第七章 自相关(计量经济学)

合集下载

计量经济学:自相关

计量经济学:自相关
( 2) D.W.检验虽然只能检验一阶自相关,但在实际计量经济学 问题中,一阶自相关是出现最多的一类序列相关; ( 3 )经验表明,如果不存在一阶自相关,一般也不存在高阶序 列相关。
所以在实际应用中,对于序列相关问题一般只进行D.W.检验。
3、LM检验(或BG检验)
• 此方法不仅适用于一阶自相关检验,也适用于高阶自相关的检验。 • 检验步骤: 1、用OLS对回归模型进行,得到残差序列et;
1、经济变量固有的惯性 大多数经济时间序列数据都有一个明显的特点——惯性,表现为 滞后值对本期值具有影响。
例如:GDP、价格指数、生产、就业与失业等时间序列都呈周期性,如周期 中的复苏阶段,大多数经济序列均呈上升势,序列在每一时刻的值都高于前 一时刻的值,似乎有一种内在的动力驱使这一势头继续下去,直至某些情况 (如利率或课税的升高)出现才把它拖慢下来。
证明:由于 DW
e
t 2
T
t
e t 1
2 t T
2
e
t 1
T

e e
t 2 2 t t 2 T T
T
T
2 t 1
2 e t e t 1
t 2 2 t
T
e
t 1 t 2 2 t 1
T
若样本容量足够大,有 则 e e
t 2 2 t
et2
3、数据的“加工整理”
在实际经济问题中,有些数据是通过已知数据生成的。因此,新生
成的数据与原数据间就有了内在的联系,从而表现出序列相关性。
例如:季度数据来自月度数据的简单平均,这种平均的计算减弱了每 月数据的波动而引进了数据中的平滑性,这种平滑性本身就能使干扰项 中出现系统性的因素,从而出现序列相关。 还有就是两个时间点之间的“内插”技术往往导致随机项的序列相关性。

计量经济学金玉国第7章

计量经济学金玉国第7章
局部加权回归散点平滑法(LOWESS)
LOWESS是一种非参数回归方法,通过对数据点进行局部加权拟合,得到变量间的回归关系。该方法 适用于探索变量间的非线性关系,能够揭示数据的局部特征。
半参数方法简介及应用举例
半参数方法简介
半参数方法是介于参数方法和非参数方 法之间的一种统计方法。它结合了参数 方法和非参数方法的优点,既能够利用 已知的信息提高估计精度,又能够适应 数据的复杂结构。半参数方法主要包括 部分线性模型、单指标模型等。
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的统计 模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+⋯+βkXk。
估计的回归方程
利用样本数据对回归方程中的参数进行估计,得到的 方程用于预测和解释。
最小二乘法原理及性质
01
最小二乘法原理
计量经济学金玉国第7章
• 第七章概述 • 线性回归模型 • 广义线性模型 • 时间序列分析 • 面板数据分析 • 非参数和半参数方法 • 计量经济学软件应用
01
第七章概述
章节内容与结构
章节内容
本章主要介绍了计量经济学中的时间序列分析,包括时间序列的基本概念、平稳性检验、自回归模型、移动平均 模型、自回归移动平均模型等。
结构安排
首先介绍时间序列的基本概念和性质,然后阐述平稳性检验的方法和应用,接着详细讲解自回归模型、移动平均 模型和自回归移动平均模型的原理、建模步骤、预测及应用,最后通过案例分析和实践练习帮助读者深入理解和 掌握本章内容。
学习目标与要求
学习目标
通过本章学习,读者应能够掌握时间序列分析的基本方法和 技术,能够运用相关模型进行实际问题的分析和预测。

