除氧器除氧的原理
除氧器的除氧原理

除氧器的除氧原理
除氧器是一种常用的设备,可以去除液体中的溶解氧。
它的除氧原理主要是利用物理或化学方法将氧气从液体中除去。
物理除氧是通过利用氧气在真空条件下的溶解特性来实现的。
当液体进入除氧器后,通过减压操作降低液体中氧气的溶解度,使氧气从液体中脱离出来。
这种方法适用于液体中的氧气溶解度较高的情况。
化学除氧主要是利用一些化学剂或催化剂,将氧气与其发生化学反应,从而将氧气转化为其他物质,使其从液体中除去。
常见的化学除氧剂包括亚硫酸钠、硫酸亚铁等,它们可以与氧气发生还原反应,将氧气转化为无害的氧化物或气体,从而达到除氧的目的。
除氧器在许多工业领域中被广泛应用。
它可以用于锅炉给水、发电厂的冷却系统、制药工艺中的溶氧控制等。
除氧器的使用可以有效减少氧气对设备和管道的腐蚀,提高工业生产的安全性和效率。
除氧器的工作原理

除氧器的工作原理除氧器是一种用于去除水中溶解氧的设备,其工作原理是通过物理或者化学方法将水中的溶解氧转化为无害的物质,以提高水的纯度和质量。
以下是对除氧器工作原理的详细描述。
1. 物理吸附法物理吸附法是除氧器常用的一种工作原理。
它利用吸附剂吸附水中的溶解氧,从而实现去除溶解氧的目的。
吸附剂通常是一种具有高表面积的物质,如活性炭或者份子筛。
当水通过除氧器时,溶解氧会被吸附剂表面吸附,从而降低水中溶解氧的浓度。
2. 化学反应法化学反应法是另一种常用的除氧器工作原理。
它通过引入一种化学剂来与水中的溶解氧发生反应,将其转化为无害的物质。
常用的化学剂包括亚硫酸钠、硫酸亚铁等。
这些化学剂与溶解氧发生反应后生成氧化物或者沉淀物,从而实现除氧的效果。
3. 膜分离法膜分离法是一种较新的除氧器工作原理,它利用特殊的膜材料分离水中的溶解氧。
膜分离法通常使用半透膜,该膜具有一定的孔隙大小,可以允许水份子通过,但阻挠氧份子通过。
当水通过膜时,溶解氧会被阻挡在膜的一侧,从而实现除氧的效果。
4. 真空除氧法真空除氧法是一种利用真空原理去除水中溶解氧的工作原理。
它通过在除氧器中创建真空环境,使水中的溶解氧蒸发和释放出来。
在真空环境下,水的沸点降低,溶解氧会从水中逸出。
通过适当的真空度和温度控制,可以实现高效除氧的效果。
除氧器的工作原理可以根据不同的应用需求选择不同的方法。
例如,在饮用水处理中,常用的工作原理是物理吸附法和化学反应法,因为它们能够有效去除水中的溶解氧。
而在工业生产中,膜分离法和真空除氧法往往被使用,因为它们具有高效和可靠的除氧效果。
除氧器在不少领域都有广泛的应用,如饮用水处理、工业生产、制药等。
通过去除水中的溶解氧,除氧器可以提高水的纯度和质量,减少氧对水质的影响,从而保护设备和工艺的正常运行。
除氧器的工作原理的选择和优化对于实现高效的除氧效果至关重要,因此在实际应用中需要根据具体情况进行合理的选择和设计。
以上是对除氧器工作原理的详细描述,包括物理吸附法、化学反应法、膜分离法和真空除氧法等不同的工作原理。
除氧器的工作原理

除氧器的工作原理除氧器是一种用于去除液态或者气态中的氧气的设备。
它广泛应用于许多工业领域,如发电厂、化工厂、石油炼制厂等。
除氧器的工作原理是通过物理或者化学方法将氧气从液体或者气体中去除,以防止氧气对设备和管道的腐蚀。
一、物理物理除氧器是通过物理方法去除氧气。
常见的物理除氧器包括膜式除氧器和热力除氧器。
1. 膜式膜式除氧器利用半透膜的特性,将氧气从液体或者气体中分离出来。
它的工作原理如下:首先,将含氧液体或者气体引入膜式除氧器的进气口。
