大学物理习题册答案(湖南大学版)光的干涉

合集下载

大学物理光的干涉习题答案

大学物理光的干涉习题答案

2.光程 . 的介质中通过几何路程L (1)光在折射率为 n 的介质中通过几何路程 ) 所引起的相位变化, 所引起的相位变化,相当于光在真空中 通过nL的路程所引起的相位变化。 通过 的路程所引起的相位变化。 的路程所引起的相位变化
δ (2)光程差引起的相位变化为 ∆ϕ = 2π ) λ 为光程差, 其中 δ 为光程差, λ 为真空中光的波长

e
λ
n2e
上下面的反射皆无半波损失
n3
练习39 填空题 练习
n1
1. 上表面反射有半波损失
n
e
δ = 2ne + λ / 2 = 3e + λ / 2
2.
n1 < n2 < n3
上下面的反射皆有半波损失 δ = 2n2e = 2.6e
n1
n3
n2
e
3. 上表面反射有半波损失 反射增强 透射增强 即反射减弱
λ1
2
2 在这两波长之间无其它极大极小, 在这两波长之间无其它极大极小, 所以 k1 = k2 = k
得:
λ 2 : δ = 2 n′e = 2 k 2 ( λ 2 ) 对 λ1
2 2 k + 1 2λ 2 7 = = k λ1 3 k λ1 3 × 700 e= = = 78.6(nm) 2n′ 2 × 1.34
λ 5500 4n2 = = (A) 2k 2k k
λ
显然在白光范围内不可能产生反射加强。 显然在白光范围内不可能产生反射加强。 不可能产生反射加强
练习40 选择题 练习 1. D 相邻条纹的高差
2n 两滚柱的直径不变,即总高差不变, 两滚柱的直径不变,即总高差不变, 则条纹数不变。 则条纹数不变。 λ 2. C 比较劈尖条纹间距 l = 2n sin θ 或牛顿环暗环半径差 ∆r = rk +1 − rk

大学物理课件 第14章光的干涉习题答案

大学物理课件 第14章光的干涉习题答案
A.有一凹陷的槽,深入 / 4B. 有一凹陷的槽,深入 / 2
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中

第12章(1) 光的干涉答案

第12章(1) 光的干涉答案

图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。

其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。

【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。

【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。

(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。

光的干涉参考答案

光的干涉参考答案

光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。

2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径光的光程差等于 (A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。

4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。

3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。

大学物理光的干涉测试题附答案及知识点总结

大学物理光的干涉测试题附答案及知识点总结

第12章习题精选试题中相关常数:1gm = 10-6m , 1nm =10-9m ,可见光范围(400nm~760nm)1、在真空中波长为人的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3n ,则此路径AB 的光程为:(A )1.5九.(B ) 1.5九/n . (C ) 1.5n 九.(D ) 3 .[] 2、在相同的时间内,一束波长为九的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等.(B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等. 3、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方 的透明介质的折射率分别为n 1和n 3,已知n 1 < n 2 < n /若用波长为人的单 色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②(B ) 2ne +九/2. (D ) 2n e 一九 /(2n ). 22[]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源. 5、在双缝干涉实验中,入射光的波长为九,用玻璃纸遮住双缝中的一个缝,若玻璃纸中 光程比相同厚度的空气的光程大2.5九,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹.(D )无法确定是明纹,还是暗纹.[]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜 । [单色光 …垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:J,空气(A )向右平移. (B )向中心收缩. j 一(C )向外扩张.(D )向左平移.[]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之 间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为人,则反射光形成的干涉条纹中暗环半径q 的表达式为:的光程差是:(A ) 2ne .(C ) 2n 2e 十 九.(A) r = k k 九R . k ____________(C ) r =、k )R .k(B) r =、;'k 九R /n . k _ (D ) r k = kk 1 /(nR ). n 38、用波长为人的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差3=.9、单色平行光垂直入射到双缝上.观察屏上P点到两缝的距离分别为〃和厂.设双缝和屏之间充满折射率为n的介质,则P点处光线的光程差为10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1).(2).11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ______ 若使单色光波长减小,则干涉条纹间距.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N倍,观察屏到双缝的距离为D,则屏上相邻明纹的间距为.九13、用波长为人的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d的过程中,移过视场中某固定观察点的条纹数目等于 ____________ .14、图。

光的干涉习题(附答案)

光的干涉习题(附答案)

