2021届高三数学(理科)一轮复习通关检测卷全国卷(二)(含解析)

合集下载

百师联盟2021届高三一轮复习联考(二)全国卷 数学(理) Word版含答案

百师联盟2021届高三一轮复习联考(二)全国卷 数学(理) Word版含答案

百师联盟2021届高三一轮复习联考(二)全国卷I理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合U ={x||x|≤4且x ∈Z},集合B ={x|x ∈U 且62x-∈U},则UB =A.{-4,-3,-2,1,2,3}B.{-3,-2,1,2,3}C.{-3,-2,0,1,2,3}D.{-3,1,2,3} 2.已知复数z =1+i ,z 为z 的共轭复数,则|z ·(z +1)|=B.2C.103.函数f(x)=()2log x x 2f x 1x 2≥⎧⎪⎨+<⎪⎩,,,则f(0)=A.-1B.0C.1D.24.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑。

其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”。

注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为A.3B.12C.24D.485.已知α和β表示两个不重合的平面,a 和b 表示两条不重合的直线,则平面α//平面β的一个充分条件是A.a//b ,a//α且b//βB.a ⊂α,b ⊂α且a//β,b//βC.a ⊥b ,a//α且b ⊥βD.a//b ,a ⊥α且b ⊥β 6.已知等差数列{a n }的前项和为S n ,若93S S =6,则126SS = A.177 B.83 C.143 D.1037.已知实数x ,y 满足约束条件x y 10x 2y 202x y 20+-≥⎧⎪-+≥⎨⎪--≤⎩,则z =y 3x 1--的取值范围为A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[0,3]D.(-∞,0]∪[3,+∞) 8.如图,在△ABC 中,AB =4,AC =22,∠BAC =135°,D 为边BC 的中点,且AM MD =,则向量BM 的模为26 52 26或5226529.将函数f(x)=2(cosx +sinx)·cosx -1的图象向左平移24π个单位后得到函数g(x)的图象,且当x ∈[1124π,1912π]时,关于x 的方程g 2(x)-(a +2)g(x)+2a =0有三个不等实根,则实数a 的取值范围为A.[-1,0]B.(-2,-1]C.[-1,2]D.[-2,-1] 10.已知函数f(x)=lnx ,若函数g(x)=kx -12与函数y =f(|x|)的图象有且仅有三个交点,则k 的取值范围是 A.(0,12e-) B.(-12e-,12e-) C.(-12e-,0)∪(0,12e-) D.(-12e-,0)∪(0,12e )11.如图,某市一个圆形公园的中心为喷泉广场,A 为入口,B 为公园内紧贴围墙修建的一个凉亭,C 为公园内紧贴围墙修建的公厕,已知AB =300m ,BC =500m ,∠ABC =120°,计划在公园内D 处紧贴围墙再修建一座凉亭,若要使得四条直线小路AB ,BC ,CD 和DA 的总长度L 最大,则DC 的长度应为(凉亭和公厕的大小忽略不计)A.500mB.700m 3m D.140033m 12.直线y =2x +m 与函数f(x)=xe x -2lnx +3的图象相切于点A(x 0,y 0),则x 0+lnx 0= A.2 B.ln2 C.e 2 D.-ln2二、填空题:本题共4小题,每小题5分,共20分。

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。

2021年全国新高考Ⅰ、II卷数学试题(解析版)

2021年全国新高考Ⅰ、II卷数学试题(解析版)
6.若 ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】将式子进行齐次化处理,代入 即可得到结果.
【详解】将式子进行齐次化处理得:

故选:C.
【点睛】易错点睛:本题如果利用 ,求出 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
7.若过点 可以作曲线 的两条切线,则()
【答案】(1).5(2).
【解析】
【分析】(1)按对折列举即可;(2)根据规律可得 ,再根据错位相减法得结果.
【详解】(1)对折 次可得到如下规格: , , , , ,共 种;
(2)由题意可得 , , , , , ,
设 ,
则 ,
两式作差得

因此, .
故答案为: ; .
【点睛】方法点睛:数列求和 常用方法:
【详解】因为函数 的单调递增区间为 ,
对于函数 ,由 ,
解得 ,
取 ,可得函数 的一个单调递增区间为 ,
则 , ,A选项满足条件,B不满足条件;
取 ,可得函数 的一个单调递增区间为 ,
且 , ,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 形式,再求 的单调区间,只需把 看作一个整体代入 的相应单调区间内即可,注意要先把 化为正数.
【详解】圆 的圆心为 ,半径为 ,
直线 的方程为 ,即 ,
圆心 到直线 的距离为 ,
所以,点 到直线 的距离的最小值为 ,最大值为 ,A选项正确,B选项错误;
如下图所示:
当 最大或最小时, 与圆 相切,连接 、 ,可知 ,
, ,由勾股定理可得 ,CD选项正确.
故选:ACD.

