不等式及其解集

合集下载

9.1.1 不等式及其解集

9.1.1 不等式及其解集

9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。

“≤”读作“小于等于”. 表示小于或等于,也就是不大于。

例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。

不等式及其解集ppt七年级数学

不等式及其解集ppt七年级数学

-2
A

0
-2
B


0
-2
C

0
-2
D
D

0
-3


0
-3


0
2


0
a

试一试:
写出下列数轴所表示的不等式的解集:
X > -3
X ≥ 2
X < -3
X ≤ a
1、已知下列各数,请将是不等式3x>5的解的数填到椭圆中.-4,-2.5,0,1,
你还能举出日常生活中一些类似的不相等关系的例子吗?
拔河时力气的大小
赛跑时速度的快慢
9.1.1不等式及其解集
问题:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?
A
汽车
分析:设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即
一.不等式: 像 、 这样用“>”或“<” 表示大小关系的式子,叫做不等式.
如:-3>-5,2≠6,x≤1等等都是不等式.
单击此处添加小标题
不等式中常见的不等号有五种: “≠”、“>”、“<”、“≥”、“≤”
04
a是非正数 ; a与5和小于7 ;
(1)a是负数 (2)x与5的和小于7 (3)x与2的差大于-1 (4)x的4倍大于8 (5)a与2的差不小于-1
a<0
x+5<7
x-2>-1
4x > 8

不等式及其解集·要点详析

不等式及其解集·要点详析

不等式及其解集·要点详析
重点
1.不等式的概念
用不等号表示不等关系的式子,叫做不等式.
例如:x-1<2,3-4<0,3-4≠4-3,a>0,a<0,a2≥0等都是不等式.五种不等号的读法及意义
(1)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;
(2)“>”读作“大于”,表示其左边的量比右边的量大;
(3)“<”读作“小于”,表示其左边的量比右边的量小;
(4)“≥”读作“大于或等于”,即“不小于”,表示左边“不小于”右边;
(5)“≤”读作“小于或等于”,即“不大于”,表示左边“不大于”右边.2.不等式成立与不等式不成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们就说,不等式成立;当未知数取某些数值时,不等式的左、右两边不符合不等号所表示的大小关系,我们就说,不等式不成立.3.不等式的解与不等式的解集
(1)不等式的解使不等式成立的未知数的值叫做不等式的解.
(2)不等式的解集一般地说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集.
(3)不等式的解与解集的区别与联系
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了不等式的解集,解集中包括了每一个解.难点
1.不等式的解及解集.
2.不等式的解集在数轴表示的方法.。

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

不等式及其解集

不等式及其解集

不等式及其解集1. 不等式的概念和表示不等式是数学中一种表达式,它使用不等号(<,>,≤或≥)来表示两个数或两个代数式之间的大小关系。

不等式可以包含一个或多个未知数,并且可以包含常数和其他数学运算。

不等式的一般形式如下:p(x) < q(x)其中p(x)和q(x)是多项式函数,表示式子的左侧和右侧。

不等式的解集是满足不等式的x的值的集合。

2. 一元一次不等式一元一次不等式是指只包含一个未知数x,并且最高次数为一次的不等式。

例如:ax + b < 0其中a和b是常数。

要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax + b = 02.求解这个等式的解x_0。

3.根据x_0的位置确定不等式的解集。

假设x_0表示等式的解。

•如果a > 0,则解集为(x, −∞)•如果a < 0,则解集为(−∞, x)3. 一元二次不等式一元二次不等式是指只包含一个未知数x,并且最高次数为二次的不等式。

例如:ax^2 + bx + c > 0其中a,b和c是常数。

要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax^2 + bx + c = 02.求解这个等式的解集{x_1, x_2}。

3.根据x_1和x_2的位置确定不等式的解集。

假设x_1和x_2表示等式的解。

•如果a > 0,则解集为(−∞, x_1) ∪ (x_2, +∞)•如果a < 0,则解集为(x_1, x_2)4. 多元不等式多元不等式是指含有多个未知数的不等式。

