第十八章 勾股定理单元分析

合集下载

(寒假班内部讲义)第十八章-勾股定理

(寒假班内部讲义)第十八章-勾股定理

第十八章勾股定理第一部分知识网络一、重、难点重点:勾股定理及其逆定理的应用。

难点:勾股定理及其逆定理的应用。

二、知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

三、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.第二部分 学习笔记1.直角三角形的边、角之间分别存在什么关系?(1) 角与角之间的关系:在△ABC 中,∠C=90°,有∠A+∠B=90°;(2) 边与边之间的关系:在△ABC 中,∠C=90°,有222c a b =+2.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c ,那么222c a b =+ 即直角三角形的两直角边的平方和等于斜边的平方。

第十八章勾股定理知识点分析

第十八章勾股定理知识点分析

第十八章:勾股定理(勾股定理 勾股定理逆定理) 一、勾股定理▼为何称为“勾股定理”?古代数学家将较短直角边称为“勾”,较长直角边称为“股”,斜边称为“弦”。

因而将直角三角形的这个性质称为“勾股定理”。

有“勾三股四弦五”之说,即32+42=52★勾股定理只适用于直角三角形,主要应用于①已知直角三角形的两边求第三边;②在直角三角形中已知其中一边求另两边的关系; 例:在△ABC中,∠C=90°(1) 若a=3,b=4,则c=_________;(2) 若a=6,c=10,则b=_________; (3)若c=34,a:b=8:15,则a=________,b=________.★易错点:(1)求直角三角形的边长时考虑不全面如:已知直角三角形两条边长分别为6,8,则其周长为_______________ ★(2)乱用勾股定理,对于非直角三角形也运用勾股定理如:已知△ABC 各边长均为整数,且AC=4,BC=3,AB 是唯一的最长边,则AB 的长可能是_________[5或6] 知识点2:勾股定理的证明(1)如图所示是用4个全等的直角三角形拼成的正方形,其中较长直角边为b ,较短直角边为a ,斜边为c 。

试证明a 2+b 2=c 2知识引申:我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如上图1所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a 、b ,那么(a+b )2的值是_________(25) (2)如图2所示,每个小方格的面积均为1,正方形A ,B ,C 的边长分别为a,b,c,试证明a 2+b 2=c 2如上图2,若正方形A 的面积为S1,B 的面积为S2,C 的面积为S3,则S1,S2,S3的关系为_________________已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形,则S1,S2,S3的关系为______________若斜边AB=3,则图中阴影部分的面积为____________________。

第十八章勾股定理教材分析

第十八章勾股定理教材分析

4.如图,A、B两个小集镇在河流CD的同侧,分别到河 的距离为AC=10千米,BD=30千米,且CD=30千米,现 在要在河边建一自来水厂,向A、B两镇供水,请你在河 流CD上选择水厂的位置M,使铺设水管的总距离最短
B
A
C
D
L
3 数形结合思想
例1;(荆门市)我国古代数学家赵 爽的“勾股圆方图”是由四个全等的 直角三角形与中间的一个小正方形拼 成一个大正方形。如果大正方形的面 积是13,小正方形的面积是1,直角 三角形的两条直角边分别为a,b. 那么( a+b)2的值为_____ 25
教学中应该注意的问题
2.教学手段多样,数学历史知识丰富. 观察、猜测、实验、验证、 讨论与交流,动手实践等
教学中应该注意的问题
3.运用勾股定理计算. 知二求一
知一和另两边 关系 知一边和一 个特殊锐角
数形结合 分类讨论
知二求一
(熟练应用平方差)
知一和另两边 关系 (方程思想即降元)
题型举例:已知Rt△ABC中,∠C=90°, (1)若a=2,c=5,求b; (2)若c=10,a:b=1:3,求a; (3)若a=9,且c比b大1,求b、c的值
例题.如图5.32-2,已知AB=4,∠B=120°, BC=6,求AC的长。
A
B
C
例题.如图,已知AB=4,∠B=30°, ∠C=45°,求AC、BC的长。
A
B
C
A
例如:已知△ ABC中,C=45° , BAC=15° ,AB=2 3, 求△ ABC的面积.
E
B
C
教学中应该注意的问题 ③将含一个直角的四边形转化为两个 直角三角形.
在平静的湖面上,有一支红莲,高出水面1 米,阵风吹来,红莲被吹到一边,花朵齐及 水面,已知红莲移动的水平距离为2米,问 这里水深是________m。