2021届高考数学二轮复习常考题型大通关(全国卷理数)

2021届高考数学二轮复习常考题型大通关(全国卷理数)

2023届高考数学二轮复习常考题型大通关(全国卷理数) 解答题:解三角形1.在ABC △中,sin 3cos A B a b=. (1)求角B 的值;(2)如果2b =,求ABC △面积的最大值.2.已知ABC △的内角,,A B C 对应的边分别为,,,33cos sin a b c a c B b C =+.(1)求角C 的大小;(2)如图,设P 为ABC △内一点,1,2,PA PB ==且π,APB ACB ∠+∠=求AC BC +的最大值.3.如图,平面四边形ABCD 中,30CAD BAD ∠=∠=︒(1)若75,10ABC AB ∠=︒=,且//AC BD ,求CD 的长;(2)若10BC =,求AC AB +的取值范围.4.在ABC △中, ,,a b c 分别是角,,A B C 的对边, 且cos cos 2B b C a c=-+. (1)求角B 的大小;(2)若13b =4a c +=,求ABC △的面积.5.在 ABC △ 中, 角,,A B C 所对的边分别为,,,2a b c a =.(1)若sin 1sin sin A a b B C a c -=-+-求B ; (2) 若2c b =,当角B 最大时,求ABC △的面积.6.ABC △的内角,,A B C 的对边分别为,,a b c .已知sinsin 2A C a b A +=. (1)求B ; (2)若ABC △为锐角三角形,且1c =,求ABC △面积的取值范围.7.已知ABC △的三个内角,,A B C 的对边分别为,,,3a b c a c +=,2cos cos C B a c b-= (1)求b 的最小值;(2)若,2a b b <=,求πcos()6A +的值. 8.已知ABC △的内角,,A B C 的对边分别为,,a b c ,)cos cos a B b A ac +=,且sin2sin A A =.(1)求A 及a ;(2)若2b c -=,求BC 边上的高.答案以及解析1.答案:解:(1)∵sin A a ∴ 由正弦定理知:sin sin a b A B =∴ sin B B =,即有tan B =∵ 0πB <<∴ π3B =.(2)∵ 由(1)知,sin B ,a A =,2π3A C =- ∴112π2sin 2sin sin sin 222233ABC S ab C C C C C C C π⎛⎫⎛⎫==-⨯⨯=-⨯=++= ⎪ ⎪⎝⎭⎝⎭△π26C ⎛⎫++ ⎪⎝⎭.∴ ABC △∴ ABC △2.答案:(1)33cos sin a B b C =+,cos sin sin A C B B C =+,)cos sin sin B C C B B C +=+,cos sin cos )cos sin sin B C C B C B B C ++,cos sin sin ,tan B C B C C =∴=,又π(0,π),3C C ∈∴=. (2)由(1)与π,APB ACB ∠+∠=得2π3APB ∠=. 由余弦定理,得2222π2cos 14212cos73AB PA PB PA PB APB =+-⋅∠=+-⨯⨯⨯=, 又22222cos ()3AB AC BC AC BC ACB AC BC AC BC =+-⋅∠=+-⋅222()()324AC BC AC BC AC BC ++⎛⎫+-= ⎪⎝⎭, 27AC BC ∴+(当且仅当AC BC =时取等号).AC BC +∴的最大值为 3.答案:(1) 30,75CAD BAD ABC ︒︒=∠=∠=,可得45ACB ∠=,∴在ABC △中,由10sin 45sin60CB =,可得CB =在ABD △中, 30ADB BAD ∠∠==,10DB AB ==∴在BCD △中, 45510CD ==(2) 10AC AB BC +>=,22100cos602AB AC AB AC+-=⋅,可得2()1003AB AC AB AC +-=⋅, 而22AB AC AB AC +⎛⎫⋅≤ ⎪⎝⎭, 22()10032AB AC AB AC +-+⎛⎫≤ ⎪⎝⎭, 20AB AC +≤,故AB AC +的取值范围为(]10,20.4.答案:(1)∵cos cos 2B b C a c =-+,∴由正弦定理得cos sin cos 2sin sin B B C A C =-+, 即2sin cos sin cos cos sin 0A B C B C B ++=,∴2sin cos sin()0A B B C ++=.∵B C A π+=-,∴2sin cos sin 0A B A +=.∵sin 0A ≠,∴1cos 2B =-. ∵(0,π)B ∈,∴2π3B =.(2)将b =4a c +=,2π3B =代入2222cos b a c ac B =+-得11216212ac ⎛⎫=-⋅- ⎪⎝⎭, ∴3ac =,∴11sin 322ABC S ac B ==⨯△5.答案:(1)因为sin 1sin sin A a b B C a c -=-+-,所以得sin sin sin A b c a B C a c b c-==+-+ 得:2220a c b ac +--=,1cos 2B ∴=,B 为三角形的内角,π3B ∴=. (2)在ABC △中,2222cos ,2b a c ac B c b =+-=所以243cos 8b B b +=b =时將取等号 此时ππ,62B C ==所以S . 6.答案:(1)由题设及正弦定理得sin sinsin sin 2A C A B A +=. 因为sin 0A ≠,所以sinsin 2A C B +=.由180A B C ++=︒,可得sin cos 22A CB +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B ==,因此60B =︒.(2)由题设及(1)知ABC △的面积ABC S =△.由正弦定理得sin sin(120)1sin sin 2c A C a C C ︒-===+. 由于ABC △为锐角三角形,故090,090A C ︒<<︒︒<<︒.由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<,ABC S <△因此,ABC △面积的取值范围是⎝⎭. 7.答案:(1)由题意cos (2)cos b C a c B =-,由正弦定理可得sin cos (2sin sin )cos B C A C B =- 得 sin cos cos sin 2sin cos ,sin()2sin cos B C B C A B B C A B +=+= 因为 sin()sin(π)sin ,sin 0B C A A A +=-=≠ 所以1cos 2B =.因为0πB <<,所以 π3B = . 所以222229()3939324a c b a c ac a c ac ac +⎛⎫=+-=+-=-≥-= ⎪⎝⎭当且仅当 32a c ==时,等号成立,故b 的最小值为32.(2)因为,sin sin sin a b c a A A B C ===,c C =由3a c +=2πsin sin 33A A ⎤⎛⎫+-= ⎪⎥⎝⎭⎣⎦, 整理可得π3sin 64A ⎛⎫+= ⎪⎝⎭ 又π,3a b B <=,π3A ∴<,故πππ662A <+<,所以πcos 6A ⎛⎫+== ⎪⎝⎭8.答案:(1))cos cos a B b A ac +=,根据正弦定理得,sin cos sin cos sin ,A B B A C +sin sin ,C C ∴=又因为sin 0,C ≠,a ∴=sin2sin ,2sin cos sin ,A A A A A =∴= 因为sin 0,A ≠所以1cos 2A =, (0,),.3A A π∈π∴= (2)由(1)知,.3a A π== 由余弦定理得2222cos ,abc bc A =+- 2227,7(),b c bc b c bc ∴=+-∴=-+ 因为2b c -=,所以74,bc =+所以 3.bc =设BC 边上的高为h .11sin 322ABC S bc A ∴==⨯△11,22ABC S ah =∴△h ∴即BC 边上的高为.。