计量经济学讲义—— 线性回归模型的自相关问题

计量经济学讲义—— 线性回归模型的自相关问题

10.5 自相关的诊断-Durbin-Watson d检验法
Durbin-Watson d统计量可以用来诊断回归模型的自相关
n
d =

t=2
( e t − e t −1 ) 2
n

样本容量为n-1。
t =1
e t2
(10.3)
Durbin-Watson d检验量是诊断自相关常用的检验 工具,必须掌握。
10.2 自相关产生的原因
1. 经济时间序列的惯性(inertia)或迟缓性(sluggishness)特征。 2. 模型适定误差。有些自相关并不是由于连续观察值之间相 关产生的,而是因为回归模型不是适定性的“好”模型。 “不好模型”有多种原因。 3. 蛛网现象(the cobweb phenomenon)。一个变量对另一个变 量的反映不是同步的,时滞一定的时间。商品供给对价格 的反映: St = B1 + B2*Pt-1 + ut (10.2)

t=2 n
e t e t −1 e t2
ˆ ,− 1 ≤ ρ ≤ 1
(10.5)

t =1
如果d接近0,则存在正相关;d接近4,则存在负相关;d 接近2,表示不存在相关。
10.5 自相关的诊断-Durbin-Watson d检验法
d 统计量诊断自相关需要一定的假设条件,不是任意可用的: 1. 回归模型包括一个截距项。因此,d统计量无法判断通过原 点的回归模型的自相关问题。 2. 变量X是非随机变量,即在重复抽样中变量X的值是固定不 变的。 3. 扰动项ui的生成机制是:
4. 数据处理。在做季节因素的调整时,经常要做移动平均。 移动平均的处理可以消除季节波动的影响,但带来新的问 题则是产生了自相关。

计量经济学 —理论方法EVIEWS应用--第七章 序列相关性

计量经济学 —理论方法EVIEWS应用--第七章  序列相关性
C o v ( , j ) E ( ) 0 i i j
在其他假设仍然成立的条件下,随机干扰项序列相关意味着
(7-2)
如果仅存在
E ( ) 0 , i 1 , 2 , . . . , n i i 1
(7-3)
则称为一阶序列相关或自相关(简写为AR(1)),这是常见的一种序列相关问题。
D .W .
不存在一阶自相关,构造如下统计量: t
t
( eˆ
t2
n
ˆt 1 ) 2 e
2 t

t 1
n
杜宾—沃森证明该统计量的分布与出现在给定样本中的X值有复杂的关系,
其准确的抽样或概率分布很难得到;
因为D.W.值要从
eˆ t 中算出,而 eˆ t
又依赖于给定的X的值。
2 χ 因此D-W检验不同于t、F或 检验,它没有唯一的临界值可以导出拒绝或
用OLS法估计序列相关的模型得到的随机误差项的方差不仅是 有偏的,而且这一偏误也将传递到用OLS方法得到的参数估计 量的方差中来,从而使得建立在OLS参数估计量方差基础上的 变量显著性检验失去意义。
以一元回归模型为例,
Y X i 0 1 i i
2
ˆ) Var ( 1 2 xt
序列相关性及其产生原因序列相关性的影响序列相关性的检验序列相关的补救第一节序列相关性及其产生原因序列相关性的含义对于多元线性回归模型71在其他假设仍然成立的条件下随机干扰项序列相关意味着如果仅存在则称为一阶序列相关或自相关简写为ar1这是常见的一种序列相关问题
—理论· 方法· EViews应用
郭存芝 杜延军 李春吉 编著
二、回归检验法
, eˆ, 以 e ˆ t 为解释变量,以各种可能的相关变量,诸如 t1

计量经济学第七章答案详解

计量经济学第七章答案详解

练习题7.1参考解答(1)先用第一个模型回归,结果如下:22216.4269 1.008106 t=(-6.619723) (67.0592)R 0.996455 R 0.996233 DW=1.366654 F=4496.936PCE PDI =-+==利用第二个模型进行回归,结果如下:122233.27360.9823820.037158 t=(-5.120436) (6.970817) (0.257997)R 0.996542 R 0.996048 DW=1.570195 F=2017.064t t t PCE PDI PCE -=-++==(2)从模型一得到MPC=1.008106;从模型二得到,短期MPC=0.982382,长期MPC= 0.982382+(0.037158)=1.01954 练习题7.2参考答案(1)在局部调整假定下,先估计如下形式的一阶自回归模型:*1*1*0*t t t t u Y X Y +++=-ββα 估计结果如下:122ˆ15.104030.6292730.271676 se=(4.72945) (0.097819) (0.114858)t= (-3.193613) (6.433031) (2.365315)R =0.987125 R =0.985695 F=690.0561 DW=1.518595t t t Y X Y -=-++根据局部调整模型的参数关系,有****11 ttu u αδαβδββδδ===-=将上述估计结果代入得到: *1110.2716760.728324δβ=-=-=*20.738064ααδ==-*0.864001ββδ==故局部调整模型估计结果为:*ˆ20.7380640.864001ttYX =-+ 经济意义解释:该地区销售额每增加1亿元,未来预期最佳新增固定资产投资为0.864001亿元。

