第14章勾股定理测试题(华师大版)

合集下载

华师大版八年级上册数学第14章 勾股定理含答案

华师大版八年级上册数学第14章 勾股定理含答案

华师大版八年级上册数学第14章勾股定理含答案一、单选题(共15题,共计45分)1、直线l上有三个正方形A、B、C放置如图所示,若正方形A、C的面积分别为1和12,则正方形B的面积为().A.11B.12C.13D.2、三角形各边(从小到大)长度的平方比,如下列各组,其中不是直角三角形的是()A.9∶25∶26B.1∶3∶4C.1∶1∶2D.25∶144∶1693、下列各组数中,是勾股数的为()A.1.5,2,2.5B.7,24,25C.0.3,0.4,0.5D.n,, n+14、已知a、b、c是三角形的三边长,如果满足(a﹣5)2+|b﹣12|+c2﹣26c+169=0,则三角形的形状是()A.底与边不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形5、若等腰三角形中相等的两边长为10 cm,第三边长为16 cm,那么第三边上的高为 ( )A.12 cmB.10 cmC.8 cmD.6 cm6、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.3047、如图,在矩形中,,点E是边上一动点,将沿直线对折,点A的落点为,当为直角三角形时,线段的长为()A.3B.4C.6或3D.3或48、以线段a、b、c 的长为边长能构成直角三角形的是()A.3、4、6B.5、6、8C. 、2、D.1、、9、如图,四边形,四边形,四边形都是正方形.则图中与相似的三角形为()A. B. C. D.10、如图,在平面直角坐标系中,,,,点P为的外接圆的圆心,将绕点O逆时针旋转,点P的对应点P’的坐标为()A. B. C. D.11、如图,△ABC中,AC=4,BC=3,AB=5,AD为△ABC的角平分线,则CD 的长度为()A.1B.C.D.12、说明“若a是实数,则a2>0”是假命题,可以举的反例是()A.a=﹣1B.a=1C.a=0D.a=213、直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为()A.1.5B.2C.2.5D.514、“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在中,,分别以的三条边为边向外作正方形,连结,,,分别与,相交于点P,Q.若,则的值为()A. B. C. D.15、以长度分别为下列各组数的线段为边,其中能构成直角三角形的是().A. ,,B. ,,C. ,,D. ,,二、填空题(共10题,共计30分)16、一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为________17、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.18、若的三边长分别是6、8、10,则最长边上的中线长为________.19、如图,在Rt△ABC中,∠ACB=90°,CA=CB,AD是△ABC的角平分线,过点D作DE⊥AB于点E,若CD=1,则BD=________.20、已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为________.21、如图,已知正方形ABCD的边长为4,点E在CD边上,EC=3DE,点F在AD 边上(异于点C),且∠AFE=∠AFB,则BF长为________.22、已知,在 Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,点E是线段BD的中点,则CE的最小值为________.23、如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为________.24、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别为8cm2, 10cm2,14cm2,则正方形D的面积是________ cm2.25、如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送5m(水平距离BC=5m)时,秋千的踏板离地的垂直高度BF=3m,秋千的绳索始终拉得很直,求绳索AD的长度?28、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,CD=1,DA=3.求∠BCD的度数.29、如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.30、将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如右图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、D6、A7、C8、D9、B10、A11、D12、C13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