在膜式除氧器内部,有一层特殊的半透膜,该膜具有选择性通透性,只允许氧气通过,而阻挠其他气体或者液体通过。
当液体或者气体通过膜式除氧器时,氧气会因为其份子大小和溶解度的差异而透过膜,而其他气体或者液体则被阻挠。
这样,就实现了氧气的去除。
2. 热力热力除氧器是通过加热的方式去除氧气。
它的工作原理如下:首先,将含氧液体或者气体引入热力除氧器的进气口。
在热力除氧器内部,有一个加热器,可以将液体或者气体加热到一定温度。
当液体或者气体被加热到一定温度时,氧气会因为其溶解度的变化而逸出。
由于氧气的溶解度随温度的升高而降低,因此加热液体或者气体可以使氧气从中逸出。
二、化学化学除氧器是通过化学反应去除氧气。
常见的化学除氧器包括还原剂除氧器和吸收剂除氧器。
1. 还原剂还原剂除氧器利用还原剂与氧气发生化学反应,将氧气转化为其他物质,从而去除氧气。
它的工作原理如下:首先,将含氧液体或者气体引入还原剂除氧器的进气口。
在还原剂除氧器内部,添加一种还原剂,如亚硫酸钠或者亚硫酸氢钠。
当氧气与还原剂接触时,发生氧化还原反应,氧气被还原剂转化为其他物质,如二氧化硫。
这样,氧气就被去除了。
2. 吸收剂吸收剂除氧器利用吸收剂与氧气发生物理或者化学吸附,将氧气吸附在吸收剂上,从而去除氧气。
它的工作原理如下:首先,将含氧液体或者气体引入吸收剂除氧器的进气口。
在吸收剂除氧器内部,添加一种吸收剂,如活性炭或者份子筛。
除氧器的工作原理

除氧器的工作原理除氧器是一种常见的设备,用于去除液体中的氧气。
它在许多工业领域和实验室中被广泛使用,包括化工、生物技术、食品加工等。
除氧器的工作原理是通过物理或者化学方法将氧气从液体中去除,以提高液体的纯度和稳定性。
一、物理方法1. 膜分离技术膜分离技术是一种常见的物理方法,用于去除液体中的氧气。
膜分离器通常采用半透膜,该膜具有特殊的孔隙结构,使得氧气可以通过膜而其他物质无法通过。
当液体通过膜分离器时,氧气会被分离出来,从而实现除氧的目的。
2. 溶解氧气法溶解氧气法是另一种物理方法,用于去除液体中的氧气。
该方法利用气体溶解度的差异,通过调节温度、压力和pH值等参数,使氧气从液体中溶解到气相中。
这种方法通常用于大规模工业生产中,可以实现高效的除氧效果。
二、化学方法1. 化学吸收法化学吸收法是一种常见的化学方法,用于去除液体中的氧气。
该方法通常使用化学吸收剂,如硫酸亚铁、硫酸亚铜等,与氧气发生化学反应,将氧气转化为其他物质。
这些化学吸收剂具有较高的亲和力,可以有效地吸收氧气,从而达到除氧的效果。
2. 化学还原法化学还原法是另一种常见的化学方法,用于去除液体中的氧气。
该方法通常使用还原剂,如亚硫酸钠、亚硫酸氢钠等,与氧气发生化学反应,将氧气还原为水或者其他无害物质。
这些还原剂具有较强的还原能力,可以有效地去除液体中的氧气。
三、应用领域除氧器广泛应用于各个领域,以满足不同行业的需求。
以下是一些常见的应用领域:1. 化工工业:在化工生产过程中,除氧器可以去除液体中的氧气,以防止氧气对反应物质的影响,提高产品的纯度和质量。
2. 生物技术:在生物技术实验室中,除氧器可以去除培养基中的氧气,为细胞培养提供无氧环境,以促进细胞的生长和繁殖。
3. 食品加工:在食品加工过程中,除氧器可以去除液体中的氧气,以防止氧气对食品的氧化和变质,延长食品的保质期。
4. 医药行业:在药物生产和储存过程中,除氧器可以去除液体中的氧气,以保护药物的稳定性和有效性。
除氧器工作原理

除氧器工作原理
除氧器是一种常用于水系统中的设备,其工作原理是利用化学反应去除水中的溶解氧。