2021届高三数学(文理通用)一轮复习题型专题训练:函数的图像及其应用(二)(含解析)

2021届高三数学(文理通用)一轮复习题型专题训练:函数的图像及其应用(二)(含解析)

《函数的图像及其应用》(二)考查内容:主要涉及利用函数图像研究函数的性质、利用函数图像解不等式等一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数3211,0()32,0x x x x f x e x ⎧-<⎪=⎨⎪≥⎩则2(3)(2)f x f x ->的解集为( ) A .(,3)(1,)-∞-⋃+∞ B .(3,1)- C .(,1)(3,)-∞-+∞D .(1,3)-2.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( ) A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞3.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xf x <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-4.已知在R 上的偶函数()y f x =,当0x ≥时,()2f x x x =-,则关于x 的不等式()()2f f x ≤的解集为( )A .[]1,1-B .[]22-,C .[]3,3-D .[]4,4-5.已知函数()f x 是定义在[)(]4,00,4-⋃上的奇函数,当(]0,4x ∈时,()f x 的图象如图所示,那么满足不等式()31xf x ≥-的x 的取值范围是( )A .[)(]1,00,1-B .[](]4,20,1--C .[][]4,22,4-- D .[)[]1,02,4-6.函数()[](),y f x x ππ=∈-的图象如图所示,那么不等式()cos 0f x x ⋅≥的解集为( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .][,0,22πππ⎡⎤--⋃⎢⎥⎣⎦C .,2ππ⎡⎤-⎢⎥⎣⎦ D .0,22ππ⎧⎫⎡⎤-⋃⎨⎬⎢⎥⎩⎭⎣⎦7.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A .[1,-∪(0,1]B .[-1,0)∪C .[1,-∪D .[1,-∪1] 8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|1f x ax ≥-恒成立,则a 的取值范围是( ) A .[2,0]-B .[4,0]-C .[2,1]-D .[4,1]-9.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是( ) A .7[,)6-+∞B .5[,)3-+∞C .5[,)4-+∞D .4[,)3-+∞10.已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为( )A .(2⎤-⎦B .(2⎤-⎦C .2⎡⎤-⎣⎦D .[]1,0-11.已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-,则不等式()210f x ->的解集为( )A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),53,-∞-+∞D .()(),33,-∞-+∞12.设函数2()min{|2|,,|2|}f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者.下列说法错误的是 A .函数()f x 为偶函数B .若[1,)x ∈+∞时,有(2)()f x f x -≤C .若x ∈R 时,(())()f f x f x ≤D .若[]4,4x ∈-时|()2|()f x f x -≥二.填空题13.如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.14.已知22,0()32,0x x f x x x ⎧-≤=⎨->⎩,若|()|f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是__________15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x g x ≥在[]3,3-上的解集是________.16.设()(),()()0f x g x g x ≠分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''-<,且(2)0f -=,则不等式()0()f xg x >的解集为__ 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题:(1)求函数+2y k x b =+的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,直接写出1+2+12k x b x +>的解集.18.已知函数()|21|||2f x x x =+--. (1)解不等式()0f x ≤;(2)当[2,2]x ∈-时,|()||1|f x a ≥+有解,求实数a 的取值范围.19.已知函数()()20f x x a x a =-+>. (1)解不等式()2f x a ≥;(2)若函数()f x 的图象与直线2y a =围成的图形的面积为6,求实数a 的值.20.已知函数()()()()22102201log 1x x f x x x x x ⎧+≤⎪=-+<≤⎨⎪>⎩(1)画出()y f x =的简图,并指出函数值域;(2)结合图象,求当()1f x >时,x 的取值范围.21.设函数()121f x x x =+--.(1)画出()y f x =的图象;(2)当(],0x ∈-∞时,()f x ax b ≤+,求-a b 的最大值.22.已知函数()y f x =是定义在R 上的偶函数,且[)0,x ∈+∞时,()[]()222,0,11,1,x x f x x x ⎧-∈⎪=⎨-∈+∞⎪⎩.(1)求(),0x ∈-∞时()f x 的解析式;(2)在如图坐标系中作出函数()f x 的大致图象;(3)若不等式()f x k ≤恰有5个整数解,求k 的取值范围.《函数的图像及其应用》(二)解析1.【解析】当0x <时,()321132f x x x =-,()2f x x x '=- ()0,0x f x ∴',()f x 单调递增,且0x →时,()0f x →,∴()0f x <当0x ≥时,()xf x e =单调递增,且()()01f x f ≥=因此可得()f x 单调递增,()()232f x f x ∴->可转化为232xx ->解得31x -<<,故选B 项.2.【解析】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 3.【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <;由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >; 又()y xf x =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xf x <的解集为:(2,1)(1,2)--⋃,故选:C4.【解析】因为()y f x =是R 上的偶函数,且当0x ≥时,()2f x x x =-,则当0x <时,0x ->,()()2f x f x x x =-=+。

