).(A )等腰三角形(B )锐角三角形 (C )直角三角形(D )钝角三角形10.如图1-1-18,已知△ABC 中,∠B 和∠C 的外角平分线交于M ,那么,∠BMC=( ).(A )21(90°-∠A ) (B )90°-∠A (C )21(180°-∠A ) (D )180°-∠A 图1-1-118三、解答、证明题1.已知一个等腰三角形的周长是21cm ,腰长是底边长的三倍.求各边的长.2.如图1-1-19,已知在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于P 点,∠A=70°,∠ABE=25°,∠ACD=38°.求:∠BEC 和∠CPE 的度数.图1-1-193、如图1-1-20,已知在△ABC 中,∠B=40°,∠C=60°,AD 平分∠BAC ,AE 为BC 边上的高.求∠DAE 的度数.4、 图1-1-21,已知在△ABC 中,∠A=90°,∠B=30°,∠ACB 的平分线CD 交AB 于D , ∠ADC 的平分线DE 交AC 于E. 求证DE ∥BC图1-1-20 图1-1-21专题测试一、填空题1.∠DAC 、∠BAC2.AC=2AE 、BD=DC ,AF=21AB 3.67° 4.5<AC<17 5.4、△BDC 、 △CEB 、△HDC 、△HEB 6.72°、108°、58° 7.2、24cm 27cm 8.20°、60° 9.< 10.22二、选择题1.B ;2.A ;3.C ;4.B ;5.B ;6.B ;7.D ;8.C ;9.C ; 10.C三、解答、证明题1.3cm 、9cm 、9cm2.95°、47°3.10°4.【证】由已知可得出∠ACB=60°,由∠1=∠2=30°再得出∠ADC=60°.又∠3=∠4=30°,∴ ∠1=∠3,则DE ∥BC。

相关文档
最新文档