完整版华师大版八年级上册数学第14章 勾股定理含答案

完整版华师大版八年级上册数学第14章 勾股定理含答案

华师大版八年级上册数学第14章勾股定理含答案一、单选题(共15题,共计45分)1、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.102、如图,在△ABC中,AD⊥BC于点D,AB=17,BD=15,DC=6,则AC的长为().A.11B.10C.9D.83、如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A. B. C. D.4、下列各组数,可以作为直角三角形的三边长的是()A.8,12,20B.2,3,4C.5,12,13D.4,5,65、如图,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=5,CE=4,则AB的长是()A. B.5 C. D.36、如图,在平面直角坐标系中,☉O的半径为1,则直线y=x- 与☉O的位置关系是( )A.相离B.相切C.相交D.以上三种情况都有可能7、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=,则AC等于( )A.4B.5C.6D.78、如图,以边长为4的正方形ABCD的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值为()A.2B.4C.D.29、若一个直角三角形的两边长为12和5,则第三边为()A.13B.13或C.13或5D.1510、若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4 cm 2B.9 cm 2C.18 cm 2D.36 cm 211、如图,AB是的直径,点C是圆上一点,连结AC和BC,过点C作于D,且,则的周长为()A. B. C. D.12、分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3 ,4 ,5 .其中能构成直角三角形的有( )组.A.2B.3C.4D.513、如图,AB为某河流的宽,为了估测河流的宽,在笔直的河岸上依此取点C,E,B,F,使DE⊥CF,且DA∥CF,测得CE=2米,EB=4米,BF=7米,且∠C=∠FDC,则AB的长为()米A. B.6.9 C. D.714、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是()A.9B.10C.4D.215、直角三角形的斜边为10cm,两直角边之比为3:4,那么这个直角三角形的周长为()A.17cmB.15cmC.20cmD.24cm二、填空题(共10题,共计30分)16、如图,已知点A(8,0),sin∠ABO=,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的表达式为________.17、如图,在圆内接四边形ABCD中,AB=3,∠C=135°,若AB⊥BD,则圆的直径为________18、如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积分别是为1、13,则直角三角形两直角边和a+b=________19、甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行.2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,则乙船的速度是________20、如图,在直角坐标系中,点,是第一象限角平分线上的两点,点C的纵坐标为1,且,在轴上取一点D,连接,,,,使得四边形的周长最小,这个最小周长的值为________.21、如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为________.22、如图,为直角三角形,其中,则的长为________。

华师大版八年级数学上册《第14章勾股定理》章节测试含答案(4套).doc

华师大版八年级数学上册《第14章勾股定理》章节测试含答案(4套).doc

第14章勾股定理一、选择题(共2小题〉1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A. 5B. 6C. 7D. 252.如图,在AABC 中,ZC二90° , AC=2,点 D 在BC±, ZADC二2ZB, AD=,则BC 的长为()A. - 1B. +1C. - 1D. +1点E是AD的中点,且AE=1, BE的垂直平分线MN恰好过点C.则3.如图,矩形纸片ABCD中,矩形的一边AB的长度为()A. 1B.C.D. 24. AABC中,AB二AC二5, BC二8,点P是BC边上的动点,过点P作PD丄AB于点D, PE丄AC于点E,则PD+PE的长是()A. 4. 8B. 4. 8 或 3. 8C. 3. 8 D・ 55. 如图,在RtAABC中,ZBAC二90° , ZABC的平分线BD交AC于点D, DE是BC的垂直平分线,点E是垂足.已知DC二8, AD二4,则图中长为4 的线段有()A. 4条B. 3条C. 2条D・1条6.如图,在四边形ABCD中,AD〃BC, DE±BC,垂足为点E,连接AC交DE于点F,点G为AF 的中点,ZACD 二2ZACB.若DG二3, ECh ,则DE 的长为()A. 2B.C. 2D.7. 在边长为正整数的AABC中,AB二AC,且AB边上的中线CD将AABC的周长分为仁2的两部分,贝OAABC面积的最小值为()A. B・C・ D.8. 如图,AABC中,BC二AC, D、E两点分别在BC与AC上,AD丄BC, BE丄AC, AD与BE相交于F 点.若AD二4, CD二3,则关于ZFBD、ZFCD、ZFCE的大小关系,下列何者正确?()A. ZFBD>ZFCDB. ZFBDVZFCDC. ZFCE>ZFCDD. ZFCEVZFCD9.如图,在RtAABC中,ZACB二90°,点D是AB的中点,且CD二,如果RtAABC的面积为1,则它的周长为()10.如图,AABC的顶点A、B、C在边长为1的正方形网格的格点上,BD丄AC于点D.则BD的长为()A. B. C. D.二、填空题(共15小题〉门.如图,在AABC中,AB二BC二4, A0二BO, P是射线C0上的一个动点,ZA0C二60°,则当Z\PAB 为直角三角形时,AP的长为・12. 在AABC 中,AB=13cm, AC二20cm, BC 边上的高为12cm,则Z\ABC 的面积为 _____ cml13. 如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF, DF二4.设AB二x, AD=y,贝lj x?+ (y-4)'的值为 .14. 正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若APBE是等腰三角形,则腰长为—・15. 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为・16.如图,AABC中,CD丄AB于D, E是AC的中点.若AD二6, DE二5,则CD的长等于17. 等腰Z\ABC 中,AB二AC二10c叫BC=12cm,则BC 边上的高是cm.18. 已知直角三角形的两边的长分别是3和4,则第三边长为_・19. 如图,在等腰AABC中,AB=AC, BC边上的高AD二6cm,腰AB上的高CE二8cm,则Z\ABC的周长等于___ cm.20.如图,四边形ABCD 中,AB〃DC, ZB二90°,连接AC, ZDAC=ZBAC.若BC二4c叫AD二5c叫则AB 二cm.21.如图,点D在AABC的边BC上,ZC+ZBAD=ZDAC, tan Z BAD二AD 二,CD=13,则线段AC的长为22.如图,RtAABC 中,ZABC二90。

