等腰三角形的轴对称性
课件:1.5等腰三角形的轴对称性2

的中点M, =_______,理 ②取AB的中点 ,连接 的中点 连接CM,则CM=_______,理 , =_______, 直角三角形斜边上的中线等于斜边的一半 由是:__________________. 由是:__________________.
∴DM=BM
M
A
N
又∵N为BD的中点 为 的中点 ∴MN⊥BD ⊥
C
B
拓展提高 如图在△ABC中 M,N分 如图在△ABC中,CF⊥AB,BE⊥AC, M,N分 别是BC EF的中点 试说明: BC与 的中点, 别是BC与EF的中点, 试说明:MN ⊥EF.
A
F
N E
B M
C
●本节课你还有哪些疑问? 本节课你还有哪些疑问?
5
2.如图,在四边形 2.如图,在四边形ABCD中, 如图 中 =∠ADC=900,M、N ∠ABC=∠ =∠ =90 的中点, 分别是AC 分别是 、BD的中点,说明: 的中点 说明: MN⊥BD. ⊥ . ∵∠ABC=∠ADC=90º ∵∠ ∠
D
M为AC的中点 为 的中点 ∴DM=1/2AC,BM=1/2AC
B
2 1
C
2 1
B
AAຫໍສະໝຸດ 2.如图 将纸条沿截线 折叠 在所 如图,将纸条沿截线 折叠,在所 如图 将纸条沿截线AB折叠 仍有∠ ∠ 度量边 度量边AC和 得△ABC中,仍有∠1=∠2.度量边 和BC 中 仍有 的长度,你有什么发现 你有什么发现? 的长度 你有什么发现
在一张薄纸上画线段AB,并在 同 并在AB同 在一张薄纸上画线段 并在 侧利用量角器画两个相等的锐角∠ 侧利用量角器画两个相等的锐角∠BAM 相交于点C,量一量 和∠ABN.设AM与BN相交于点 量一量 设 与 相交于点 AC与BC的长度 或折纸使 ∠BAM与 的长度,或折纸使 与 的长度 与 重合,你和同学所得的结论相同吗 ∠ABN重合 你和同学所得的结论相同吗 重合 你和同学所得的结论相同吗? 如果一个三角形有两个角相等,那么这两 如果一个三角形有两个角相等 那么这两 个角所对的边也相等(简称 等角对等边” 简称“ 个角所对的边也相等 简称“等角对等边”).
5.3.1等腰三角形的轴对称性(教案)

一、教学内容
本节课选自《初中数学课程标准》七年级下册第五章第三节第一部分“5.3.1等腰三角形的轴对称性”。教学内容主要包括以下两点:
1.等腰三角形的定义及其性质:通过观察和分析,让学生掌握等腰三角形的定义,了解等腰三角形两腰相等、底角相等的特点。
2.等腰三角形的轴对称性:引导学生探索等腰三角形沿着底边中点所在的直线进行对折时,两腰及两底角的变化规律,从而得出等表达:如何让学生从具体的实例中抽象出轴对称性的数学表达,并用准确的语言进行描述。
难点突破方法:
-通过实际操作,如让学生动手折叠等腰三角形,观察对折后的图形,亲身体验轴对称性的特点。
-引导学生运用数学语言描述轴对称性,如对称轴、对称点等概念,并给出具体的例子进行解释。
-设计一些有关等腰三角形轴对称性的实际问题,让学生运用所学知识解决问题,如求解等腰三角形的高、中线等。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的定义和轴对称性这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形轴对称性相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠等腰三角形,观察其对折后的形状,从而验证轴对称性。
-等腰三角形的轴对称性:讲解等腰三角形沿着底边中点所在的直线进行对折时,两腰及两底角的变化规律,明确轴对称性的概念。
举例解释:
在讲解等腰三角形的性质时,可以通过绘制不同类型的等腰三角形,如等腰直角三角形、等腰锐角三角形、等腰钝角三角形等,让学生观察并总结两腰相等、底角相等的规律。
2.教学难点
-理解并运用轴对称性:学生在理解等腰三角形的轴对称性过程中,可能会对“轴对称”这一概念感到困惑,不知道如何在实际问题中运用这一性质。
初中数学知识点精讲精析 等腰三角形的轴对称性