π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
6. 维纳光驻波实验装置示意如图。MM 为金属反射镜,NN 为涂有极薄感光层 的玻璃板。MM 与 NN 之间夹角 φ=3.0×10-4 rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光 驻波, NN 板的感光层上形成对应于波腹波节的条纹。 实验测得两个相邻的驻 波波腹感光垫 A、B 的间距 1.0 mm,则入射光的波长为 6.0×10-4 mm 。
8. 如图所示,折射率为 n2,厚度为 e 的透明介质薄膜的上、下方透明介质的折 射率分别为 n1 和 n3,且 n1<n2<n3,若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上下两表面反射的光束之间的光程差为 2长为 λ 的单色平行光垂直照射两个劈尖上,两劈尖角分别为 θ1 和 θ2,折射 率分别为 n1 和 n2, 若两者分别形成的干涉条纹的明条纹间距相等, 则 θ1, θ2, n1,n2 之间的关系为 n1θ1= n2θ2 。

2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k

大学物理 光学答案

大学物理 光学答案

第十七章 光的干涉一. 选择题1.在真空中波长为?的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3?,则路径AB 的长度为:( D )A. 1.5?B. 1.5n ?C. 3?D. 1.5?/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A 。

3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。

若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增?,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B 。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为??的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. ?/4B. ?/ (4n )C. ?/2D. ?/ (2n )6.在折射率为n ?=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。

当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm 解:增透膜 6.904/min ==n e λnm 选择题3图本题答案为C 。

大物作业答案4

大物作业答案4

本习题版权归物理与科学技术学院物理系所有,不得用于商业目的《大学物理》作业 No.4 光的干涉一、选择题:1. 如图,1S 、2S 是两个相干光源,它们到P 点的距离分别为 1r 和2r 。

路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径P S 2垂直穿过厚度为2t 、折射率为2n 的另一块介质板,其余部分可看作真空,这两条路径的光程差应是 [ ] (A) )()(111222t n r t n r +-+ (B) ])1([])1([111222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n -解: 由光程差公式12⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑j j j i i i t n t n 可得两条光线的光程差为:][][11112222t t n r t t n r -+--+=∆])1([])1([111222t n r t n r -+--+= 故选B2. 如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,已知321n n n ><。

若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 [ ](A) 22n e(B) 2e n 2λ-21(C) 22n e λ- (D) 2222n e n λ- 解: 上表面反射因21n n <,此处反射光有半波损失,下表面反射因32n n >,此处反射光无半波损失,故两光路有奇数个半波损失,所以垂直入射时光线①和②的光程差应为e n 22=∆λ-21故选B3. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且321n n n ><, 1λ 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 [ ](A) 1122λπn en (B) πλπ+1212n en (C) πλπ+1124n en(D) 1124λπn en解:因21n n <,则光在薄膜上表面反射时有半波损失,32n n >,下表面反射时无半波损失,所以两束反射光在相遇点的光程差为3S 1S 2322112λn e n +=∆ (注意:真空中光程)由此有两光路相位差为λλπλπϕ2222112n e n +=∆=∆,而11n λλ=所以πλπϕ+=∆1124n en故选C4. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 光的干涉一、选择题1(C),2(A),3(A),4(B),5(A),6(B),7(B),8(C),9(D),10(D)二、填空题(1). 使两缝间距变小;使屏与双缝之间的距离变大. (2). N D(3). 0.75(4). λ3,33.1(5). )2(L λ(6). 113(7). 1.2(k=0,中央是暗斑,k=1后是环;本题取k=4)(8). 2d / λ(9). 2(n – 1)h(10). )(212N N L +λ三、计算题1.一双缝,缝距4.0=d mm ,两缝宽度都是080.0=a mm ,用波长为A 4800=λ的平行光垂直照射双缝,在双缝后放一焦距0.2=f m 的透镜。

求:(1)在透镜焦平面处的屏上,双缝干涉条纹的间距x ∆;(2)在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 。

解:双缝干涉条纹:(1) 第k 级亮纹条件: d sin θ =k λ第k 级亮条纹位置:x k = f tg θ ≈f sin θ ≈kf λ / d相邻两亮纹的间距:∆x = x k +1-x k =(k +1)f λ / d -kf λ / d =f λ / d=2.4×10-3 m=2.4 mm(2) 单缝衍射第一暗纹: a sin θ1 = λ单缝衍射中央亮纹半宽度:∆x 0 = f tg θ1≈f sin θ1≈f λ / a =12 mm∆x 0 / ∆x =5∴ 双缝干涉第±5极主级大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为 k = 0,±1,±2,±3,±4级亮纹或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论.2. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光波干涉相长.且在600 nm 到700 nm 之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。