八年级数学下册教学课件《勾股定理 单元解读》

八年级数学下册教学课件《勾股定理 单元解读》

教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.1 勾股定理. 首先结合引言了解到在我国古代就对直角三角形有了初步认识,然后通过对等腰直 角三角形的三边关系进行探究到一般的直角三角形的三边关系,最后介绍了我国古 代,“赵爽弦图”通过对图形的切割,拼接巧妙地证明了勾股定理.
17.1 勾股定理 17.2 勾股定理的逆定理
数学活动 小结
4课时 3课时
2课时
教学建议
1.重视提高学生分析问题、解决问题的能力 在勾股定理的教学中,一方面要重视学生观察、 猜想能力的培养,
另一方面也要重视从特殊结论到一般结论的严密逻辑思维能力的培养. 从勾股定理到它的逆定理,学生往往会从直觉出发想当然地认为勾股 定理的逆命题也一定成立.而从这种直觉上升到逻辑严密的思考和证 明,认识到两个结论有联系但却并不相同,认识到新的结论仍需要经 过严格的证明,这是思维能力提高的重要体现,这在教学中是应该引 起重视的另外,逆命题的教学也是一个教学难点,怎样写出一个命题 的逆命题,原命题和逆命题真假的多种可能性,怎样的命题可以称为 逆定理,这些都是学生容易出错的知识点.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.

八年级下册数学第18章勾股定理【DOC范文整理】

八年级下册数学第18章勾股定理【DOC范文整理】

八年级下册数学第18章勾股定理课题18.1勾股定理知识与技能目标1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

会运用勾股定理进行简单的计算及解决生活中的实际问题。

过程与方法目标1、通过勾股定理的探索证明过程,培养合情推理能力,体会数形结合的思想。

通过探究活动,体验数学思维的严谨性,发展形象思维。

情感与态度目标1.通过对勾股定理历史的了解,感受数学文化,激发学习热情..在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.教学重点勾股定理的内容及证明,以及勾股定理的简单应用教学难点勾股定理的证明以及在生活中的应用一、引入新XX年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.你见过这个图案吗?你听说过“勾股定理”吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”。

那么为什么数学家大会用它做会徽呢?它有什么特殊的含义吗?这也就是我们本章的主要学习内容。

这一节课我们先学习有关勾股定理的内容。

二、探究新课:探究1:毕达哥拉斯是古希腊著名的数学家。

相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

同学们,请你也来观察下图中的地面,看看能发现些什么?图18.1-1你能找出图18.1-1中正方形A、B、c面积之间的关系吗?图中正方形A、B、c所围等腰直角三角形三边之间有什么特殊关系?教师在此过程中要注意引导学生用不同的方法得出大正方形的面积,引导学生归纳出自己的发现。

发现:正方形A的面积+正方形B的面积=正方形c的面积;即SA+SB=Sc。

进而发现:等腰直角三角形两条直角边的平方和等于斜边的平方思考:等腰直角三角形是特殊的直角三角形,它具有上述性质,那么其他的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?想一想:怎样利用小方格计算正方形A、B、c面积?三个正方形面积有什么数量关系?据此,你有什么猜想?分析:图1中,SA=16SB=9Sc=所以有:SA+SB=Sc图2中,SA=4SB=9Sc=所以有:SA+SB=Sc由上可说明:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么猜想:直角三角形两条直角边的平方和,等于斜边的平方。

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4SS正方形EFGHS正方形ABCD,412ab(ba)2c2,化简可证.DCHEFGbaAcB方法二:baaccbbccaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为S412abc22abc2大正方形面积为S(ab)2a22abb2所以a2b2c2方法三:S1梯形2(ab)(ab),S梯形2SADESABE21122ab2c,化简得证用心爱心专心AaDbccBbEaC3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C90,则ca2b2,bc2a2,ac2b2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2b2c2,时,以a,b,c为三边的三角形是钝角三角形;若a2b2c2,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:n21,2n,n21(n2,n为正整数);2n1,2n22n,2n22n1(n为正整数)mn,2mn,mn2222(mn,m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体用心爱心专心推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:CCC30°ABADBBDACBDA题型一:直接考查勾股定理例1.在ABC中,C90.⑴已知AC6,BC8.求AB的长⑵已知AB17,AC15,求BC的长分析:直接应用勾股定理a2b2c2题型二:应用勾股定理建立方程例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC中,C90,12,CD1.5,BD2.5,求AC的长CD12EAB分析:此题将勾股定理与全等三角形的知识结合起来用心爱心专心例4.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积CAB题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了mAEBDC分析:根据题意建立数学模型,题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例 6.已知三角形的三边长为a,b,c,判定ABC是否为Rt①a1.5,b2,c2.5②a54,b1,c23例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC用心爱心专心扩展阅读:新人教版八年级数学下册勾股定理知识点和典型例习题新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c22.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:DHEFbAcGaC1方法一:4SS正方形EFGHS正方形ABCD,4ab(ba)2c2,化简可证.2方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角1三角形的面积与小正方形面积的和为S4abc22abc2大正方形面积为2BbacabS(ab)a2abb所以abcbc222222c111方法三:S梯形(ab)(ab),S梯形2SADESABE2abc2,化简得证2223.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