2.5 等腰三角形的轴对称性学习目标1.知道等腰三角形的轴对称性及其相关性质;2.经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象概括能力,感受分类、转化等数学思想方法;3.会用“因为……所以……理由是……”等方式来进行说理,进一步发展有条理的思考和表达,提高演绎推理的能力。
知识详解1. 等腰三角形的定理等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴,等腰三角形是以底边的垂直平分线为对称轴的轴对称图形。
等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)2.三边相等的三角形叫等边三角形或正三角形。
等边三角形的各角都相等,并且每一个角都等于60°。
定理:三个角都相等的三角形是等边三角形。
有一个角等于60°的等腰三角形是等边三角形。
3. 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4. 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
5. 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据。
6. 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
2.52等腰三角形的轴对称性(2)

B
G
D
C
例3、如图,已知0B、OC为△ABC的 角平分线,DE∥BC,(1)说明: DE=BD+CE (2)△ADE的周长为10, BC长为8,求△ABC的周长.
A
D
0
E
B
C
已知△ABC中AB=AC,D,E分别是 AB和 BC上的点,连接DE并延长,且与 AC的延长线交于点F,若DE=EF,试说 A 明BD=CF
A
D B C E
例3.如图,△ABC和△CDE都是等边三角 形,且点A,C,E在一条直线上. 试说明: CM=CN
B
D M N A
C
E
例4.如图,△ABC和△CDE都是等边三角 形,且点A,C,E在一条直线上. 试说明: △CMN 是等边三角形
B
D M N A
C
E
例1如图,在△ABC中,AB=AC,∠BAC=1200, AD⊥AB, AE⊥AC. ⑴图中,等于300的有__________,等于 600的角有 ; ⑵△ADE是等边三角形吗?为什么? A
问题:
⊿ABC中,∠B= ∠C,AB等 于AC吗?为什么?
A
B
D
C
等腰三角形的判定:
如果一个三角形有两个角相等, 则这两个角所对的边也相等。 (简写“等角对等边”)
A
∵∠B=∠C ∴ AB=AC (等角对等边)
B C
AC和BC有什么数量关系
C A
1
2
B
如图,AB=AC,D是AB上一点, DE⊥BC于E,DE的延长线交CA的延长 线于F,那么⊿ADF是等腰三角形吗? 说明理由。
A N M
B
C
3.如图,在△ABC中,∠C=900, ∠ABD=2∠EBC,AD∥BC, 求证:DE=2AB.
等腰三角形的轴对称性

归纳 如果一个三角形有两个角相等,那么这两 个角所对的边也相等(简称”等角对等 边”) A 如图,在△ABC中,若 ∠B=∠C,则AB=AC
B C
例1 如图在△ABC中,AB=AC,角平 分线BD、CE相交于O点.OB于 OC相等吗?请说明理由.
A
E B
O
D C
(1)等腰三角形是轴对称图形,这与其顶角的大 小无关,或者说,这与等腰三角形是锐角三角形 或者钝角三角形或者直角三角形无关,并且对称 轴一定是顶角平分线所在的直线,而不是任意角 的平分线所在的直线。
(2)“等边对等角”仅限于同一个三角形中。
(3)“三线合一”是等腰三角形的重要性质,它 是说明线段相等,角相等,垂直关系的重要依据 之一。
例题分析
例1 如图,在△ABC中,AB=AC,点D在BC上, 且AD=BD.找出图中相等的角并说明理由. 解: ∠C=∠B=∠1,∠3=∠BAC A 根据“等边对等角”, 1 2 ∵AB=AC,AD=BD, 3 ∴∠C=∠B,∠B=∠1. B C D 从而∠C=∠1. ∵∠3是△ADC的外角, ∴∠3=∠C+∠2. 而∠C=∠1, ∴∠3=∠1+∠2=∠BAC
C
3.等腰三角形一个底角为75°,它的另外两 75°,30° 个角为_______. 4.等腰三角形一个角为70°,它的另外两个 角为___________________. 70°,40°或55°,55°
5.等腰三角形一个角为110°,它的另外两 35°,35° 个角为________. ④0°<顶角<180° 结论:在等腰三角形中, ⑤0°<底角<90° ① 顶角+2×底角=180° ② 顶角=180°-2×底角 ③ 底角=(180°-顶角)÷2
例2. 已知:如图,房屋的顶角 ∠BAC=100°,过屋顶A的立柱AD⊥BC, 屋椽AB=AC, 求顶架上∠B、∠C、∠BAD、 ∠CAD的度数,并说明理由。
等腰三角形的轴对称性质