2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)

2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)

《函数与方程》(二)考查内容:主要涉及函数零点个数的判断(方程法、数形结合法、图象法、零点存在定理与函数性质结合法)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数26,0()3ln ,0x x x f x x x ⎧--≤=⎨-+>⎩的零点个数为( )A .3B .2C .1D .02.已知函数ln ,0()2(2),0x x f x x x x ⎧>=⎨-+≤⎩,则函数()3y f x =-的零点个数是( )A .1B .2C .3D .43.函数()ln 1f x x x =-+的零点个数为( ) A .0B .1C .2D .34.已知函数()()y f x x R =∈满足(2)()f x f x +=,且(1,1]x ∈-时,2()f x x =,则4()log ||y f x x =-的零点个数为( ) A .8B .6C .4D .25.函数()sin 1f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的零点个数为( )A .2B .3C .4D .56.函数()22lg 2||f x x x x =+-的零点的个数为( ) A .2B .3C .4D .67.已知函数23(0),()1(0),x x x x f x e x -⎧-=⎨-+<⎩则方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)的不同的实数根的个数为( )A .3B .4C .5D .68.已知函数()2e e xx f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞ C .()()0,11,+∞ D .(]{},01-∞9.已知函数23||,3()(3),3x x f x x x -⎧=⎨->⎩,()(3)6g x f x +-=,则函数()()y f x g x =-的零点个数为( )A .0B .4C .3D .210.若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0)D .[0,+∞)11.已知函数()sin ,02224xx f x x π⎧≤≤⎪=⎨⎪<≤⎩,若函数()()1g x f x kx =--恰有三个零点,则实数k 的取值范围为 ( )A .31,44⎡⎤--⎢⎥⎣⎦B .31,44⎛⎤-- ⎥⎝⎦C .41,34⎛⎫-- ⎪⎝⎭D .41,34⎛⎤-- ⎥⎝⎦12.已知函数()()21,1ln 1,1x x f x x x -≤⎧⎪=⎨->⎪⎩,则方程()()1f f x =根的个数为( )A .3B .5C .7D .9二.填空题13.函数()()2ln 14xf x x =⋅+-的零点个数为_______.14.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.15.已知函数32ln(2),2,()68,,x x m f x x x x x m +-<<⎧=⎨-+≥⎩若函数()f x 仅有2个零点,则实数m 的取值范围为______. 16.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是__.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数lg y x =和sin y x =的图像的交点个数.18.讨论a 取不同值时,关于x 的方程2|log |1|2|x a -+=的解的个数.19.已知函数()f x =,()3g x ax =-.(1)设函数()()()()25h x f x g x x =+-+,讨论函数()y h x =在区间[]0,2内的零点个数;(2)若对任意[]0,4x ∈,总存在[]02,2x ∈-,使得()()0g x f x =成立,求实数a 的取值范围.20.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[]2,4上单调递增,求m 的取值范围; (2)求()f x 在区间[]1,1-上的最小值()g m ; (3)讨论()f x 在区间[]3,3-上的零点个数.21.已知函数()22,182,1x a x f x ax x a x ⎧-≤=⎨-+>⎩,其中a R ∈.()1当1a =时,求()f x 的最小值; ()2当2a ≤时,讨论函数()f x 的零点个数.22.已知函数()34ln f x x x x=--. (1)求()f x 的单调区间;(2)判断()f x 在(]0,10上的零点的个数,并说明理由.(提示:ln10 2.303≈)《函数与方程》(二)解析1.【解析】若260x x --=.则2x =-或3x =.又∵0x ≤∴2x =- 若3ln 0x -+=,则3x e =满足0x >,综上,函数()f x 的零点个数为2. 故选:B2.【解析】当0x >时,3|ln |30,ln 3,x x x e -=∴=±∴=或3e -,都满足0x >; 当0x ≤时,222430,2430,20,164230x x x x ---=∴++=>∆=-⨯⨯<,所以方程没有实数根.综合得函数()3y f x =-的零点个数是2.故选:B3.【解析】函数()ln 1f x x x =-+的零点个数等价于函数ln y x =与函数1y x =-的图象的交点个数.在同一坐标系下作出函数ln y x =与1y x =-的图象,如下图:因为1(ln )y x x ''==,曲线ln y x =在点(1,0)处的切线的斜率为:11k x==, 所以曲线ln y x =在点(1,0)处的切线方程为1y x =-,所以可知两函数图象有一个交点,故函数()ln 1f x x x =-+的零点个数为1. 故选:B .4.【解析】因为()()y f x x R =∈为周期为2的函数,通过且(1,1]x ∈-时,2()f x x =,做出函数图象如图所示:4()log ||y f x x =-的零点个数即为()y f x =与4log ||y x =图象交点个数,由图象可知共有6个交点.故选:B.5.