(完整版)基于数字图像处理的车牌识别本科毕业论文
(完整版)基于数字图像处理的车牌识别本科毕业论文

本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。
车牌识别毕业设计论文

车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。
本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。
在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。
然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。
通过比较不同车牌的特征,可以找到最佳的车牌位置。
在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。
首先,通过垂直投影,可以得到每个字符的位置和宽度。
然后,通过水平投影,可以得到字符的高度和行间距。
通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。
字符识别是车牌识别系统的最后一步,也是最复杂的一步。
常用的方法包括基于模板匹配和基于机器学习的方法。
在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。
在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。
在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。
为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。
通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。
此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。
基于数字图像的车牌识别毕业设计论文 精品

目录第一部分:1.1PCI总线 (4)1.1.1 PCI总线的基本结构 (4)1.1.2 PCI总线A/D卡的通用结构 (5)1.2 A/D卡的采集、存储和显示程序 (6)1.2.1 A/D卡的采集的基本原理 (6)1.2.2 实验结果与分析 (6)1.3.3设计程序 (9)1.4结果分析 (9)第二部分:中文摘要 (10)英文摘要 (11)1 引言 (12)1.1 车牌识别技术的研究背景 (12)1.2 国内外研究现状 (12)1.3 车牌识别系统研究目的及意义 (13)1.4别系统的构成 (13)1.5论文内容安排 (14)2 车牌图像的预处理 (14)2.1 预处理技术概述 (14)2.2 图像的灰度化 (15)2.3 图像的二值化 (17)2.4 边缘检测 (18)2.4.1 Canny算子 (18)2.4.2 Roberts算子 (19)2.5 本章小结 (22)3 车牌定位 (22)3.1 常用的车牌定位算法 (22)3.1.1 基于纹理特征的车牌定位 (22)3.1.2 基于数学形态的车牌定位 (24)3.2 本章小结 (26)4 字符切割 (26)4.1 车牌字符切割方法 (26)4.2 本章小结 (28)5 字符识别 (28)5.1 字符识别概述 (28)5.2 车牌字符识别特点 (29)5.3 基于模板匹配的字符识别算法 (30)5.4 实验分析 (31)5.5 结果分析 (32)6 设计评述 (32)附录A 车牌识别程序 (34)参考文献 (47)1.1 PCI总线1.1.1 PCI总线的基本结构:PCI,外设组件互连标准(Peripheral Component Interconnect)一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。
此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。
最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。
车牌识别毕业论文

摘要车牌自动识别技术是实现智能交通系统的关键技术,对我国交通事业的发展起着十分重要的作用,进而影响我国的经济发展速度及人们的生活质量。
车牌识别系统运用模式识别、人工智能技术,能够实时准确地自动识别出车牌的数字、字母及汉字字符,进而实现电脑化监控和管理车辆。
一个车牌识别系统的基本硬件配置有照明装置、摄像机、主控机、采集卡等。
而软件则是由具有车牌识别功能的图像分析和处理软件,以及能够具体满足应用需求的后台管理软件组成。
车牌自动识别系统主要分为图像预处理、车牌定位、字符分割和字符识别等主要模块,也包括后续应用程序的开发。
针对不同的模块,本文研究分析了现有的理论算法,并提出了具有实际应用意义的解决方案。
1.在图像预处理模块,因为人眼对于不同颜色分量的敏感度不同,图像灰度化采用加权平均值法;二值化过程中阈值的选取至关重要,本文采用动态自适应阈值法,效果理想;边缘提取利用了拉普拉斯算子;去噪过程采用的是中值滤波方法;2.车牌定位模块包括粗定位和细定位,本文通过分析车牌的尺寸、类型、颜色,得到不同的特征向量,即车牌的几何特征、灰度分布特征、投影特征和字符排列特征等,利用这些特征进行车牌定位;3.在车牌字符分割模块,提出了双向对比垂直投影分割法,该方法基于车牌的垂直投影,能够将字符准确的分割开,利于车牌字符识别: 4.本文对车牌数字和车牌字母及汉字提出了不同的处理方法,数字识别采用投影技术,汉字和字母识别应用BP神经网络技术,兼顾了识别准确率和识别速度;根据上述方法原理,基于MATLAB软件进行程序设计,编制了车牌自动识别软件。
关键字:车牌图像;图像处理;字符分割;BP神经网络AbstractLicense plate recognition technology is to realize the key technology of intelligent transportation system of our country, the development of the cause of traffic plays a very important role, then affects the economic development of our country and speed and people's quality of life. License plate recognition system with pattern recognition, artificial intelligence technology, to real-time accurately recognize the license plate number of automatic, letters and Chinese characters, and achieve computerized monitoring and management vehicles. A license plate recognition system of basic hardware configuration have lighting devices, video camera, master control machine, acquisition card, etc. And software is with license plate identification function by the image analysis and processing software, and can meet the demand of the specific application background management software component. License plate recognition system mainly divided into the image preprocessing, license plate location, character segment and character recognition and other major modules, including the follow-up application development.In view of the different module, this paper analyzed the existing algorithm theory, and puts forward the practical significance of the solution. 1. In the image preprocessing module, for the human eye to different color the sensitivity of the component is different, the image intensity by weighted average method; In the process of binary of the threshold is very important to select is adopted in this paper, dynamic adaptive threshold value method, the effect ideal; Using the Laplace operator edge extraction; Denoising the process is the median filtering method; 2. The license plate localization module contains coarse position and fine positioning, the paper analyzes the license plate size, type, color, get different characteristic vector, namely the geometrical characteristics of the license plate, gray distribution, projection characteristics and characters arrangement characteristics, use these characteristics of the license plate location; 3. In the license plate character segmentation module, and put forward the two-way contrast vertical projection segmentation method, this method is based on the license plate vertical projection, can make the character of accurate separated, beneficial to the license plate character recognition: 4. This article on license plate Numbers and letters and characters put forward different processing methods, number recognition by projection technology, Chinese characters and letters recognition application BP neural network technology, and taking account of the identification accuracy and recognition rate; According to the above method, based on the MATLAB software program design, compiled the license plate recognition software.Keywords License plate image, image processing, character segment, the BP neural network目录摘要............................................. 错误!未定义书签。
基于图像处理的车牌识别技术研究