化学实验
生物学实验
在生物学实验中,等腰三角形可用于 模拟生物体的形态和结构,如细胞结 构和生物体的平衡。
在化学实验中,等腰三角形可用于表 示化学反应中的物质变化和能量转化。
04
等腰三角形与其他几何图形的关系
与直角三角形的关系
直角三角形可以是等腰的,即两个锐 角相等,两腰也相等。
等腰直角三角形是一种特殊的等腰三 角形,它的两个锐角都是45度,两腰 相等,并且斜边是两腰的平方和的平 方根。
THANK YOU
感谢聆听
角度判定
如果一个三角形有两个底角相 等,则它是等腰三角形。
综合判定
如果一个三角形同时满足边长 相等和角度相等,则它是等腰 三角形。
02
等腰三角形的轴对称性
轴对称的定义
轴对称
如果一个平面图形关于某一直线对称 ,那么这个图形叫做轴对称图形,这 条直线叫做对称轴。
轴对称的性质
轴对称图形是全等图形,对称轴两侧 的图形可以完全重合。
角度相等
等腰三角形的两个底角相等,顶角与底角也相等。
等腰三角形的性质
80%
轴对称
等腰三角形是轴对称图形,其对 称轴是穿过顶角的高线。
100%
角度恒定
等腰三角形的角度恒定,即两个 底角相等,顶角与底角也相等。
80%
面积恒定
等腰三角形的面积恒定,可以通 过底和高计算面积。
等腰三角形的判定
边长判定
如果一个三角形有两边长度相 等,则它是等腰三角形。
绘画和雕塑
等腰三角形在绘画和雕塑 中常被用来表现形式美感 和立体感,如人体结构和 自然形态。
服装设计
在服装设计中,等腰三角 形可以作为设计元素,用 于服装的款式和图案设计。
等腰三角形的轴对称性ppt课件

F NE
B
M
C
27.如图,在△ABC中,∠C=900,
∠ABD=2∠EBC,AD∥BC,
求证:DE=2AB.
A
D
F E
BC
那么∠A=1_2_0_ °,∠B=_3_0_ °,∠C =_3_0_ °.
(4)如果有一个角等于50°,那么另两个角等于多少
度?若顶角为50°,
若底角为50°,
则另外两角为65°、65° 则另外两角为50°、80°
3.(1)等腰三角形的两边长分别为3cm和6cm, 则它的周长为__15_c_m__.
定相等吗?为什么?
连接BD
∵AB=AD
B
∴∠ABD=∠ADB
又∠ABC=∠ADC
∴∠DBC=∠BDC
∴BC=DC
A D
C
13.如图,在△ABC中,BC=5cm,BP,CP分 别是∠ABC 和∠ACB的角平分线 ,PD∥AB, PE∥AC ,则△PDE的周长是_____cm
5
A
P
B
1 2
3
D
645 C E
例1.如图,在△ABC中,AB=AC,
点D在BC上,且AD=BD,求证: ∠ADB=∠BAC.
∠ADB=180°-∠B-∠BAD
A
∠ADB=180°-2∠B
AD=BD ∠B=∠BAD
∠BAC=180°-∠B-∠C
B
D
C
AB=AC
∠B=∠C ∠BAC=180°-2∠B
4.如图,△ABC中,AB=AC,AD=AE.
若测得AM的长为1.2 km,则M,C两点之间的距离为 ( D )
A.0.5 km
B.0.6 km
C.0.9 km
苏科版数学八年级上册2.5《等腰三角形的轴对称性》说课稿2