华师大版八年级上册数学第14章 勾股定理含答案(适用考试)

华师大版八年级上册数学第14章 勾股定理含答案(适用考试)

华师大版八年级上册数学第14章勾股定理含答案一、单选题(共15题,共计45分)1、下列各组数据中,不是勾股数的是()A.5,7,9B.6,8,10C.7,24,25D.8,15,172、由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的之边长为1,则图中阴影部分的面积为()A.1B.3C.4﹣2D.4+23、否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数4、如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A.4B.5C.6D.不能确定5、用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°6、如图,网格中有一个△ABC,下图中与△ABC相似的三角形的个数有()A.1个B.2个C.3个D.4个7、如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A.1倍B.2倍C.3倍D.4倍8、如图所示,河堤横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),堤高BC=5m,则坡面AB的长度是()A.10mB.10 mC.15mD.5 m9、如图,斜靠在墙上的一根竹竿,AB=5m,OB=3m。

若B端沿地面OB方向外移0.5m,则A端沿垂直于地面AC方向下移( )A.等于0.5mB.小于0.5mC.大于0.5mD.不确定10、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1, l2, l3上,且l1, l2之间的距离为1,l2, l3之间的距离为2,则AC的长是()A. B. C. D.511、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为()A. B. C. D.12、用反证法证明:在一个三角形中至少有一个内角小于或等于60°.证明过程中,可以先()A.假设三个内角没有一个小于60°的角B.假设三个内角没有一个等于60°的角C.假设三个内角没有一个小于或等于60°的角D.假设三个内角没有一个大于或等于60°的角13、如图,有一块菱形纸片,沿高剪下后拼成一个矩形,矩形的相邻两边和的长分别是5,3.则的长是()A. B.1 C. D.214、如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( )A.150cm 2B.200cm 2C.225cm 2D.无法计算15、直角三角形的一条直角边是另一条直角边的,斜边长为10,则它的面积为()A.10B.15C.20D.30二、填空题(共10题,共计30分)16、如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果精确到0.1米,参考数据:=1.41,=1.73).17、如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AD=10,AB=6,则FC的长是________.18、一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是________.19、在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且满足PA=3,PB=1,PC=2,则∠BPC的度数为________.20、如图,将边长为2的正方形 ABCD 绕点A按逆时针方向旋转,得到正方形AB'C'D',连接BB'、BC',在旋转角从0°到180°的整个旋转过程中,当BB'=BC'时,△BB'C'的面积为________.21、如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.22、如图,直线AB的解析式为y= x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为________.23、如图,在菱形中,,,是上一点,,是边上一动点,将四边形沿直线折叠,的对应点.当的长度最小时,则的长为________24、数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:如图1,我们想要证明“如果直线AB,CD 被直线所截EF,AB∥CD,那么∠EOB=.”如图2,假设∠EOB≠ ,过点O作直线A'B',使= ,可得∥CD.这样过点O就有两条直线AB,都平行于直线CD,这与基本事实________矛盾,说明∠EOB≠ 的假设是不对的,于是有∠EOB=∠ .小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不符合题意,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:25、已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、如图,铁路上A、B两点相距17千米,C、D为两村庄,DA⊥AB于A,CB⊥AB于B.已知DA=12km,CB=5km,现要在铁路AB上建一个土产品收购站E,使得C.D两村到E站的距离相等,则E站应建在离A站多少km处?28、如图,已知Rt△ABC中,∠C=90°,AD是角平分线,CD=15,BD=25,求AC 的长。