基于图像处理的车牌识别技术研究第一章绪论车牌识别技术已经成为了智能化交通管理中的关键技术。
在信息化与网络化的现代社会中,车牌识别技术被广泛应用在城市道路交通管理、环保治理、高速公路收费等方面,为城市交通畅通和安全提供了有力保障。
图像处理技术在车牌识别技术中的应用也随着技术的不断发展,正逐步取代传统的人工识别的方式,提高了识别准确率和工作效率。
本文将在前人研究的基础上,就图像处理在车牌识别技术中的应用进行研究。
第二章车牌识别技术的发展与应用汽车的广泛普及和交通管理的需要,推动了车牌识别技术的不断发展。
从最初的手工识别到自动识别技术,车牌识别技术经过多年的发展,如今已成为了现代交通管理的重要组成部分。
车牌识别技术在各类交通管理系统、智能停车场、收费站、条码门禁系统等方面都有广泛的应用。
第三章图像处理技术在车牌识别中的应用3.1 图像采集与处理车牌识别的关键在于图像采集与处理。
车辆如果没有经过清晰的图像采集,车牌的识别率就无法保证。
因此在车牌识别系统中,图像采集设备的选用、设置要求以及采集时间的控制都需要非常注意。
图像处理是车牌识别系统的核心技术,可以通过对影像中的像素进行提取、分离和与车牌范围匹配等处理,从而提高车牌识别的准确率和可靠性。
3.2 车牌定位与提取车牌定位与提取是车牌识别的重要步骤。
其目的是通过图像处理技术,将汽车影像中的车牌区域提取出来,并放大显示。
实现车牌定位与提取的方式有很多种,例如基于颜色分割、基于纹理分割、基于形状匹配等。
3.3 车牌识别与字符识别车牌识别与字符识别是车牌识别技术的核心和难点。
在车牌提取之后,需要对车牌中的字符进行重组识别,以达到车牌的完整识别。
车牌识别与字符识别分别可以采用基于特征提取和匹配的方法,例如基于字符特征提取、基于神经网络的字符识别等。
第四章车牌识别技术的应用车牌识别技术在现代交通管理中已经得到广泛的应用。
随着城市化和经济发展,车辆数量的急剧增长,交通拥堵、违章行为、安全事故等问题越来越成为城市交通管理的关注点。
〔大学论文〕基于数字图像处理的车牌识别系统设计与实现(含word文档)