八年级第18章知识点总结

八年级第18章知识点总结

八年级第18章知识点总结八年级第18章知识点内容涉及到勾股定理以及三角形的性质,通过本章学习,我们能够加深对于勾股定理的理解,熟悉各种三角形的性质,从而能够更好地去解决与三角形相关的问题。

一、勾股定理勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。

我们可以用字母表达式来表示这个定理:c² = a² + b²其中,c表示直角边中的斜边,a和b则分别表示其他两条边。

勾股定理有许多应用。

例如,我们可以用勾股定理计算直角三角形的斜边的长度;或者在一个非直角三角形中,如果我们知道角度和其中两条边的长度,那么我们就可以用勾股定理来计算出第三边的长度。

二、三角形的性质1.等边三角形等边三角形是指三条边的长度都相等的三角形。

在等边三角形中,三个角度都相等,并都等于60度。

2.等腰三角形等腰三角形是指两条边的长度相等的三角形。

在等腰三角形中,两个角度相等。

3.直角三角形直角三角形是指其中一个角度是90度的三角形。

在直角三角形中,直角边上的角度是90度,其他两个角度则相加等于90度。

4.锐角三角形锐角三角形是指其中三个角度都小于90度的三角形。

5.钝角三角形钝角三角形是指其中一个角度大于90度的三角形。

以上五种三角形都各自有不同的性质和应用,我们需要针对不同的问题和场合,进行选择和使用。

三、总结本章内容主要涉及到勾股定理以及各种三角形的性质。

我们通过学习这些知识,能够更好地去解决各种三角形相关的问题。

在学习过程中,我们需要不断地练习,熟练掌握各种公式和定理,从而能够更好地应用到实际问题中去。

沪科版八年级下册数学第18章勾股定理单元复习说课稿

沪科版八年级下册数学第18章勾股定理单元复习说课稿
2.生生互动:
(1)分组合作:将学生分成小组,进行探究式学习,共同解决勾股定理相关问题。
(2)讨论与分享:鼓励学生在小组内讨论,分享解题思路和方法,互相学习,共同提高。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张著名的直角三角形图形,如埃及金字塔的截面图,引导学生思考直角三角形在建筑和生活中的应用。
1.提高课堂教学的趣味性和直观性,吸引学生的注意力。
2.帮助学生更好地理解和掌握勾股定理及其应用。
3.拓展教学时空,提高教学效率。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
师生互动:
(1)提问:在教学过程中,通过提问引导学生思考,检查学生的学习效果。
(2)反馈:针对学生的回答和表现,给予及时、积极的反馈,鼓励学生积极参与课堂讨论。
2.提出问题:提问学生:“同学们,你们知道直角三角形有什么特殊的性质吗?”、“在直角三角形中,三条边之间是否存在某种关系?”
3.数学故事:讲述古希腊数学家毕达哥拉斯发现勾股定理的传说,激发学生对勾股定理的好奇心和探索欲望。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.回顾直角三角形的定义和性质,为学习勾股定理做好铺垫。
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,提高学生的数学素养。
(2)通过勾股定理的学习,使学生认识到数学在现实生活中的应用价值,培养学生的科学态度和价值观。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
1.教学重点:
(1)勾股定理的定义、证明和应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章勾股定理
本章主要内容是勾股定理及其逆定理。