除氧器内部通常填充有一种特殊的除氧剂,例如活性炭或硫化钠等。
当水通过除氧器时,溶解在水中的氧气会与除氧剂发生化学反应。
这些化学反应会将氧气转化为不溶于水的气体,如氮气或二氧化碳,从而将水中的溶解氧含量降低。
除氧剂在除氧器中的填充物形成了一个大表面积,有效地增加了氧气与除氧剂之间的接触面积。
这样一来,氧气在通过除氧器时与除氧剂之间的反应速率就会增加,从而加快了除氧的过程。
此外,除氧器还通常配备有一个空气抽吸装置。
这个装置可以将除氧过程中生成的气体从除氧器中抽出,并排出到环境中。
这样一来,除氧器内部的气体氧浓度就会保持在较低水平,有助于更好地去除水中的溶解氧。
除氧器在许多领域中都有广泛的应用,特别是在锅炉、冷却水循环系统和饮用水处理中。
通过使用除氧器,可以有效地降低水中的溶解氧含量,防止金属腐蚀、泡沫和沉淀等问题的发生,并提高水系统的性能和寿命。
除氧器的工作原理

除氧器的工作原理除氧器是一种常见的设备,用于去除液体或气体中的氧气。
它在许多行业中都有广泛的应用,包括化工、制药、食品加工等领域。
除氧器的工作原理是通过物理或化学方法将氧气从液体或气体中分离出来,以达到去除氧气的目的。
一、物理方法1. 膜分离法膜分离法是一种常用的物理去除氧气的方法。
它利用特殊的膜材料,通过渗透和扩散作用,将氧气从液体或气体中分离出来。
膜分离法具有操作简单、效率高、节能环保等优点,广泛应用于水处理、空气分离等领域。
2. 吸附法吸附法是另一种常见的物理去除氧气的方法。
它利用吸附剂吸附氧气分子,将氧气从液体或气体中去除。
常用的吸附剂有活性炭、分子筛等。
吸附法适用于气体和液体的除氧处理,具有去除效果好、操作简单等特点。
二、化学方法1. 化学反应法化学反应法是一种常用的化学去除氧气的方法。
它利用化学反应将氧气与其他物质发生反应,从而将氧气去除。
常用的化学反应方法有还原反应、氧化反应等。
化学反应法适用于高浓度氧气的去除,具有去除效果好、反应速度快等优点。
2. 氧化法氧化法是另一种常见的化学去除氧气的方法。
它利用氧化剂将氧气氧化成其他物质,从而将氧气去除。
常用的氧化剂有次氯酸钠、过氧化氢等。
氧化法适用于液体中氧气的去除,具有去除效果好、操作简单等特点。
三、组合方法除氧器通常采用物理方法和化学方法的组合,以提高去除氧气的效果。
例如,先通过膜分离法或吸附法将部分氧气去除,然后再通过化学反应法或氧化法将剩余氧气去除。
组合方法可以根据具体的应用需求进行调整,以达到最佳的除氧效果。
除氧器的工作原理是基于物理和化学原理的,通过合理选择和组合不同的方法,可以实现高效、可靠的氧气去除。
在实际应用中,除氧器的设计和操作要考虑到工艺条件、氧气浓度、设备材料等因素,以确保除氧效果和设备的稳定运行。
除氧器在许多行业中都发挥着重要的作用,如化工行业中的反应器、制药行业中的水处理设备等。
通过了解除氧器的工作原理,可以更好地理解其在工业生产中的应用,并为相关行业的工程设计和设备选型提供参考依据。
除氧器的工作原理

除氧器的工作原理除氧器是一种用于去除液体中溶解氧的设备,其工作原理基于氧气在液体中的溶解度与温度、压力之间的关系。
除氧器广泛应用于水处理、化工、食品加工等领域,以提高液体的纯度和质量。
一、工作原理概述除氧器通过物理或化学方法将溶解在液体中的氧气去除,以达到降低氧气含量的目的。
常见的除氧器工作原理包括热力除氧、化学除氧和膜分离除氧等。
二、热力除氧原理热力除氧是利用温度的影响来降低氧气在液体中的溶解度。
一般情况下,溶解氧在液体中的溶解度随温度的升高而降低。