基于数字图像处理的车牌识别系统设计与实现目录摘要 (1)1.设计原理 (2)2.详细设计步骤 (3)2.1提出总体设计方案 (3)2.2预处理及边缘提取 (4)2.2.1图象的采集与转换 (4)2.2.2边缘提取 (5)2.3牌照的定位和分割 (9)2.3.1牌照区域的定位 (9)2.3.2牌照区域的分割 (10)2.3.3车牌进一步处理 (11)2.4字符的分割与归一化 (12)2.4.1字符分割 (13)2.4.2字符归一化 (13)2.5字符的识别 (13)3.设计结果及分析 (16)4.程序源代码 (19)4.1基于matlab的程序源代码 (19)4.2基于VC++的程序源代码 (31)5.结语 (57)6.心得体会 (58)7.参考文献 (59)摘要汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。
本文首先确定车辆牌照在原始图像中的水平位置和垂直位置,从而定位车辆牌照,然后采用局部投影进行字符分割。
在字符识别部分,提出了在无特征提取情况下基于支持向量机的车牌字符识别方法。
实验结果表明,本文提出的方法具有良好的识别性能。
随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
关键字:车牌识别系统、智能化交通、车牌定位、字符分割、字符识别AbstractVehicle license plate recognition system is the intelligent road traffic constraints important factors,including the license plate location,character segmentation and character recognition of three main parts.Firstly,the vehicle license in the original image to determine the horizontal and vertical position,thereby positioning the vehicle license,and character segmentation using a local projection.In the character recognition part of the proposed feature extraction in the case of non-support vector machine based license plate recognition method.Experimental results show that the proposed method has good recognition performance.With the increasing popularity of road,road transport in China has developed rapidly,so the artificial management has not full of actual needs,microelectronics,communications and computer technology applications in the transport sector has greatly improved the efficiency of traffic management.Automatic license plate recognition technology has been widely used.Keywords:license plate recognition system,intelligent transportation,license plate localization,character segmentation,character recognition1.设计原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。
基于图像处理的车辆牌照识别算法研究与应用