苏科版数学八年级上册2.5《等腰三角形的轴对称性》说课稿2一. 教材分析《等腰三角形的轴对称性》是苏科版数学八年级上册第二章第五节的内容。
本节课的主要内容是让学生掌握等腰三角形的轴对称性,并会运用轴对称性解决一些实际问题。
教材通过引入等腰三角形的定义和性质,引导学生探究等腰三角形的轴对称性,从而让学生更深入地理解等腰三角形的性质。
二. 学情分析学生在学习本节课之前,已经学习了三角形的性质,对三角形有了一定的了解。
但等腰三角形是三角形的一种特殊形式,它的性质和普通三角形有所不同,所以学生需要通过学习来掌握等腰三角形的性质。
另外,学生已经学习过轴对称的概念,但对轴对称性的理解和应用还不够深入,这也是本节课需要重点解决的问题。
三. 说教学目标1.知识与技能目标:学生能够理解等腰三角形的轴对称性,并能运用轴对称性解决一些实际问题。
2.过程与方法目标:通过学生自主探究、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 说教学重难点1.教学重点:等腰三角形的轴对称性。
2.教学难点:如何引导学生发现和证明等腰三角形的轴对称性。
五. 说教学方法与手段1.教学方法:采用学生自主探究、合作交流的教学方法,引导学生发现和证明等腰三角形的轴对称性。
2.教学手段:利用多媒体课件、几何画板等教学辅助工具,帮助学生直观地理解等腰三角形的轴对称性。
六. 说教学过程1.导入:通过复习三角形的性质,引出等腰三角形的定义和性质。
2.探究:让学生分组讨论,每组尝试找出等腰三角形的轴对称性,并说明理由。
3.展示:每组选出一名代表,向全班展示他们的探究成果。
4.讲解:教师对学生的探究结果进行点评,并给出正确的证明过程。
5.练习:让学生运用轴对称性解决一些实际问题,巩固所学知识。
6.小结:对本节课的内容进行总结,强调等腰三角形的轴对称性。
七. 说板书设计板书设计如下:等腰三角形的轴对称性1.定义:等腰三角形2.性质:轴对称性3.证明:利用几何画板,展示等腰三角形的轴对称性八. 说教学评价本节课的教学评价主要从学生的学习效果和课堂表现两个方面进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4等腰三角形的轴对称性
课程标准要求
1.知道等腰三角形的轴对称性及其相关性质。
2.知道一个三角形是等腰三角形的条件。
3.知道等边三角形的轴对称性及其性质以及一个三角形是等边三角形的条件。
4.经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象、概括能力、感受分类、转化等数学思想方法,不断积累数学活动的经验。
5.会用“因为......所以......理由是......”或“根据......因为......所以......”等方式来进行说明,进一步发展有条理地思考和表达,提高演绎推理的能力。
知能点 1 等腰三角形的性质(重点)
(1)等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴.
(2)等腰三角形的两个底角相等(简称“等边对等角”).
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
注意:
(1)“等边对等角”的应用主要有两个方面:一是与三角形的内角和为180°等知识相结合解题;二是在推理的过程中用到它,由线段的相等关系导出角之间的相等关系.
(2)“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”这条性质的前提条件是“等腰三角形”,普通三角形不具备此性质.
(3)由等腰三角形是轴对称图形可知,它的对称轴也可以说成是底边上的中线所在的直线、顶角的平分线或者底边上的高所在的直线。
知能点 2 等腰三角形的性质(重点)
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
注意:运用等腰三角形的判定时要注意:
(1)两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;
(2)结论中的两条边是这两个内角的“对边”,这种对应关系不能弄错。
知能点 3 直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半。
注意:根据“直角三角形斜边上的中线等于斜边的一半”这个性质可以得到两个等腰三角形,又可以解决几何中有关线段的问题。
知能点 4 等边三角形及其性质(难点)
(1)等边三角形的概念
三边相等的三角形叫做等边三角形或正三角形。
(2)等边三角形的性质
①等边三角形是轴对称图形,并且有三条对称轴;
②等边三角形的每个角都等于60°;
③等边三角形每条边上的中线、高和所对应的角平分线互相重合,它们所在的直线都是三角形的对称轴。
(3)等边三角形的判定方法
①三边都相等的三角形是等边三角形;
②三个内角都相等的三角形是等边三角形;
③有一个角是60°的等腰三角形是等边三角形;
技巧平台
在等腰三角形中,已知一个角(或边)的大小而没有说明这个角(或边)是顶角(或腰)还是底角(或底边)时,就应该自然而然地想到要对这个角(或边)进行讨论,分两种情况进行讨论:一是这个角(或边)是顶角(或腰),二是这个角(或边)是底角(或底边)。