热力除氧器通过加热液体,使其温度升高,从而降低氧气的溶解度,使氧气从液体中释放出来。
热力除氧器通常由加热器、除气塔和冷却器组成。
液体首先通过加热器升温,然后进入除气塔,在塔内与空气接触,氧气从液体中脱除,最后通过冷却器冷却后返回系统。
三、化学除氧原理化学除氧利用某些物质与氧气发生化学反应,将氧气转化为其他物质,从而达到去除氧气的目的。
常用的化学除氧剂包括亚硫酸钠、亚硫酸氢钠等。
这些化学除氧剂在液体中与氧气发生反应,生成不溶于液体的物质,从而实现除氧的效果。
化学除氧器通常由反应器和分离器组成。
液体首先进入反应器,与化学除氧剂反应,然后进入分离器,将生成的不溶物分离出来,最后得到除氧后的液体。
四、膜分离除氧原理膜分离除氧是利用特殊的膜材料对氧气进行选择性分离的原理。
膜分离器通常由一系列膜模块组成,每个膜模块内部有许多微孔,这些微孔可以允许小分子(如氧气)通过,而阻止大分子和溶质通过。
当液体通过膜分离器时,氧气会通过膜孔进入另一侧,而其他物质则被阻止。
通过这种方式,可以实现对氧气的有效分离和去除。
五、除氧器的应用除氧器广泛应用于水处理领域,用于去除水中的溶解氧,以防止腐蚀和氧化反应的发生。
此外,除氧器还可用于化工、食品加工等行业,以提高产品的质量和纯度。
除氧器的选择应根据具体的应用需求、工艺条件和处理规模等因素进行综合考虑。
总结:除氧器是一种用于去除液体中溶解氧的设备,其工作原理可以通过热力除氧、化学除氧和膜分离除氧等方式实现。
除氧器的工作原理

除氧器的工作原理引言概述:除氧器是一种常见的设备,用于去除液体中的氧气。
它在许多工业领域中发挥着重要的作用,例如发电厂、化工厂、锅炉等。
本文将详细介绍除氧器的工作原理,包括氧气的生成、除氧器的结构、工作过程以及应用。
正文内容:1. 氧气的生成1.1 热除氧法热除氧法是一种常见的氧气生成方式。
当液体通过除氧器时,通过加热使液体中的氧气蒸发,然后通过排气系统将氧气排出。
1.2 化学除氧法化学除氧法是另一种常见的氧气生成方式。
通过在液体中添加化学试剂,例如亚硫酸钠,与氧气发生反应生成无害的物质,从而去除氧气。
2. 除氧器的结构2.1 进气口除氧器的进气口是液体进入除氧器的通道。
它通常位于除氧器的顶部,并与液体的供应管道相连接。
2.2 除氧室除氧室是除氧器的主要部分,液体在这里与氧气进行接触和反应。
除氧室通常由耐腐蚀材料制成,以防止氧气对设备的腐蚀。
2.3 出气口出气口是将去除氧气的液体排出除氧器的通道。
它通常位于除氧器的底部,并与排气系统相连接。
3. 除氧器的工作过程3.1 液体进入除氧器液体通过进气口进入除氧器,进入除氧室。
3.2 氧气的去除在除氧室中,液体与氧气进行接触和反应。
通过热除氧或化学除氧的方式,将液体中的氧气去除。
3.3 除氧液体的排出去除氧气后的液体通过出气口排出除氧器,进入下一个工艺环节。
4. 除氧器的应用4.1 发电厂在发电厂中,除氧器用于去除锅炉给水中的氧气,以防止锅炉腐蚀和气泡形成。
4.2 化工厂在化工厂中,除氧器用于去除反应过程中产生的氧气,以保证反应的正常进行。
4.3 锅炉在锅炉中,除氧器用于去除给水中的氧气,以防止锅炉管道的腐蚀和气泡形成。
总结:除氧器是一种重要的设备,用于去除液体中的氧气。
它通过热除氧或化学除氧的方式,将液体中的氧气去除。
除氧器的结构包括进气口、除氧室和出气口。