华师大版八年级上册数学第14章 勾股定理含答案(精品)

华师大版八年级上册数学第14章 勾股定理含答案(精品)

华师大版八年级上册数学第14章勾股定理含答案一、单选题(共15题,共计45分)1、已知下列四组线段:①5,12,13;②15,8,17;③1.5,2,2.5;④,,。

其中能构成直角三角形的有( )A.四组B.三组C.二组D.一组2、下列叙述中,正确的是()A.直角三角形中,两条边的平方和等于第三边的平方B. 中,的对边分别为,若,则 C.若是直角三角形,且,则 D.若,则是直角三角形3、如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()=S (1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE矩形ABCDA.1个B.2个C.3个D.4个4、下列条件不能判定一个三角形为直角三角形的是()A.三个内角之比为1:2:3B.一边上的中线等于该边的一半C.三边为、、D.三边长为m 2+n 2、m 2﹣n 2、2mn(m≠0,n≠0)5、如图,二次函数y=ax2+bx+c的图象与x轴相交于A,B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2B.C.3D.6、如图,数轴上的点A所表示的数为x,则x的值为( )A. B.- C.2 D.-27、适合下列条件的△ABC中,直角三角形的个数为()①a= ,b= ,c= ;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A.2个B.3个C.4个D.5个8、如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx+12与⊙O交于B、C两点,则弦BC长的最小值()A.24B.10C.8D.259、以下列长度的线段为边能组成直角三角形的是()A.6,7,8B.7,8,9C. ,1,2D.8,9,1010、以下列长度的线段为边不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.6,24,2511、已知圆锥的母线长OA=8,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短距离为()A.8B. 4πC.8D.812、有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE(如图),则CD则等于()A. B. C. D.13、如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为()A. B.4 C. D.514、将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是( )A.2、3、4B.4、5、6、C.6、7、8D.5、12、1315、设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5B.2C.2.5D.3二、填空题(共10题,共计30分)16、如图,已知点,点B为直线上的一动点,点,,于点C,连接.若直线与正半轴所夹的锐角为,那么当的值最大时,n的值为________.17、已知是腰长为的等腰直角三角形,以的斜边为直角边,画第二个等腰再以的斜边为直角边,画第三个等腰,…,依此类推,第个等腰直角三角形的斜边长是________.18、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22.5°,则⊙O的半径为________cm.19、如图,在中,点为弧的中点,弦,互相垂直,垂足为,分别与,相于点,,连结,.若的半径为2,的度数为,则线段的长是________.20、如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设,则图中阴影部分面积为________(用含的代数式表示)21、如图,在Rt ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG//BC,DG交AB于点D,若AB=6,BC=9,则ADG的周长等于________.22、如图,已知 A、B 两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是________;23、如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.24、如图,在Rt△ABC中,∠BAC=90°,AB=15,AC= 20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于________.25、如图,P是等边△ACB中的一个点,PA=2,,PC=4,则△ACB 的边长是________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图四边形ABCD是实验中学的一块空地的平面图,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m现计划在空地上植上草地绿化环境,若每平方米的草皮需150元;问需投入资金多少元?28、如图所示,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).画出△OAB绕点O逆时针旋转90°后的△OA1B1,并求出AA1的长.29、如图,四边形ABCD中,且AB=4,AD=3,BC=13,CD=12,求这个四边形的面积.30、一如图,已知四边形ABCD中,,,,,且,连接BD,试判断的形状,并说明理由.参考答案一、单选题(共15题,共计45分)1、A2、D4、C5、D6、B7、A8、B9、C10、D11、C12、C13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