基于图像处理的车辆牌照识别算法研究与应用概述:车辆牌照识别算法是一种基于图像处理的技术,用于从车辆图片中自动识别和提取车辆牌照信息。
随着交通管理的数字化和智能化,车辆牌照识别算法在交通管理、智能交通系统、安全监控等领域具有广泛的应用前景。
本文将介绍车辆牌照识别算法的研究现状和发展趋势,探讨其在实际应用中的一些典型方法和技术。
一、车辆牌照识别算法的研究现状1.1 图像预处理图像预处理是车辆牌照识别的第一步,其目的是提高图像质量并减少识别误差。
常见的图像预处理方法包括图像增强、灰度化、滤波和边缘检测等。
这些技术可以提高图像的对比度、去除干扰噪声,并增加牌照的边缘信息,有助于后续的识别过程。
1.2 牌照定位牌照定位是车辆牌照识别的关键步骤之一,其主要目的是在车辆图像中准确地定位出牌照的位置,使得后续的牌照识别可以在牌照区域内进行。
常用的牌照定位方法有基于边缘检测、颜色特征和形态学操作等。
这些方法通过对图像进行分析和处理,可以准确地定位出牌照的位置。
1.3 字符分割字符分割是车辆牌照识别的关键环节之一。
由于车辆牌照上的字符存在大小、间距等变化,因此需要对牌照中的字符进行分割,使得后续的字符识别可以进行。
常见的字符分割方法包括基于投影、基于连通性、基于灰度切分和基于深度学习等。
这些方法可以将牌照中的字符分割出来,并减少字符间的干扰。
1.4 字符识别字符识别是车辆牌照识别的最后一步,其主要目的是将字符图像转化为字符编码,实现对车辆牌照信息的提取和识别。
在字符识别过程中,常用的方法有基于模板匹配、基于特征提取和基于深度学习等。
这些方法可以将字符图像与已知的字符模板进行匹配或者提取特征,从而实现对字符的识别。
二、车辆牌照识别算法的应用2.1 交通管理随着城市交通的日益发展和拥堵问题的加剧,车辆牌照识别算法在交通管理中发挥着重要作用。
通过利用车辆牌照识别技术,交通管理部门可以实时获取交通流量信息、违法行为的牌照记录等,从而提高交通安全和管理效率,并为交通规划和控制提供决策参考。
基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统言经官电气学院电子112摘要:车牌识别系统(License Plate Recognition 简称LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐渐融入到我们的现实生活中。
文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。
本文所做的工作在于前期的图像预处理工作。
本次设计着重在于图像识别方面, 中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。
之后利用Matlab编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。
其中,去噪与二值化是关系图像识别率的关键。
关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化引言智能交通系统(ITS)是当今世界交通管理体系发展的必然趋势,而作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。
伴随我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制,安全管理的要求也日益提高。
因此迫切需要采用高科技手段,对违法违章车辆牌照进行登记, 在这种情况下,作为信息来源的自动检索,图像识别技术越来越受到人们的重视。
车牌识别系统的出现成为了交通管制必不可少的有力武器。
1 车牌识别系统的目标利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础之上,通过对车辆图像的采集,采用先进的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的全部字符图像,再识别出车牌中的文字、字母和数字,最后给出车牌的真实号码。
国外的车牌识别研究始于80 年代,90 年代始已有不少成套的产品出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。
关键词:图像预处理边缘处理字符分割字符识别1、设计目的车牌识别系统主要是为了辨别所拍图片中的车牌部分,以此识别车辆。
通过车牌识别系统的设计,来实现经过我校西大门的车辆的识别。
2、设计原理:设计的原理主要如下图所示:3、设计步骤:流程图如下:4、实行方案4.1. 总体实行方案:用摄像机获取自然环境下的汽车彩色图像,将彩色图像用matlab软件处理成灰度图像并绘制直方图,然后进行边缘检测图像的腐蚀,平滑图像以及去除二值图像的小对象等操作,再进行车牌的定位和字符分割与识别最终达到识别车牌照的目的。
4.2. 各模块的实现:4.2.1输入待处理的原始图像:I=imread(‘car.jpg');imshow(I);%显示车牌的原始图片,结果如下:图4.2.1原始图像picture14.2.2图像的灰度化并绘制直方图:彩色图像的存储器所需的成本高,且减缓系统的速度执行,所以,在图像识别处理彩色图像一般都转换成灰度图像,以加快图像信息的处理速度。
从彩色图像到灰度图像的转换叫做灰度处理。
灰度直方图的横坐标代表图片的像素数,从左到右由暗到亮,灰度直方图的纵轴就表示其所占有图片的面积,峰值越低就意味着该明暗值的像素数量越少,从图4.2.2可以看出峰值最高的即为车牌区域。
I1=rgb2gray(I);%灰度处理subplot(1,2,1),imshow(I1);title('gray image');subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图和直方图显示结果图像如下:图4.2.2灰度化并绘制直方图picture24.2.3 边缘检测边缘是一定存在在两个拥有不一样灰度值的相邻的区域之间的,是灰度值不连续的一种表现,也是分割图象、纹理和形状特征提取等图像分析的基础。
本文用Roberts算子来实现边缘检测,他是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑,当然还需要后续的腐蚀,平滑图像以及去除二值图像的小对象操作来提高精度。
由于阈值越小检测的边缘越丰富,结合选取的灰度图选择阈值为0.16较为合适。
用roberts算子实行边缘检测:I2=edge(I1,'roberts',0.16,'both');imshow(I2);title('roberts operator edge detection image');结果如下:图4.2.3边缘检测picture34.2.4图像的腐蚀操作:腐蚀操作就是通过不断的删除图片上的像素,将图片缩小,以此来达到去除小点状图形的效果。
se=[1;1;1];I3=imerode(I2,se);%图像腐蚀操作imshow(I3);title('corrosion image');图4.2.4图像腐蚀操作picture44.2.5平滑图像图像平滑是去掉图像中的高频信息,使图像变的模糊,噪声一般都是高频信息,平滑的过程也就意味着除去图片噪声的过程。
se=strel('rectangle',[16,16]);%建立正方形结构元素I4=imclose(I3,se);% 图像聚类和填充imshow(I4);title('smothing image');图2.5平滑图像picture54.2.6除去二值图像的小对象除去二值图像的小对象就为了去掉面积较小无关的白色区域,将车牌所在的大面积白色区域凸显出来。
I5=bwareaopen(I4,1900);% 除去聚团灰度值在1900以下的部分imshow(I5);title('remove the small objects'); %滤波后图像显示结果如下:图4.2.6除去二值图像的小对象picture64.3车牌定位自然环境下,汽车图像背景十分复杂,受光照不均匀、污渍等影响,所以在自然背景下准确的将车牌区域确定下来是整个识别过程的关键,所以先要对原图像进行大范围横向(X),纵向(Y)像素点相关搜索,找到符合汽车牌照的候选区,然后对候选区做进一步的分析,判断,最终确定一个最佳的区域作为牌照区域。
代码显示如下:[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic计时开始,toc计时结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%若myI的图像中坐标(i,j)的点值为1,则表示蓝色背景%则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计 endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定% MaxY是yellow_y元素中最大值temp的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%行方向车牌区域确定%%%% X方向 %%%%Blue_x=zeros(1,x);%x车牌区域方向的再判断for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%车牌区域校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;subplot(1,2,1),imshow(IY),title('Line direction areas');%车牌行方向区域的确定subplot(1,2,2),imshow(dw),title('positioning color images');%车牌已经定位后的区域显示如下:图4.3.1车牌的定位picture74.4字符的分割与识别4.4.1.车牌的再处理划分彩色图像需经过灰度变换,二值化,均值滤波,腐蚀和膨胀到一个字符,并对分割字符进二值化、归一化等图像预处理使车牌图像的车牌号字符分割构成隔离,然后分析识别已经分割字符识的图像并用文本的车牌号的形式呈现出来。