首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。

在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。

一、教材分析
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。

本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。

勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。

它不仅在数学中,而且在其他自然科学中也被广泛地应用。

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。

这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。

在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。

勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

在教科书中,图18.1-3(1)中的图形经过割补拼
接后得到图18.1-3(3)中的图形。

由此就证明了勾股定理。

通过推理证实命题1的正确性后,教科书顺势指出什么是定理。

勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。

由勾股定理可得。

由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。

也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长。

教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。

在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。

从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。

勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。

教科书安排了两个例题,让学生学会运用这种方法。

这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。

实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。

从这个意义上讲,勾股定理的逆定理的学习,对开阔学生眼界,进一步体会数学中的各种方法有很大的意义。

几何中有许多互逆的命题,互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念。

学生已见过一些互逆命题(定理),例如:“两直线平行,内错角相等”与“内错角相等,两直线平行”;“全等三角形的对应边相等”与“对应边相等的三角形是全等三角形”等,都是互逆命题。

勾股定理与勾股定理的逆定理也是互逆的命题,而且这两个命题的题设和结论都比较简单。

因此,教科书在前面已有感性认识的基础上,
在第二节中,结合勾股定理的逆定理的内容的展开,穿插介绍了逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立。

为巩固这些内容,相应配备了一些练习与习题
一、教学目标:
1、体验勾股定理的探索过程,会运用勾股定理解决简单问题;
2、会运用勾股定理的逆定理判定直角三角形;
3、通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。

二、教学重难点
(一)让学生体验勾股定理的探索和运用过程
勾股定理的发现从传说故事讲起,从故事中可以发现等腰直角三角形有这样的性质:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

再看一些其他直角三角形,发现也有上述性质。

因而猜想所有直角三角形都有这个性质,教科书让学生用勾股定理探究三个问题。

探究1是木板进门问题。

按照已知数据,木板横着、竖着都不能进门,只能斜着试试。

由此想到求长方形门框的对角线的长,而这个问题可以用勾股定理解决。

探究2是梯子滑动问题:梯子顶端滑动一段距离,梯子的底端是否也滑动相同的距离。

这个问题可以转化为已知斜边与一条直角边的长求另一条直角边的长的问题,这也可以用勾股定理解决。

探究3是在数轴上画出表示的点。

分以下四步引导学生:
(1)将在数轴上画出表示点的问题转化为画出长为的线段的问题。

(2)由长为的线段是直角边都为1的直角三角形的斜边,联想到长为的线段能否是直角边为正整数的直角三角形的斜边。

(二)结合具体例子介绍抽象概念
在本章中,结合勾股定理、勾股定理的逆定理介绍了定理、逆命题、逆定理的内容。

在勾股定理一节中,先让学生通过观察得出命题1,然后通过面积变形证明命题1。

由此说明,经过证明被确认正确的命题叫做定理。

在勾股定理的逆定理一节中,从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方),可以发现画出的三角形是直角三角形。

因而猜想如果三角形的三边长满足,那么这个三角形是直角三角形,即教科书中的命题2。

把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念。

接着探究证明命题2的思路。

用三角形全等证明命题2后,顺势引出逆定理的概念。

命题1,命题2属于原命题成立,逆命题也成立的情况。

为了防止学生由此误以为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立。

(三)注重介绍数学文化
我国古代的学者们对勾股定理的研究有许多重要成就,不仅在很久以前独立地发现了勾股定理,而且使用了许多巧妙的方法证明了它,尤其在勾股定理的应用方面,对其他国家的影响很大,这些都是我国人民对人类的重要贡献。

本章介绍了我国古代的有关研究成果。

在引言中介绍我国古算书《周髀算经》的记载“如果勾是三、股是四、那么弦是五”。

有很多方法可以证明勾股定理。

教科书为了弘扬我国古代数学成就,介绍了我国古人赵爽的证法。

首先介绍赵爽弦图,然后介绍赵爽利用弦
图证明命题1的基本思路。

“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。

正因为此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。

还在习题中安排我国古代数学著作《九章算术》中的问题,展现我国古人在勾股定理应用研究方面的成果。

本章也介绍了国外的有关研究成果。

如勾股定理的发现是从与毕达哥拉斯有关传说故事引入的。

又如勾股定理的逆定理从古埃及人画直角的方法引入。

再如介绍古希腊哲学家柏拉图关于勾股数的结论。

三、课时分配
本章教学时间约需8课时,具体安排如下:
18.1勾股定理 4 课时
18.2勾股定理的逆定理 3课时
数学活动
小结 1课时。

相关文档
最新文档