华师大版八年级数学上册《第十四章勾股定理》单元测试卷及答案

华师大版八年级数学上册《第十四章勾股定理》单元测试卷及答案

华师大版八年级数学上册《第十四章勾股定理》单元测试卷及答案【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,点()1,2P 到原点的距离是( ) A.1 B.13 C.5 D.22.如图,从电线杆离地面6米处向地面拉一条10米长的钢缆,地面钢缆固定点A 到电线杆底部B 的距离AB 是( )米. A.6 B.7 C.8 D.93.如图,已知正方形A 的面积为3,正方形B 的面积为4,则正方形C 的面积为( )A.7B.5C.25D.14.如图,点C 所表示的数是( )A.5B.3-C.5-D.55.已知钓鱼杆AC 的长为10米,露在水上的鱼线BC 长为6m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转动到AC '的位置,此时露在水面上的鱼线B C ''长度为8米,则BB '的长为( )A.4米B.3米C.2米D.1米6.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为( )A.20dmB.25dmC.30dmD.35dm 7.已知ABC △的三边分别为a ,b ,c ,且()2724250a b c --+-=,则ABC △的面积为( )A.30B.84C.168D.无法计算8.如图,在Rt ABC △中90C ∠=︒,AB=5,BC=3,以点A 为圆心,适当长为半径作弧,分别交,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,则BD 的长为( )A.35B.34C.43D.539.如图,线段AB 是某小区的一条主干道,计划在绿化区域的点C 处安装一个监控装置,对主干道AB 进行监控,已知30m AC = 40m BC = AC BC ⊥监控的半径为30m ,路段AD 在监控范围内,路段BD 为监控盲区,则BD 的长为( )ABA. B. C.16mD.20m10.如图,在Rt ABC △中90BAC ∠=︒,AB=5,AC=12,BD 平分ABC ∠交边AC 于点D ,点E 、F 分别是边BD 、AB 上的动点,当AE EF +的值最小时,最小值为( )A.6B.125C.6013D.12013二、填空题(每小题4分,共20分)11.在ABC △中90C ∠=︒ A ∠ B ∠ C ∠对应的边分别为a ,b ,c ,若3c =,则²²²a b c ++=____________.12.如图5AB AC ==,BC=6,AD BC ⊥于D ,则AD =_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.在《九章算术》中的勾股卷中有这样一道题:今有竹高一丈,末折抵底,去本三尺.问折者高几何?意思为:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹稍恰好抵地,抵地处B 离原处竹子C 的距离BC 为3尺,则原处还有竹子AC =______尺.(请直接写出答案,注:1丈10=尺.) 12m 14m14.如图,在四边形ABCD 中 已知3AB = 4AD = 12BC = 13CD = 90A ∠=︒ 则四边形ABCD 面积是______.15.如图,在ABC 中,点D 为BC 的中点 5AB = 3AC = 2AD = 则ABC 边BC 上的高为______.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,有一架秋千,当它静止时,踏板离地的垂直高度1m DE =,将它往前推送4m (水平距离4m BC =)时,秋千的踏板离地的垂直高度3m BF =,若秋干的绳索始终拉得很直,求绳索AD 的长度.17.(8分)已知如图:AB BC ⊥ DC BC ⊥ AE DE ⊥ 且12AE = 3CD = 4CE = 求:AD 的长.18.(10分)如图,一根直立的旗杆高8m,因刮大风,旗杆从点C处折断,顶部B着地且距离旗杆底部A处4m.(1)求旗杆在距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?=,点D是边BC上的一点,连接AD. 19.(10分)如图,ABC是等腰三角形,AB AC(1)若ABC的周长是32,CD=6,点D是BC的中点,求AD的长;BD=,AD=12,AB=15,求ABC的面积.(2)若920.(12分)为迎接六十周年校庆,重庆外国语学校准备将一块三角形空地ABC进行新的规划,BD=米如图,过点D作垂直于AC的小路DE,点E在AC边上.经测量,24AD=米,10△的面积;(1)求ABD(2)求小路DE的长.21.(12分)如图,ABC △中90ABC ∠=︒ 25cm AC = 15cm BC =(1)设点P 在AB 上,若 PAC PCA ∠=∠.