当光垂直入射i = 0时,依公式有:对λ1: ()112212λ+='k e n ① 按题意还应有: 对λ2: 22λk e n =' ② 由① ②解得: ()32121=-=λλλk 将k 、λ2、n '代入②式得n k e '=22λ=7.78×10-4 mm3. 在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段).现用波长为600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7 ()nk e 412λ+==1.5×10-3 mm4.用波长为λ=600 nm (1 nm =10-9 m)的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角θ=2×10-4 rad .改变劈尖角,相邻两明条纹间距缩小了∆l =1.0 mm ,求劈尖角的改变量∆θ.解:原间距 l 1=λ / 2θ=1.5 mm改变后, l 2=l 1-∆l =0.5 mmθ 改变后, θ2=λ / 2l 2=6×10-4 rad改变量 ∆θ=θ2-θ=4.0×10-4 rad5.用波长500=λnm(m 10nm 1-9=)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上。

劈尖角4102-⨯=θrad ,如果劈尖内充满折射率为40.1=n 的液体。

求从劈棱数起第五个明条纹在充入液体前后移动的距离。

解:设第五个明纹处膜厚为e ,则有2ne +λ / 2=5 λ设该处至劈棱的距离为l ,则有近似关系e =l θ,由上两式得 2nl θ=9 λ / 2,l =9λ / 4n θ充入液体前第五个明纹位置 l 1=9 λ / 4θ充入液体后第五个明纹位置 l 2=9 λ / 4n θ 充入液体前后第五个明纹移动的距离∆l =l 1 – l 2=9 λ ( 1 - 1 / n ) / 4θ=1.61 mme n 0 =1.00n =1.35n =1.50Si A B SiO ,膜6.如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙0e ,现用波长为λ的单色光垂直照射,已知平凸透镜的曲率半径为R ,求反射光形成的牛顿环的各暗环半径。

解:设某暗环半径为r ,由图可知,根据几何关系,近似有()R r e 2/2= ①再根据干涉减弱条件有 ()λλ122121220+=++k e e ② 式中k为大于零的整数.把式①代入式②可得()02e k R r -=λ (k 为整数,且k >2e 0 / λ)7. 在牛顿环装置的平凸透镜和平玻璃板之间充满折射率n =1.33的透明液体(设平凸透镜和平玻璃板的折射率都大于1.33).凸透镜的曲率半径为 300 cm ,波长λ=650 nm(1nm =10­9m)的平行单色光垂直照射到牛顿环装置上,凸透镜顶部刚好与平玻璃板接触.求:(1) 从中心向外数第十个明环所在处的液体厚度e 10.(2) 第十个明环的半径r 10.解:(1) 设第十个明环处液体厚度为e 10,则2n e 10+λ / 2=10 λe 10=(10λ-λ / 2) / 2n =19 λ / 4n=2.32×10-4 cm(2) R 2=()22k k e R r -+ =222 2k k k e e R R r +-+∵e k <<R ,略去2k e , 得 k k e R r 2=1010 2e R r ==0.373 cm8. 如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).解:对于透射光等倾条纹的第k 级明纹有:λk r e n =cos 22中心亮斑的干涉级最高,为k max ,其r = 0,有:=⨯⨯⨯⨯==--752max 10328.61000.150.122λen k 47.4 应取较小的整数,k max = 47(能看到的最高干涉级为第47级亮斑).最外面的亮纹干涉级最低,为k min ,相应的入射角为 i m = 45︒(因R =d ),相应的折射 角为r m ,据折射定律有 m m r n i n sin sin 21=r R e e 0 S F d ef L C R n 1 n 2 n 1∴ 50.145sin 00.1sin )sin (sin 1211︒==--m m i n n r = 28.13° 由 λmin 2cos 2k r e n m = 得:752min 10328.613.28cos 1000.150.12cos 2--⨯︒⨯⨯⨯==λmr e n k = 41.8 应取较大的整数,k min = 42(能看到的最低干涉级为第42级亮斑).∴ 最多能看到6个亮斑(第42,43,44,45,46,47级亮斑).四 研讨题 1. 如果1S 和2S 为两个普通的独立的单色线光源,用照相机能否拍出干涉条纹照片?如果曝光时间比10-8s 短得多,是否有可能拍得干涉条纹照片?参考解答:如果1S 和2S 为两个普通的独立的单色线光源,用照相机不能拍得干涉条纹照片;如果曝光时间比10-8s 短得多,有可能拍得干涉条纹照片。