运用德宾h 检验一阶自相关:(121(1 1.34022d h =-=-⨯=在显著性水平05.0=α上,查标准正态分布表得临界值21.96h α=,由于21.3402 1.96h h α=<=,则接收原假设0=ρ,说明自回归模型不存在一阶自相关。

异方差、自相关、多重共线性比较(计量经济学)

异方差、自相关、多重共线性比较(计量经济学)
Glejser检验
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。

第七章自相关(计量经济学)

第七章自相关(计量经济学)
• 即使对于非完全一阶正相关的情况,只要存 在一定程度的一阶正相关,差分模型就可以有 效地加以克服。
3、广义差分法
如果原模型存在:
i 1i1 2 i2 l il i
可以将原模型变换为:
(2.5.11)
Yi 1Yi1 lYil 0 (1 1 l ) 1 ( X i 1 X i1 l X il ) i
(2.5.8)

Y*=X*B+N*
该模型具有同方差性和随机误差项互相独立性。
E(** ) E(D1 D1 )
D 1E ( )D 1
D 1 2 WD 1 D 1 2DDD 1 2I
• 于是,可以用OLS法估计模型(2.5.8),得
(X* X* ) 1 X* Y*
(XD 1D 1X) 1 XD 1D 1Y (XΩ1X) 1 XΩ1Y
第七章自相关(计量经济 学)
2021年7月30日星期五
普通最小二乘法(OLS)要求计量模型 的随机误差项相互独立或序列不相关。
如果模型的随机误差项违背了互相独 立的基本假设的情况,称为自相关性。
一、自相关性
1、自相关的概念
对于模型
Yi 0 1 X 1i 2 X 2i k X ki i
e~i 2
大致相等,则(2.5.6)可以化简为:
i2
i2
i 1
n e~i e~i1
D.W . 2(1 i2
) 2(1 )
n e~i2
i 1
式中,
n e~i e~i1 n e~i2 n e~i e~i1
i2
i 1
i2
为一阶自相关模型
n e~i2
i2
t t1 t
1 1
的参数估计,
1

计量经济学:自相关

计量经济学:自相关

Yt = 1 + 2 X 2t + 3 X 3t + ut
而建立模型时,模型设定为: Yt = 1 + 2 X 2t + ut 则 X 3t 对 Y 的影响便归入随机误差项 ut 中,由 t 于 ut 在不同观测点上是相关的,这就造成了 在不同观测点是相关的,呈现出系统模式,此 时 ut 是自相关的。
St 1 2 P t 1 ut
6-12
原因5-模型设定偏误
如果模型中省略了某些重要的解释变量或者模型 函数形式不正确,都会产生系统误差,这种误差 存在于随机误差项中,从而带来了自相关。由于 该现象是由于设定失误造成的自相关,因此,也 称其为虚假自相关。
6-13
例如,应该用两个解释变量,即:
6-14
模型形式设定偏误也会导致自相关现象。如将 形成本曲线设定为线性成本曲线,则必定会导致
自相关。由设定偏误产生的自相关是一种虚假自
相关,可通过改变模型设定予以消除。
自相关关系主要存在于时间序列数据中,但是在
横截面数据中,也可能会出现自相关,通常称其
为空间自相关(Spatial auto correlation)。
体回归模型(PRF)的随机项为 如果自相关形式为 其中 为自相关系数, v 为经典误差项,即 t
E(vt ) 0 , Var(vt ) , Cov(vt , vt+s ) 0 , s 0
2
u1 , u2 ,..., un,
ut = ut -1 + vt
- 1< < 1
6-9
原因2- 经济活动的滞后效应
滞后效应是指某一指标对另一指标的影响不仅 限于当期而是延续若干期。由此带来变量的自 相关。 例如,居民当期可支配收入的增加,不会使居 民的消费水平在当期就达到应有水平,而是要 经过若干期才能达到。因为人的消费观念的改 变客观上存在自适应期。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、自相关产生的原因
(1)惯性 大多数经济时间数据都有一个明显的特点,就是 它的惯性。
GDP、价格指数、生产、就业与失业等时间序列都 呈周期性,如周期中的复苏阶段,大多数经济序列均 呈上升势,序列在每一时刻的值都高于前一时刻的值, 似乎有一种内在的动力驱使这一势头继续下去,直至 某些情况(如利率或课税的升高)出现才把它拖慢下 来。
中,=1。 (2.5.10)可变换为:
Yi= 1Xi+I 由于i不存在自相关,该差分模型满足应用OLS法 的基本假设,用OLS法估计可得到原模型参数的无 偏的、有效的估计量。
• 即使对于非完全一阶正相关的情况,只要存在 一定程度的一阶正相关,差分模型就可以有效地 加以克服。
3、广义差分法
2、解析法
(1)回归检验法
以e~i 为被解释变量,以各种可能的相关量,
诸如以 e~i1 、e~i2 、 e~i2 等为解释变量,建立各
种方程:
e~i e~i 1 i
e~i 1e~i1 2 e~i2 i
i=2,…,n i=3,…,n