求AP 的长;(2)设点M 在AC 上.若MBC △为等腰三角形,求AM 的长.参考答案及解析1.答案:C解析:点(1,2P 到原点的距离是22125+=.故选:C.2.答案:C解析:∵钢缆是电线杆,钢缆,线段AB 构成的直角三角形的斜边又∵钢缆长度为10米,从电线杆到钢缆的上端为6米∴221068AB =-=米故选:C.3.答案:A解析:正方体A 的面积为3,正方体B 的面积为4∴正方体C 的面积347=+=故选:A.4.答案:C解析:根据勾股定理得:2222125AB OA OB =+=+=5AC AB ∴==∴点C 表示的数是15-.故选:C.5.答案:C解析:在Rt ABC △中10m AC = 6m BC =22221068(m)AB AC BC ∴=-=-=在Rt AB C ''△中10m AC '= 8m B C ''=226(m)AB AC B C ''∴=-=862(m)BB AB AB ''∴=-=-=故选:C.6.答案:B解析:三级台阶平面展开图为长方形,长为20dm ,宽为则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x dm由勾股定理得:()22222023325x =++⨯⎦=⎡⎤⎣ 解得.故选B.7.答案:B解析:()2724250a b c -+-+-=70a ∴-= 240b -= 250c -=7a ∴= 24b = 25c =()233dm +⨯25x =2222724625a b +=+= 2225625c ==222a b c ∴+=ABC ∴△是直角三角形ABC ∴△的面积12ab = 1724842=⨯⨯= 故选:B.8.答案:D解析:作DM AB ⊥于M由题意知AD 平分BAC ∠DC AC ⊥CD DM ∴= 90C ∠=︒ 5AB = 3BC =224AC AB BC ∴=-=ABC △的面积ACD =△的面积ABD +△的面积111222AC BC AC CD AB MD ∴⋅=⋅+⋅4345CD CD ∴⨯=+43CD ∴=45333BD BC CD ∴=-=-=. 故选:D.9.答案:B解析:如图,过点C 作CE AB ⊥于E∵AC BC ⊥∴90ACB ∠=︒ ∴()2222304050m AB AC BC =+=+=∵∴∵监控的半径为∴∴∵ ∴∴∴在中,由勾股定理,得()2222302418m AE AC CE =-=-=∴236m AD AE ==∴()503614m BD AB AD =-=-=.故选:B.10.答案:C解析:如图所示,在BC 边上截取BG BF =,连接EG ,过点A 做AH BC ⊥交于点HCE AB ⊥90AEC BEC ∠=∠=︒30m 30m AC DC ==2AD AE =Rt 1122ABC S AC BC AB CE =⋅=⋅△304050CE ⨯=304050CE ⨯=24m CE =Rt ACE △∵BD 平分ABC ∠∴FBE GBE ∠=∠∵BG BF = BE BE =∴BGE BFE ≌△△∴EF EG =∴AE EF AE EG +=+当且仅当A 、E 、G 共线,且与BC 垂直时,AE EF +的值最小,即BC 边上的垂线段AH ∵5AB = 12AC = 90BAC ∠=︒ ∴2213BC AB AC =+= ∵1122ABC S AB AC BC AH =⋅=⋅△ ∴. ∴当的值最小时,最小值为. 故选:C.11.答案:18解析:90C ∠=︒ 3c =2229a b c +==2²²²218a b c c ++==故答案为:18.12.答案:4解析:∵5AB AC == AD BC ⊥ 6BC = ∴132BD CD BC === ∴224AD AB BD =-=.故答案为:4.13.答案:9120解析:设折断后的竹子AC 为x 尺,则斜边AB 为(10)x -尺 512601313AB AC AH BC ⋅⨯===AE +6013在Rt ABC △中,根据勾股定理得:2223(10),x x +=-解得:9120x = 故答案为:9120. 14.答案:36解析:如图,连接BD由勾股定理得225BD AB AD =+=∵22251216913+==∴222BD BC CD +=∴BCD △是直角三角形90CBD ∠=︒∴11345123622ABD BCD ABCD S S S =+=⨯⨯+⨯⨯=四边形△△故答案为:36.15.答案:61313 解析:如图,延长AD 到E ,使得2DE AD ==,连接BE ,作AF BC ⊥于点F 则24AE AD ==.∵点D 为BC 的中点∴CD BD =在ADC △和EDB △中AD ED ADC EDBCD BD =⎧⎪∠=∠⎨⎪=⎩ ∴ADC EDB ≌∴3BE CA ==∴22223425BE AE +=+=∵22525AB ==∴222BE AE AB +=∴90E ∠=︒ ∴132BDE SBD DE =⋅= 22223213BD BE DE =+=+=∴3ADC BDE S S == 13CD BD ==∵AF BC ⊥ ∴12ADC AF S ⋅= 即1332AF = ∴61313AF =. 