解决多元不等式的方法通常是通过图形、代数方法或数值方法。

例如:考虑以下两个不等式:ax + by ≥ cdx + ey < f可以使用图形方法将它们表示在坐标系中,并找到满足这两个不等式的区域。

通过确定这些区域的交集,可以获得满足所有条件的解集。

5. 不等式解集的表示和性质不等式解集通常用集合表示法来表示,例如:S = {x | p(x) < q(x)}其中,S表示满足不等式的x的集合,p(x)和q(x)分别代表不等式的左侧和右侧。

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

不等式及其解集

不等式及其解集

例子
对于不等式 x^2 - 4x + 4 > 0,我们可以分解为 (x - 2)^2 > 0,然后分别求解 x-2>0 和 x-2<0,得到 x 不等于 2 的解集 。
对于不等式 |x - 3| < 4,我们可以将其视为两个简单的不等 式 x - 3 < 4 和 3 - x < 4,然后分别求解得到 -1 < x < 7 的 解集。
《不等式及其解集》
2023-10-29
目录
• 不等式的定义和性质 • 不等式的解法 • 不等式的解集 • 不等式的应用
01
不等式的定义和性质
定义
不等式
用不等号连接两个代数式,表 示它们之间的关系,称为不等 式。例如,x+2>3是不等式。
严格不等式
在不等式中使用严格不等号“ >”或“<”,表示两个数或 式子之间的严格大小关系。例 如,x+2<3是严格不等式。
集合表示法
用花括号{}将解集的元素 括起来,并用逗号隔开。
数轴表示法
将解集的元素在数轴上表 示出来,边界值用实心点 表示,区间用空心区间表 示。
例子
x^2 - 4x + 4 > 0的解集为{x|x > 2}或{x|x < 0}。 x^2 + 2x + 1 = 0的解集为{x|x = -1}。
04
不等式的应用
实际应用
金融
在金融领域,不等式可以用来 建立数学模型,例如在投资组 合理论中,利用不等式来计算
投资组合的有效前沿。
物理
在物理学中,不等式可以用来描 述物理现象和规律,例如在力学 中,不等式可以表示两个力的关 系。
化学

不等式的取值范围与解集求解

不等式的取值范围与解集求解

不等式的取值范围与解集求解不等式是数学中常见的一种关系式,它描述了数之间的大小关系。

在解不等式时,我们需要确定不等式的取值范围,并找出满足不等式条件的解集。

本文将介绍不等式的基本概念、解法以及一些常见的不等式类型。

一、不等式的基本概念不等式是由不等号连接的两个数或表达式所构成的关系式。

常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。

例如,x > 3表示x大于3,x + 2 ≤ 5表示x + 2小于等于5。

二、不等式的解集与取值范围解不等式的过程就是确定不等式的取值范围,并找出满足不等式条件的数的集合,这个集合被称为解集。

解集可以用不等号表示,也可以用集合符号表示。

1. 不等式的解集表示解集可以用不等号表示,例如x > 3的解集可以表示为{x | x > 3},读作“x的取值范围是大于3的数”。

解集也可以用集合符号表示,例如x > 3的解集可以表示为{x ∈ℝ | x > 3},其中ℝ表示实数集。

2. 不等式的取值范围表示不等式的取值范围表示了满足不等式条件的数的范围。

例如x > 3的取值范围是大于3的数,可以表示为(3, +∞),其中+∞表示正无穷大。

三、不等式的求解方法解不等式的方法与解方程类似,但在某些情况下需要注意一些特殊的性质。

下面介绍一些常见的不等式类型及其求解方法。

1. 一元一次不等式一元一次不等式是形如ax + b > 0的不等式,其中a和b是已知实数,且a≠0。

解一元一次不等式的步骤如下:(1)将不等式转化为等式,得到ax + b = 0;(2)求得等式的解x0;(3)根据a的正负确定不等式的解集。

2. 一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0的不等式,其中a、b和c是已知实数,且a≠0。