【解析】令()sin 10f x x x =-=,显然0x =不是函数的零点,可得1sin x x=. 故作出函数sin y x =和1y x =的图象,如图所示:在(,)22ππ-上有2个交点.故选:A6.【解析】函数()22lg 2||f x x x x =+-的零点个数,即方程22lg 2||x x x =-+的根的个数,考虑()()22lg ,2||g x x h x x x ==-+,定义在()(),00,-∞+∞的偶函数,当0x >时,()()22lg ,2g x x h x x x ==-+,作出函数图象:两个函数一共两个交点,即当0x >时22lg 2||x x x =-+有两根, 根据对称性可得:当0x <时22lg 2||x x x =-+有两根, 所以22lg 2||x x x =-+一共4个根,即函数()22lg 2||f x x x x =+-的零点的个数为4.故选:C7.【解析】由|()1|2f x c -=-,得()1(2)f x c =±-.∵(1,0)c ∈-, ∴1(2)(3,4),1(2)(2,1)c c +-∈--∈--. 作出函数()f x 和1(2)y c =±-的图象如图所示,易知它们的图象共有4个不同的交点,即方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)有4个不同的实数根.故选:B8.【解析】(0)1100f =--=,则可知0x =一定是函数()f x 的一个零点0x ≠时,可得:1x x e a x e -=,令1(),()x x e a g x h x x e -==,21()x x xe e g x x '-+=,令()1x x u x xe e =-+, ()xu e x x '=,可得函数()u x 在0x =时取得极小值即最小值 ,()()00u x u ∴≥=.())'0(0g x x ∴>≠.∴函数()g x 在(,0)-∞和(0,)+∞上单调递增,此时,()0g x >恒成立,对于()xa h x e =, 0a <时 , 函数()g x 与()h x 没有交点,如下图,满足条件0a =时 , 函数()g x 与()h x 没有交点,如下图,满足条件1a =时 , 函数1()x h x e=, 经过()0,1, 与函数()g x 的图象没有交点, 如下图,满足条件 .0a >, 且1a ≠时 , 函数()h x 与函数()g x 的图象有交点,如下图,不满足条件,舍去 .综上可得:实数a 的取值范围为{}(],01-∞⋃,故选:D .9.【解析】由()6(3)g x f x =--,知()()()(3)6y f x g x f x f x =-=+--. 令()()(3)F x f x f x =+-,则(3)(3)()F x f x f x -=-+, 所以(3)()F x F x -=,即()F x 的图象关于直线32x =对称.当302x时,()()(3)33(3)3F x f x f x x x =+-=-+--=; 当0x <时,2221()()(3)3(33)32F x f x f x x x x x x ⎛⎫=+-=++--=++=++⎪⎝⎭114.作出()F x 的图象可知,函数()6F x =的解有2个,所以函数()()y f x g x =-的零点个数2个.故选:D10.【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a ,所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1.故选:B11.【解析】当24x <≤时,y =,则0y ≤,等式两边平方得2268y x x =-+-,整理得()2231x y -+=,所以曲线)24y x =<≤表示圆()2231x y -+=的下半圆,如下图所示:由题意可知,函数()y g x =有三个不同的零点,等价于直线1y kx =+与曲线()y f x =的图象有三个不同交点,直线1y kx =+过定点()0,1P ,当直线1y kx =+过点()4,0A 时,则410k +=,可得14k =-; 当直线1y kx =+与圆()2231x y -+=相切,且切点位于第三象限时,k0<,1=,解得34k =-.由图象可知,当3144k -<≤-时,直线1y kx =+与曲线()y f x =的图象有三个不同交点.因此,实数k 的取值范围是31,44⎛⎤-- ⎥⎝⎦. 故选:B.12.【解析】令()u f x =,先解方程()1f u =. (1)当1u ≤时,则()211f u u =-=,得11u =;(2)当1u >时,则()()ln 11f u u =-=,即()ln 11u -=±,解得211u e=+,31u e =+. 如下图所示:直线1u =,11u e=+,1u e =+与函数()u f x =的交点个数为3、2、2, 所以,方程()1f f x ⎡⎤=⎣⎦的根的个数为3227++=.故选:C. 13.【解析】令()()2ln 140xf x x =⋅+-=,则()24ln 122x x x -+==, 在同一直角坐标系中作出函数()ln 1y x =+与22xy -=的图象,如图:由图象可知,函数()ln 1y x =+当1x →-时,()ln 1y x =+→+∞则与22xy -=的图象有必有两个交点, 所以方程()24ln 122xxx -+==有两个不同实根,所以函数()()2ln 14x f x x =⋅+-的零点个数为2.故答案为:2.14.【解析】作出函数()f x 的图象,如图所示,由图象可知,当01k <<时,函数()f x 与y k =的图象有两个不同的交点, 此时,方程有两个不同实根,所以所求实数k 的取值范围是(0,1).故答案为:(0,1) 15.【解析】对于函数3268y x x x =-+,23128y x x '=-+,令0y '=,解得23x =±,故当,2x ⎛∈-∞- ⎝⎭时,0y '>;当22x ⎛∈ ⎝⎭时,0y '<;当2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y '>; 令ln(2)0x +=,解得1x =-;令32680x x x -+=,解得0x =,2x =或4x =. 作出ln(2)y x =+,3268y x x x =-+的大致图像:观察可知,若函数()f x 仅有2个零点,则24m <≤,故实数m 的取值范围为(]2,4. 16.