除氧器广泛应用于发电厂、化工厂和锅炉等领域,以保证设备的正常运行和延长使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除氧器除氧的原理(热力除氧)两个必要条件:1、亨利定律:当液体表面的某种气体与溶解于液体中该气体处于进/正比:b=KPb/Po ( mg/L ) 当液面上不凝结气体的分压力一直维持零值,小于水中该溶解气体的平衡压力Pb时,该气体就会在不平衡压力差△P的作用下,自水中离析出来。
即要及时将液面上的气体排出,使液面上不凝结气体的分压力近似为零。
2、道尔顿定律:混合气体的全压力等于各组成气体的分压力之和,除氧塔空间的总压力P等于水中所溶解各种气体在水面上不凝结气体的分压力Pi与水面上蒸汽分压力Ps之和,即:P=∑Pi ﹢Ps 在除氧器中,将水加热至工作压力下的饱和温度,水逐渐蒸发,水表面的蒸汽压力逐渐增大,近似等于总压力,其它气体的分压力近于或等于零,就可能让水中的各种气体完全析出。
热力除喷雾式氧器原理:热力除氧的原理是根据气体溶解定律(道尔顿和亨利定律)来除掉水中的溶解氧及CO2等其它气体。
需要除氧的含氧水经过除氧头中的喷嘴雾化成细滴,雾状的水滴在经过填料层落至除氧水贮水箱内。
蒸气由下而上流动以加热水滴,被除去的氧气和部分蒸气由顶部排气管排出。
与淋水盘式除氧器相比,喷雾式除氧器具有体积小、重量轻、结构简单、维护方便、除氧效果好和对进水温度要求低等优点,因此应用较为广泛。
按照工作压力可将热力除氧器分为低压热力除氧器(工作蒸汽压力为0.02Mpa,水温104℃)和高压热力除氧器(工作蒸汽压力大于0.32Mpa,水温大于145℃)。
内置式除氧器及安全节能分析2007-6-28 16:42:00 朱志忠供稿收藏1概要目前国内电站大多使用传统式除氧器对给水进行除氧,各种教材、资料基本上都是介绍传统式除氧器的原理及其使用和维护。
随着传统式除氧器一些弊端的出现,研究人员开发了一种新型的内置式除氧器,并在电站中实际应用。
尽管还存在一些问题,但这种除氧器结构新颖、加热速度快、除氧效果好,只要善于使用和维护,仍不失为一种优良的除氧器。
2内置式除氧器原理2.1传统除氧器存在的问题所谓传统式除氧器.就是我们常用的高压喷雾填料(或水膜)式除氧器,一般有立式单封头除氧器、立式双封头除氧器和卧式双封头除氧器(见图1)。
这几种除氧器需在给水箱上开设直径一般为•1600~2400mm的孔,为给水箱直径的4 0%~80%,超过GBl50——1998《钢制压力容器》中规定,削弱了给水箱强度和刚度,在除氧头和给水箱连接处产生很高的局部应力和变形,使得给水箱内部产生裂纹,尤其在焊缝区产生大量裂纹,威胁除氧器的安全运行。
虽然这些裂纹的产生与很多因素有关,但大直径开孔是造成除氧器产生裂纹的重要原因。
2.2内置式除氧器结构特点内置式除氧器是一种新型的除氧器,它舍弃了传统式除氧器的除氧头,只保留了除氧器的水箱部分。
将原传统式除氧器的除氧塔内的除氧功能转移到除氧器的水箱中,在水箱内将除氧、蓄水功能溶于体。
其优点除取消了传统式立式除氧器的大直径开孔,减小了除氧器的局部应力,提高了除氧器的安全运行系数以外,还采用了新型喷嘴,提高了除氧效果。
2.3内置式除氧器的原理内置式除氧器的除氧原理仍然采用热力除氧原理。
根据亨利定律和道尔顿定律,将被除氧的水加热到其压力对应下的饱和温度,将水中分离出来的氧气、其他气体以及部分蒸气一起从排气口排除。
3内置式除氧器结构特点3.1采用射汽型喷嘴传统式除氧器是气、水由单独喷嘴喷出,通过逆向流动加热,填料延时加热等方法,对被除氧水进行充分加热,从而达到除氧的目的。