对各方程估计并进行显著性检验,如果存在某 一种函数形式,使得方程显著成立,则说明原模 型存在自相关性。
对于模型
Yi 0 1 X 1i 2 X 2i k X ki i
i=1,2,…,n
随机误差项互不相关的基本假设表现为:
Cov(i , j ) 0
i≠j,i,j=1,2,…,n
如果对于不同的样本点,随机误差项之间不再是
不相关的,而是存在某种相关性,则认为出现了自 相关性。
• OLS估计量不具有有效性 • 在大样本情况下,参数估计量仍然不具有渐近有 效性,这就是说参数估计量不具有一致性
2、变量的显著性检验失去意义
在关于变量的显著性检验中,当存在自相关时, 参数的OLS估计量的方差增大,标准差也增大, 因此实际的 t 统计量变小,从而接受原假设i=0 的可能性增大, 检验就失去意义。
前面提出的方法,就是FGLS
2、一阶差分法
一阶差分法是将原模型
Yi 0 1 X i i
变换为
Yi 1X i i i1
其中
Yi Yi Yi1
i=1,2,…,n i=2,…,n
(2.5.10)
• 如果原模型存在完全一阶正自相关,即在 i=i-1+i
自相关性 Serial Correlation
一、自相关性 二、自相关性的后果 三、自相关性的检验 四、具有自相关性模型的估计 五、案例
普通最小二乘法(OLS)要求计量模型 的随机误差项相互独立或序列不相关。
如果模型的随机误差项违背了互相独立的 基本假设的情况,称为自相关性。
一、自相关性
1、自相关的概念
(2)设定偏误:模型中遗漏了显著的变量
例如:如果对牛肉需求的正确模型应为
Yt=0+1X1t+2X2t+3X3t+t 其中:Y=牛肉需求量,X1=牛肉价格,X2=消费者收入, X3=猪肉价格。
如果模型设定为:
Yt= 0+1X1t+2X2t+vt 那么该式中的随机误差项实际上是:vt= 3X3t+t,
(2)D.W.检验虽然只能检验一阶自相关,但在 实际计量经济学问题中,一阶自相关是出现最多 的一类自相关; (3)经验表明,如果不存在一阶自相关,一般 也不存在高阶自相关。
所以在实际应用中,对于自相关问题一般只进 行D.W.检验。
四、具有自相关性模型的估计
• 如果模型被检验证明存在自相关性,则 需要发展新的方法估计模型。
采用其它检验也是如此。
3、模型的预测失效
区间预测与参数估计量的方差有关,在方差有 偏误的情况下,使得预测估计不准确,预测精度 降低。所以,当模型出现自相关性时,它的预测 功能失效。
三、自相关性的检验
1、基本思路
• 自相关性检验方法有多种,但基本思路是相同 的。
• 首先采用普通最小二乘法估计模型,以求得随 机误差项的“近似估计量”:


e~e~21e~21
e~1e~2 e~22

e~1e~n e~2 e~n


e~ne~1 e~ne~2
e~n2

• 可行的广义最小二乘法(FGLS, Feasible Generalized Least Squares)
文献中常见的术语
如果能够找到一种方法,求得到Ω的估计量, 使得GLS能够实现,都称为FGLS
e~i
2 1
,
e~i 2
大致相等,则(2.5.6)可以化简为:
i2
i2
i 1
n e~i e~i1
D.W . 2(1 i2
) 2(1 )
n e~i2
i 1
式中,
n e~i e~i1
n e~i2 n e~i e~i1
i2
i 1
i2
为一阶自相关模型
e~i yi ( yi ) 0ls
• 然后,通过分析这些“近似估计量”之间的相 关性,以达到判断随机误差项是否具有自相关性 的目的。
2、图示法
由于残差e~i 可以作为i 的估计,因此如果i 存在序列相关,必然会由残差项e~i 反映出来, 因此可利用e~i 的变化图形来判断随机项的序 列相关性。
E() 0
Cov() E() 2
w1 w12 w1n



w21
w2

w2
n




wn1
wn2

wn

• 设 =DD’
用D-1左乘(2.5.7)两边,得到一个新的模型:
D-1 Y=D-1 XB+D-1 N
(2.5.8)

Y*=X*B+N*
)

E(1n )


2 1


E
(

2 n
)


E
(

n
1
)

E(1n )


2 n

2


ቤተ መጻሕፍቲ ባይዱ

E
(
n
1
)

E
(1

n
)






2I
2

(2.5.1)
如果仅存在
E (i i1 ) 0
i=1,2,…,n-1
如果原模型存在:
i 1i1 2 i2 l il i
可以将原模型变换为:
(2.5.11)
Yi 1Yi1 lYil 0 (1 1 l ) 1 ( X i 1 X i1 l X il ) i
(1)解释变量 X非随机; (2)随机误差项i为一阶自回归形式:
i=i-1+i (3)回归模型中不应含有滞后应变量作为解释变 量,即不应出现下列形式:
Yi=0+1X1i+kXki+Yi-1+i
(4)回归含有截距项; (5)没有缺落数据。
• D.W.统计量
Durbin 和 Watson 假设: H 0 : 0 , 即i 不存在一阶自回归; H1 : 0 , 即i 存在一阶自回归 并构如下造统计量:
• 最常用的方法是广义最小二乘法(GLS: Generalized least squares)、一阶差分 法(First-Order Difference)和广义差分 法(Generalized Difference)。
1、广义最小二乘法
• 对于模型
Y=XB+N
(2.5.7)
如果存在自相关,同时存在异方差,即有
于是在猪肉价格影响牛肉消费量的情况下,这种模 型设定的偏误往往导致随机项中有一个重要的系统性 影响因素,使其呈自相关性。
(3)设定偏误:不正确的函数形式
例如:如果边际成本模型应为: Yt= 0+1Xt+2Xt2+t
其中:Y=边际成本,X=产出。 但建模时设立了如下模型: Yt= 0+1Xt+vt
在其他假设仍成立的条件下,序列相关即意味着
E(i j ) 0 或
1
E(NN T ) E
1




n

n


E
12





n
1

1n


2 n

E(12 )


E
(
n
1
n
(e~i e~i1 ) 2
D.W . i2 n
e~i2
i 1
(2.5.5)
• 该统计量的分布与出现在给定样本中的X值有 复杂的关系,因此其精确的分布很难得到。
• 但是,Durbin和Watson成功地导出了临界值的 下量n限和dL解和释上变限量d的U ,个且数这k有些关上,下而限与只解与释样变本量的X容 的取值无关。
(2.5.2)
称为一阶自相关,或自相关(autocorrelation)。这 是最常见的一种自相关问题。
自相关往往可写成如下形式:
t t1 t
1 1
(2.5.3)
其 中 : 被 称 为 自 协 方 差 系 数 ( coefficient of autocovariance ) 或 一 阶 自 相 关 系 数 ( first-order coefficient of autocorrelation)。
相关文档
最新文档