【解析】当0x >时,函数()f x lnx =单调递增;当0x ≤时,()(1)xf x e x =+,则()(2)x f x e x '=+2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x ≤时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,所以()f x 在2x =-处取极小值,极小值为2(2)f e --=-;当1x <-时,()(1)0xf x e x =+< 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个交点,由图可知,20e c --<<,故答案为:()20,e -- 17.【解析】由1y lgx ==解得10x =,又sin y x =的值域为[]1,1-, 且y lgx =在定义域上单调递增,作出函数sin y x =与y lgx =的图象如图: 由图象可知两个图象的交点个数为3个,18.【解析】令2()|log |1|2|f x x =-+,作出函数()f x 的图象,如图所示,所求问题可转化为函数()f x ,与直线y a =交点的个数问题. 当0a <时,()y f x =与y a =无交点,所以原方程无解; 当0a =时,()y f x =与y a =有两个交点,原方程有2个解; 当0a >时,()y f x =与y a =有四个交点,原方程有4个解.19.【解析】(1)因为()()()()()22511h x fx g x x x a x =+-+=+-+,令()0h x =,则()2110x a x +-+=,当=0x 时,则10=,不符合条件,当0x ≠时,则11a x x-=+ 作函数1y a =-与()102y x x x=+<≤的图象,由图可知:①当12a -<时,即1a >-时,两图象无公共点,则()h x 在区间[]0,2内无零点;②当12a -=时或512a ->时,即32a <-或1a =-时,两图象仅有一个公共点, 则()h x 在区间[]0,2内仅有一个零点; ③当5212a <-≤时,即312a -≤<-时,两图象有两个公共点, 则()h x 在区间[]0,2内有两个零点.(2)当[]0,4x ∈时,[]20,16x ∈,则[]299,25x +∈,所以()f x 的值域是[]3,5; 当[]02,2x ∈-时,设函数()0g x 的值域是M ,依题意,[]3,5M ⊆,①当0a =时,()03g x =-不合题意;②当0a >时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦, 由()()2523g g ⎧≥⎪⎨-≤⎪⎩ ,得2352330a a a -≥⎧⎪--≤⎨⎪>⎩,解得4a ≥; ③当0a <时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦,由()()2523g g ⎧-≥⎪⎨≤⎪⎩,得2352330a a a --≥⎧⎪-≤⎨⎪<⎩,解得4a ≤-; 综上得,实数a 的取值范围是(][),44,-∞-⋃+∞.20.【解析】(1)由题意,函数2()()7f x x mx m m R =++-∈开口向上,对称轴的方程为2m x =-,若使得函数()f x 在[]2,4上单调递增,则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞.(2)①当112m -≤-即2m ≥时,函数()y f x =在区间[]1,1-单调递增, 所以函数()y f x =的最小值为()()16g m f =-=-;②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时,函数()y f x =在区间[]1,1-单调递减, 所以函数()y f x =的最小值为()()126g m g m ==-, 综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. (3)因为函数()y f x =的对称轴方程为12x m =-,且24280m m ∆=-+>恒成立, ①当()()133232203420m f m f m ⎧-<-<⎪⎪-=-≥⎨⎪=+≥⎪⎩,即112m -≤≤时, 函数()f x 在区间[]3,3-上有2个零点; ②当()1323220m f m ⎧-≤-⎪⎨⎪-=-≥⎩,此时m 不存在; ③当()1323420m f m ⎧-≥⎪⎨⎪=+≥⎩,此时m 不存在;④当()()330f f -⋅≤,即()()22420m m -+≤,解得m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 综上可得:当112m -≤≤时,函数()f x 在区间[]3,3-上有2个零点, 当m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 21.【解析】()1当1a =时,()221,182,1x x f x x x x ⎧-≤=⎨-+>⎩,则当1x ≤时,()f x 在(],1-∞上单调递增,()1f x >-且无最小值;当1x >时,由二次函数()()2282414g x x x x =-+=--知,()f x 在(]1,4上单调递减,在()4,+∞上单调递增,故()()min 414f x f ==-.()2当0a ≤,1x ≤时,()f x 没有零点,当1x >时,()f x 没有零点;当02a <≤,1x ≤时,()f x 有一个零点,当1x >时,()f x 有一个零点.22.【解析】(1)由题意知,()f x 的定义域为()0,∞+,则令2223443()10x x f x x x x -+'=+-==, 解得1x =或3x =,当01x <<或3x >时,()0f x '>,则此时()f x 单调递增; 当13x <<时,()0f x '<,则此时()f x 单调递减.故()f x 的单调递增区间是()0,1和()3,+∞,单调递减区间是()1,3.(2)由函数在()0,1上单调递增,在()1,3上单调递减,则当03x <≤时,()()12f x f ≤=-,故()f x 在(]0,3上无零点;又()324ln30f =-<,当310x <≤时,因为3(10)104ln10100.34 2.3030.488010f =--≈--⨯=>, 又()f x 在(]3,10上单调递增,所以()f x 在(]3,10上仅有一个零点.综上,()f x 在(]0,10上的零点的个数为1.。