解一元二次不等式的步骤如下:(1)将不等式转化为等式,得到ax^2 + bx + c = 0;(2)求得等式的解集{x1, x2};(3)根据a的正负和二次函数的凹凸性确定不等式的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.聪明的你能说出下列不等式的解集吗? 并把解集表示在数轴上。 (1)2x≤8 ; (2)x+3<0;
(3)x-2≥0
5.如何在数轴上表示:-2 < y ≤3 ?
•燃放某种烟花时,为了确保安全,人在点燃 导火线后要在燃放前转移到10m外的安全区域。 已知导火线的燃烧速度为0.02m/s,人离开的 速度为4m/s,那么导火线的长度应为多少米?
今年“五一黄金周”,某中学组织部分学生去桃渚古城 开展团队活动,桃渚古城的票价是:每人5元;一次购票满 30 张.每张票可少收 1 元。共有 27 名同学报名参加此次活 动.当领队王老师准备去售票处买27张票时,爱动脑筋的李 敏同学喊住了王老师,提议买30张票.但有的同学不明白, 明明我们只有27人,买30张票,岂不是“浪费”吗?那么, 究竟李敏的提议对不对呢?是不是真的“浪费”呢? 方案一:买27张票 方案二:买30张票 27×5=135(元) 30×4=120(元)
叫做不等式的解。
下列数值哪些是不等式x+3>6的解?哪些不是? -4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12 你能写出不等式x+3>6的解集吗? X> 3
你能用数轴表示x+3>6的解集x>3吗?
-6 -5 -4 -3 -2 -1
o

1 2 3 4 5
6 x
画数轴
找点
a0
(3)x与y的差不大于-2; x y 2 (4)a的4倍大于或等于8 ; 4a 8 (5)b是非负数; (6)x与2的和大于5。
b0
x 25
当然如果去桃渚古城的人数较少(比如10个 人 ) ,显然不值得去买30张票,还是按实际人数 买票为好.现在的问题是:小于30人时,至少要 有多少人去桃渚古城,买30张票反而合算呢? 解:设有x(x<30)人要去桃渚古城. 那么按实际人数买票x张,需付款5x(元)
120﹤135
所以李敏同学的提议是正确的.
总结:像上面出现的这样用">"或"<"等不等号表示不等关系的 式子,叫做不等式.
“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是
判断下列各式是不是不等式。 ① 2﹤ 5; ③ 4x-2y≤0 ;
是 是
② x+3≠0; ④ 7n-5≥2;
是 是
⑤3x2+2>0 ;
解:设导火线的长度为x米。
x 10 0.02 4 x 或4 10 0.02
1.不等式的概念. 2.一元一次不等式的概念. 3.不等式的解及其解集. 4.用不等式表示生活中数量关系. 5.生活中不等关系无处不在.
课后思考题: 我们班如果要组织 同学去桃渚古城开展活动,该如何买 票更加合算?(桃渚古城的票价是: 每人5元;一次购票满30张,每张 票可少收1元。)

⑥ 5m+3=8 。

归纳:像②、④这样,只含有一个未知数,且未知 数的次数都是1的不等式,叫作一元一次不等式。
你能举出几个一元一次不等式吗?
思 考:若3x3m-1+2<4是一元一次不等式, 则m的值为______.
用不等式表示下列数量关系: (1)x的一半小于-1;
1 2 x 1
(2)a是负数;
买30张票需付款4×30=120(元) 如果买30张票合算,那么应有: 120<5x
思考:你能发现当有多少人去时买30张票合算吗?
当x取哪些值时,120<5x才成立呢?
x 5x 比较120与5x的大小 120<5x成立吗? 思考:你还能找出这个不等式的其它解吗?这个不等式有多少个解?
21 105 120>5x 不成立 无数个解 当x>24时,不等式总成立. 22 110 120>5x 不成立 使不等式成立的未知数的取值范围, 23 115 120>5x 不成立 叫做不等式的解集。 24 120 120=5x 不成立 25 125 120<5x 成立 你能说出不等式的解与不等式的解集的区别吗? 26 130 120<5x 成立 27 135 120<5x 成立 当x取25、26、27、28、29时不等120<5x成立, 28 140 120<5x 成立 29 145 120<5x 能使不等式成立的未知数的值, 成立
画点
牵线
1、在数轴上表示不等式3X>6 的解集,正确的 是( B )
0 1 (A) x <2 1 (C) x≤2 2 0 1 2 x> 2 (B) 1 x≥2 (D) 2
0
2
0
2、图中红色部分所表示的是哪些数?你能用不等式 表示这个区域吗? X<1
的一个解,而4不 是它的解。
相关文档
最新文档