故答案为:61313 16.答案:5m 解析:3m CE BF == 1m DE =312m CD CE DE ∴=-=-=在Rt ACB △中222AC BC AB += 4m BC =设秋千的绳索长为m x ,则()2mAC x =-故2224(2)x x =+-解得:5x =答:绳索AD 的长度是5m.17.答案:13AD =解析:∵DC BC ⊥,∴90C ∠=︒∴在Rt DCE △中,根据勾股定理得:2222345DE DC CE =+=+=∵AE DE ⊥∴90AED ∠=︒∴在Rt ADE △中,根据勾股定理得:222251213AD DE AE =+=+=.18.答案:(1)旗杆在距地面3米处折断(2)距离旗杆底部周围6m 范围内有被砸伤的危险解析:(1)由题意可知,8m AC BC +=,设m AC x =,则()8m BC x =-. 90A ∠=︒ 4m AB =222AB AC BC ∴+= 即2224(8)x x +=-,解得3x =3m AC ∴= 5m BC =故旗杆在距地面3米处折断.(2)如图,若大风将旗杆从点D 处吹断,旗杆顶部B 落到B '处. D 点距地面的高度为()3 1.25 1.75m AD =-=()8 1.75 6.25m B D ∴=-='()226m AB B D AD ∴-'==' ∴距离旗杆底部周围6m 范围内有被砸伤的危险.19.答案:(1)8(2)108解析:(1)因为点D 是BC 的中点,CD=6,所以12BC =. 因为ABC 的周长是32,AB=AC ,所以()132102AB AC BC ==-=. 因为ABC 是等腰三角形,AB=AC ,点D 是BC 的中点,所以AD BC ⊥. 在Rt ACD 中,AC=10,CD=6,所以228AD AC CD =-=.(2)因为BD=9,AD=12,AB=15所以22291215+=,即222BD AD AB +=,所以90ADB ∠=︒. 因为AB AC =,所以9BD CD ==所以18BC = 所以112181082ABC S =⨯⨯=△. 20.答案:(1)()2120米(2)小路的长为725米 解析:(1)26AB =米,24AD =米222AB BD AD ∴=+90ADB ∴∠=︒ABD S ∴△12BD AD =⋅⋅210242=⨯⨯()2120=米. 答:ABD △的面积是()2120米.(2)由(1)知,90ADB ADC ∠=∠=︒AC 比DC 长12米12AC CD ∴=+.由勾股定理知:222CD AD AC +=,即()2222412CD CD +=+. 18CD ∴=米.30AC ∴=米DE AC ⊥1722ADC S AD CD ∴=⋅=△241872305AD DC DE AC ⋅⨯∴===(米). 答:小路的长为725米. 21.答案:(1)1258 (2)10,7 252 解析:(1)ABC △中90ABC ∠=︒ 25cm AC = 15cm BC = ∴2222251520AB AC BC =-=-=PAC PCA ∠=∠PA PC ∴=设PA PC x == 则20PB x =-在Rt PBC △中222PB BC PC +=即()2222015x x -+= 解得1258x =即1258PA =.(2)MBC △为等腰三角形 ∴①当BC CM =时,此时有:∴251510AM AC CM =-=-=;②当BC BM =时,此时: 如下图过B 作BN AC ⊥1122ABC S AC BN AB BC ∴=⋅=⋅⋅△∴12BN =∴222BN CN BC +=即2221215CN +=∴9CN =∴218CM CN ==∴25187AM =-=;③当BM CM =时 ∴MBC MCB ∠=∠又90MBC ABM ∠+∠=︒ 90MCB BAC ∠+∠=︒ ∴BAC ABM ∠=∠ ∴AM BM = ∴12522AC AM CM ===.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理单元测试
(时间:100分钟 总分:120分)
班级 学号 姓名 得分
一、相信你一定能选对!(每小题4分,共32分)
1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )
A . 6
B . 4.5
C . 2.4
D . 8
2. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );
④2a ,12+a ,22
+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C . ①③ D . ③④
3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )
A .a :b :c=8∶16∶17
B . a 2-b 2=c 2
C .a 2=(b+c)(b-c)