2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版

2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版

考点测试6 函数的单调性高考概览本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查.题型为选择题、填空题,分值5分,难度为低、中、高各种档次 考纲研读 1.理解函数的单调性、最大值、最小值及其几何意义 2.会运用基本初等函数的图象分析函数的单调性一、基础小题1.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4答案 A解析 函数y =3-x ,y =1x,y =-x 2+4在(0,1)上均为减函数,y =|x |在(0,1)上为增函数,故选A.2.函数y =x 2-6x +10在区间(2,4)上( ) A .递减 B .递增 C .先递减后递增 D .先递增后递减答案 C解析 由函数y =x 2-6x +10的图象开口向上,对称轴为直线x =3,知y =x 2-6x +10在(2,4)上先递减后递增,故选C.3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫12,+∞ D .⎝⎛⎭⎪⎫-∞,12 答案 D解析 当2a -1<0,即a <12时,该函数是R 上的减函数.故选D.4.已知函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,解得m <-1或m >0.故选D. 5.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83C .-2D .2答案 A解析 因为f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上为减函数,所以当x =-2时,f (x )取得最大值,且为2-12=32.故选A.6.函数f (x )=⎩⎪⎨⎪⎧x +cx ≥0,x -1x <0是增函数,则实数c 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,-1]答案 A解析 ∵f (x )在R 上单调递增,∴c ≥-1,即实数c 的取值范围是[-1,+∞).故选A.7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( ) A .y =1f x在R 上为减函数B .y =|f (x )|在R 上为增函数C .y =-1f x在R 上为增函数D .y =-f (x )在R 上为减函数 答案 D解析 A 错误,如y =x 3,y =1f x在R 上无单调性;B 错误,如y =x 3,y =|f (x )|在R 上无单调性; C 错误,如y =x 3,y =-1f x在R 上无单调性;故选D.8.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]答案 B解析 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].9.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1]B .(-1,0)∪(0,1)C .(0,1)D .(0,1]答案 D解析 f (x )=-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=ax +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.故选D.10.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c答案 D解析 因为f (x )的图象关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c .11.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.12.已知f (x )=ax +1x +2,若对任意x 1,x 2∈(-2,+∞),有(x 1-x 2)[f (x 1)-f (x 2)]>0,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由f (x )=ax +1x +2=a +1-2ax +2,且y =f (x )在(-2,+∞)上是增函数,得1-2a <0,即a >12.二、高考小题13.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )答案 C解析 因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>>0,且函数f (x )在(0,+∞)单调递减,所以f (log 34)< .故选C.14.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 作出函数f (x )=|cos2x |的图象,如图.由图象可知f (x )=|cos2x |的周期为π2,在区间⎝⎛⎭⎪⎫π4,π2上单调递增.同理可得f (x )=|sin2x |的周期为π2,在区间⎝ ⎛⎭⎪⎫π4,π2上单调递减,f (x )=cos|x |的周期为2π.f (x )=sin|x |不是周期函数.故选A.15.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0可得x >4或x <-2,所以x ∈(-∞,-2)∪(4,+∞),令u =x2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增,所以f (x )=ln (x 2-2x -8)在x ∈(4,+∞)上单调递增.故选D.16.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 答案 A解析 ∵函数f (x )的定义域为R ,f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.又y =3x在R上是增函数,∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.17.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x答案 D解析 A 中,y =11-x =1-x -1的图象是将y =-1x的图象向右平移1个单位得到的,故y =11-x在(-1,1)上为增函数,不符合题意;B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;C 中,y =ln (x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln (x +1)在(-1,1)上为增函数,不符合题意;D 中,y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数,所以D 符合题意.18.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 由题意知函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),且f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<,解得12<a <32.三、模拟小题19.(2019·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B.20.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -a +2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.所以a 的取值范围是a ≤-3.21.(2019·重庆模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,所以f (x )的最大值为f (2)=23-2=6.22.(2019·漳州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案 D解析 因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.23.(2020·沈阳市高三摸底)如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]答案 D解析 因为函数f (x )=12x 2-x +32的对称轴为直线x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤ 3,即函数f x x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].24.(2019·广东名校联考)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其单调递减区间是[0,1).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·福建泉州高三阶段测试)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解 (1)令x =y =0得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又因为f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.2.(2019·安徽肥东高级中学调研)函数f (x )=2x -ax的定义域为(0,1]. (1)当a =-1时,求函数f (x )的值域;(2)若f (x )在定义域上是减函数,求a 的取值范围.解 (1)因为a =-1,所以函数f (x )=2x +1x ≥22⎝ ⎛⎭⎪⎫当且仅当x =22时,等号成立,所以函数f (x )的值域为[22,+∞).(2)若函数f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立, 即f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫a +2x 1x 2x 1x 2>0,只要a <-2x 1x 2即可,由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].3.(2019·湖南永州模拟)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立, 所以⎩⎪⎨⎪⎧a >0,Δ=a +12-4a ≤0,所以⎩⎪⎨⎪⎧a >0,a -12≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数, 所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故实数k 的取值范围是(-∞,-2]∪[6,+∞).4.(2019·陕西西安长安区大联考)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值;(2)证明:f (x )为单调增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解 (1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x2>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎪⎫x 2·x 1x2-f (x 2)=f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝ ⎛⎭⎪⎫125=-2, 因为f ⎝ ⎛⎭⎪⎫15×5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0, 所以f (5)=1,则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,即f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.。