而内置式除氧器则采用了新型的复合射气型喷嘴(见图2),从示意图中可以看出:射气型喷嘴由壳体、射汽喷管和喷头组成,水和气从同一个喷嘴中的不同位置进入,在壳体圆周壁上开设了若干切向进水槽,进水从壳体外侧通过切向进水槽进入壳体内侧,并形成数股旋转水流。
射气喷管将壳体外侧进入蒸气的压力能转变成速度能,在射气喷管出口处的蒸气达到较高的流速,形成一股高速射气流。
这股高速射气流一方面在壳体内带动旋转水流向前流动,并在喷嘴出口处撞击旋转水流,增加了水流雾化动力;另一方面这股高速射气流在壳体内就与旋转水流接触,提前了气水热交换时间。
在离开喷嘴后,这股蒸气自雾化锥体中心向四周扩散,使雾化水滴获得均匀加热。
由此可见,在喷嘴中气水进行了初步换热,而在喷出喷嘴后,气、水均呈雾状进一步强化了换热效果。
多组喷嘴沿水箱轴向布置,保证了被除氧水都能够得到先分的加热。
因此,这种射气型喷嘴,与传统除氧器的加热方式有着明显的区别。
3.2设置吹扫管吹扫管布置在水面上。
在吹扫管中布置了许多吹扫口,它利用加热蒸气吹散聚集在水而上的氧气层,增加水面上、下的氧气浓度差,有利于氧气的扩散。
同时吹扫蒸气吹破水面,减少了水的表面张力,以便于水中的氧气向水面扩散。
同时吹扫后蒸气向上流动,加热淋水、填料层中的水膜和喷嘴喷出的雾化永,充分利用了余热。
3.3泡沫发生器(再沸腾管)在除氧器底部安装了一根沸腾母管和若干沸腾支管,在沸腾母管和沸腾支管上又安装了许多泡沫器。
在泡沫器四壁有许多交错的喷射小孔,加热蒸气自喷射小孔喷出,与周围的水混合,形成许多泡沫,强化气水之间传热和传质(见图3)。
从图中可以看出,泡沫发生器的原理与传统式除氧器的再沸腾原理相似,作用相同,但由于内部结构不同,新型除氧器的泡沫量大、加热速度快,效果较好。
4除氧器安全问题分析与对策4.1轴封蒸气带水由于取消了除氧头,除氧器的一二次除氧过程均在除氧器的水箱中进行,特别是射气型喷嘴的喷射距离较远,而轴封用气又是直接从除氧器水箱上部引出.如若射气型喷嘴布置不当,距离轴封用汽口偏近,或者除氧器在工作中气、水配合失常,雾化不良,极易使轴封用气带水(见图4)。
轴封带水给汽轮机正常运行带来很大的安全隐患,可以采取在设计安装时,喷嘴组远离轴封供气管口,以保证轴封供气管口在喷嘴射程之外;也可以在除氧器内部轴封供气管与射气喷嘴之间加装有一定倾斜角度的挡水板(如图4所示),即使喷嘴喷出工质的速度较大,喷射距离较远,或者水不能得到充分的雾化,水滴直径偏大,也会被挡水板的挡住,不会窜入轴封供气管中,以避免轴封供气带水,但加挡水板必须利用机组停役之际实施。
还可以采取对轴封系统加装疏水袋的方法(见图5),对轴封用气进行不间断疏水,以确保轴封供气的止常。
这样对有些机组(轴封系统隔离门台理,并且轴封气源可切换),不需要停机即可进行操作,以确保机组的安全运行;缺点是疏水系统要长期运行,汽水损失较大。
4.2抽气管道倒气(水)由于射气型喷嘴的独特结构,当负荷偏低时,进入除氧器的抽气压力过低,而由于高加疏水以及连排作为除氧器加热气源仍然进入,就有可能造成除氧器压力高于其抽气压力,导致冷气、冷水沿着抽气管道倒流,若抽气逆之门不严或卡涩,气缸就极易进入冷气(水),严重威胁机组的安全运行。
因此,内置式除氧器对其滑压运行的范围有着严格的要求,一般在30%~100%范内滑压运行。
当机组滑压运行低为于30%额定负荷时,必须及时对除氧器进行气源的切换,特划是机组的滑停时,对除氧器压力和轴封压力、温度的监视,显得尤为重要。
有条件的话,也可以在机组滑停到定负荷时,对轴封气源进行切换,同时切换除氧器相对应的气源。
4.3含氧量增大喷嘴堵塞、雾化不良以及除氧器水位偏高是内置式除氧器含氧量增大的主要原因。