D . a :b :c =13∶5∶12
4. 三角形的三边长为ab c b a 2)(2
2+=+,则这个三角形是( )
A . 等边三角形
B . 钝角三角形
C . 直角三角形
D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或7
6.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )
A. 24cm 2
B. 36cm 2
C. 48cm 2
D. 60cm 2
7.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A .121
B .120
C .90
D .不能确定
8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )
A .600米
B . 800米
C . 1000米 D. 不能确定 二、你能填得又快又对吗?(每小题4分,共32分)
9. 在△ABC 中,∠C=90°, AB =5,则2
AB +2AC +2BC =_______. 10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合
而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .
11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数,则这三个数分别为__________. 13. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.
14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:
mm )计算两圆孔中心A 和B 的距离为 .
15.如图,梯子AB 靠在墙上,梯子的底端
A 到墙根O 的距离为2米,梯子的顶端
B 到地
面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值:
①等于1米;②大于
1
第10题图 第13题图 第14题图 第15题图
米5;③小于1米.其中正确结论的序号是 .
16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,
把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 . 三、认真解答,一定要细心哟!(共72分) 17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶
点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段. 18.(6分)已知a 、b 、c 是三角形的三边长,a =2n 2+2n ,b =2n +1,c =2n 2+2n +1(n
为大于1的自然数),试说明△ABC 为直角三角形. 19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?
20.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走
4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。

问登陆点A 与宝藏埋藏点B 之间的距离是多少?
21.(7分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?
22.(8分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;
能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.
23.(8分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?
24.(10分)如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC
沿
∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
B
C
A
D
25.(10分)如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,
DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E
站的距离相等.求E 应建在距A 多远处?
26.(10分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km
北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
小河。

相关文档
最新文档