所谓干涉就是在观察的时间内,叠加区有一稳定的强度分布。

一般的实验中观察时间都远比原子发光的时间10-8s 长得多,所以要维持各点强度稳定,就得要求叠加区内各点每时刻相遇的两条光线除了频率相同、振动方向相同之外,还必须相位差恒定。

由发光的特点可知,在我们观察的时间内,两个独立光源不可能保证两条光线在确定的点有恒定的相位差。

但每时刻,两独立光源发出的两条光线在各点都有一定的相差,即有一确定的谐振叠加结果,只不过在观察的时间内,各种合成结果都会出现,从而得到的观察结果是非相干的。

用普通相机只能拍得平均结果,所以无法拍得两个独立的光源的“干涉条纹”照片。

如果曝光时间比10-8s 短得多,即短到一个原子一次发光的时间,那么就把两个原子发光的某一次的叠加结果记录下来,当然就有一个确定的强度分布。

因此可以说,这样的相机有可能拍得干涉条纹。

2. 用白色线光源做双缝干涉实验时,若在缝1S 后面放一红色滤光片,2S 后面放一绿色滤光片,问能否观察到干涉条纹?为什么?参考解答:不能观察到干涉条纹。

判断是否能看到干涉条纹应从两个方面考虑。

首先是产生相干叠加的条件,即相干光必须频率相同,在叠加区必须有振动方向相同的分量及有恒定的相位差。

其次还要从技术上考虑,如对两光强之比(及两光束光强之比222121//A A I I R ==)、光源的非单色性及光源的线度等都有一定的要求,以保证获得清晰的干涉条纹。

若在两个缝上分别放置红色和绿色滤波片,不满足频率相同的相干条件,所以不可能看到干涉条纹。

3. 在煤矿的井下生产中,即时准确地监测井下气体的甲烷浓度变化,对确保安全生产极其重要.请利用所学的知识设计一检测仪监测矿井甲烷浓度.参考解答:介绍瑞利干涉仪监测矿井甲烷浓度。

在煤矿的井下生产中,即时准确地监测井下气体的甲烷浓度变化,对确保安全生产极其重要. 根据甲烷和纯净空气的折射率不同,运用双光束干涉,通过观察干涉条纹的变化,可以实现对井下空气中甲烷浓度的监测.瑞利干涉仪的结构如图所示,S 为狭缝光源,经透镜L 1后成为平行光,再由双缝S 1、S 2 分离出两束相干光,分别让它们通过长度相等的两个气室T 1、T 2后,由透镜L 2 会聚到其焦平面上形成干涉条纹. 若两气室T 1、T 2内气体相同,则两束光在0点处干涉相长,形成零级明条纹. 若将气室T 1内充入纯净空气,其折射率用n 0表示;将气室T 2内充入井下气体,其折射率用n′ 表示,则两束光到达0点的光程差为:)1()(00----=-'=-'=λδk L n n L n L n式中,L 为气室的长度;λ为光的波长;k 为0点处干涉明条纹的级次. 假设井下气体中甲烷浓度为x %,则其折射率n′与纯净空气的折射率n 0以及纯甲烷气体的折射率n 有如下关系: 1001001000x n x nn -+=' 将其整理为 )2(100)(00-----=-'xn n n n 由式(1)和式(2)可得:Ln n k x )(1000-=λ 即为0点处干涉明条纹的级次k 与气室中井下气体的甲烷浓度x %之间的关系式. 实际应用中,需要使两气室内的气体具有相同的压强和温度,利用读数显微镜可较方便地确定0处干涉明条纹的级次k ,在已知波长λ和纯净空气折射率n 0以及纯甲烷气体的折射率n 的情况下,即可计算出井下气体的甲烷浓度.4. 薄膜尤其是光学薄膜厚度测控技术不断完善,就其测量原理而言,主要有光电极值法、干涉法、石英晶体振荡法椭偏仪法,请查阅相关文献说明薄膜厚度测控技术中的干涉法的物理原理。

相关文档
最新文档