喷嘴堵塞主要出现在机组大修后或者凝结水系统检修后,由于检修工艺粗糙,致使金属杂质或机械杂质进入气水管道内,堵塞喷嘴。
因此在大修后启动前,应拆除喷嘴后,对系统进行冲洗。
凝结水系统检修时,要严格按照检修工艺,防止杂质进入系统内。
雾化不良主要是在变工况运行时,除氧器未能及时根据负荷的变化,进行喷嘴组的停、投,或者气源未能进行及时切换。
在机组滑参数启动时,随着机组负荷的增加,要逐组投入喷嘴,而在滑停的过程中,要根据负荷逐组停用喷嘴,以保证气、水压力和配比正常,确保喷嘴雾化良好。
而当除氧器水位偏高时,特别是淹没吹扫管时,使得吹扫效率下降或失效,水面上氧气浓度增大,水中氧气逸出困难;淹没射气型喷嘴时,气、水雾化加热失效,这些均导致水中含氧量升高。
因此,内置式除氧器在运行中对水位的要求相当严格.不仅仅是考虑到轴封带水问题,更重要的是考虑到吹扫管和喷嘴的正常运行。
故内置式除氧器的水位保护应确保完好并及时投入。
4.4给水泵气蚀由于内置式除氧器的泡沫发生器的结构发生了很大的变化,它所产生的泡沫也远远多于传统意义上的再沸腾,当给水泵运行时,如果泡沫发生器投入运行不宜开得过大,以防止有气泡顺着下水管进入到给水泵进口,致使给水泵发生气蚀。
少量的气泡进入可能不易及时查觉,但由于目前使用的给水泵普遍是高转速离心泵(200 MW机组在5 000 r /min左右,300 MW机组在6 000 r/mln左右),日积月累就会对给水泵的叶片造成冲蚀,降低给水泵的效率,缩短给水泵的使用寿命。
因此,当机组起动时,泡沫发生器最好在给水泵起动前使用,以达到尽快提高水温的目的。
当给水泵运行时使用泡沫发生器,要适当控制泡沫发生器的开度,防止泡沫产生过多,并监视给水泵的运行情况是否正常。
4.5啸叫和振动由于设置了吹扫管,除氧器内部会出现啸叫声,属于正常情况。
当啸叫声过大时,可能是吹扫管进气开度偏大,应及时予以调整。
当除氧器在短时间内出现大量的热交换时,可能导致除氧器发生振动,应尽量避免除氧器进水温度过低,水量过大,特别是当使用供水泵向除氧器进水时,要适当控制进水速度并加强对除氧器运行的监视。
5除氧器的节能分析1)对于大型火力电站在正常运行时,对自然循环锅炉要求的给水含氧量小于7ug/L,而对于直流锅炉给水的品质要求更高,这就要求除氧器的除氧效果更够满足锅炉给水的要求。
由于大型火力发电厂一般均采用热力除氧,从节能的角度而言,既要减少被除氧水的加热热源的量,又要使除氧效果达最佳,进一步减少排出的蒸气量,减少工质浪费,才能真正起到节能的作用。
2)对于传统除氧器而言,由于受到传热效果的制约,一旦被除氧水含氧量增大,则一方面加大除氧器进气量,同时开大除氧器的排气门,来保证给水品质,无形之中将大量的蒸气与被除去的气体一并排出,致使大量资源浪费。
而内置式除氧器由于传热效果好,除氧能力大幅提高。
试验表明:当凝结水(被除氧水)含氧量高达700ug/L时,在未增加加热气量和未开大排气门的前提下,给水含氧量仍能保持在5ug/L以下,使机组在低负荷和凝结水含氧量异常增大的情况下,仍能保证锅炉给水品质的要求,从而达到节能作用。
本方案己成功应用于淮北发电厂135 MW机组。
本文对运行、维护人员学习掌握内置式除氧器的原理,提高运行水平,提高机组安全性能具有实际的意义。
热力除氧器是根据氧气在水中的溶解度跟温度和压力两个因素有关的物理特性,在0.02-0.023Mpa饱和压力条件下用蒸汽将水加热到103-105℃和0.02-0.023Mpa的饱和状态,水中溶氧量<0.05mg/L,达到低压蒸汽锅炉的用水标准。