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练二 函数概念与基本初等函数Ⅰ

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练二 函数概念与基本初等函数Ⅰ

高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。

3.本次考试时间120分钟,满分150分。

单元检测二 函数概念与基本初等函数Ⅰ第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·重庆)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)2.(2021·北京)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x 3.(2021·慈溪联考)函数y =x 2lg x -2x +2的图像( ) A .关于x 轴对称 B .关于原点对称 C .关于直线y =x 对称D .关于y 轴对称4.(2021·江西省师大附中联考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <1,f (x -1),x ≥1,则f (log 25)等于( )A.516B.58C.54D.525.(2021·山东)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)6.下列各式中错误的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1 D .lg 1.6>lg 1.47.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138]C .(-∞,2]D .[138,2)8.(2021·山东19所名校联考)函数y =x ln|x ||x |的图像可能是( )9.定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则( ) A .f (sin 1)<f (cos 1) B .f (sin π3)>f (cos π3)C .f (sin 12)<f (cos 12)D .f (sin 32)>f (cos 32)10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x +a ,x <0,f (x -1),x ≥0,且函数y =f (x )-x 恰有3个不同的零点,则实数a 的取值范围是( )A .(0,+∞)B .[-1,0)C .[-1,+∞)D .[-2,+∞)11.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( )A .(0,1] B.⎝⎛⎭⎫0,12 C .(0,2]D .[0,1)12.(2021·蚌埠模拟)已知函数f (x ) (x ∈R )是以4为周期的奇函数,当x ∈(0,2)时,f (x )=ln(x 2-x +b ).若函数f (x )在区间[-2,2]上有5个零点,则实数b 的取值范围是( ) A .-1<b ≤1 B.14≤b ≤54C .-1<b <1或b =54D.14<b ≤1或b =54 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 015)+f (2 016)的值为________.14.(2021·湖南浏阳一中联考)设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意x ∈[a ,a +2],不等式f (x +a )≥f (3x +1)恒成立,则实数a 的取值范围是________.15.卡车以x 千米/小时的速度匀速行驶130千米路程,按交通法规限制50≤x ≤100(单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时42元.(1)这次行车总费用y 关于x 的表达式为___________________________________; (2)当x =________时,这次行车总费用最低.16.设f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=(12)1-x ,则给出下列结论: ①2是f (x )的周期;②f (x )在(1,2)上单调递减,在(2,3)上单调递增; ③f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=(12)x -3.其中正确结论的序号是________.(写出全部正确结论的序号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3·2-x . (1)当x <0时,求f (x )的解析式; (2)若f (x )=12,求x 的值.18.(12分)已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.19.(12分)(2021·赣州市十二县(市)联考)已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.设f (x )=g (x )x .(1)求a 、b 的值;(2)若不等式f (2x )-k ·2x ≥0在x ∈[-1,1]上有解,求实数k 的取值范围.20.(12分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x -1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21.(12分)(2021·余姚联考)已知函数f (x )=x 2+a |x -1|,a 为常数. (1)当a =2时,求函数f (x )在[0,2]上的最小值和最大值;(2)若函数f(x)在[0,+∞)上单调递增,求实数a的取值范围.22.(12分)(2021·北京第六十六中学上学期期中)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=-2.(1)推断f(x)的奇偶性;(2)求f(x)在区间[-3,3]上的最大值;(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.答案解析1.D[需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).]2.B[由f(-x)=f(x),且定义域关于原点对称,可知A为奇函数,B为偶函数,C定义域不关于原点对称,D 为非奇非偶函数.]3.B[∵y=x2lgx-2x+2,∴其定义域为(-∞,-2)∪(2,+∞),∴f(-x)=x2lgx+2x-2=-x2lgx-2x+2=-f(x),∴函数为奇函数,∴函数的图像关于原点对称,故选B.]4.C[∵2<log25<3,∴f(log25)=2log25-2=2log25·2-2=54,故选C.]5.C[∵f(x)为奇函数,∴f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a,整理得(1-a)(2x+1)=0,∴a=1,∴f(x)>3即为2x+12x-1>3,化简得(2x-2)(2x-1)<0,∴1<2x<2,∴0<x<1.]6.C[对于A,构造幂函数y=x3,为增函数,故A对;对于B、D,构造对数函数y=log0.5x为减函数,y=lg x为增函数,B、D都正确;对于C,构造指数函数y=0.75x,为减函数,故C错.]7.B[由题意知函数f(x)是R上的减函数,于是有⎩⎪⎨⎪⎧a-2<0,(a-2)×2≤(12)2-1,由此解得a≤138,即实数a 的取值范围为(-∞,138],故选B.]8.B [函数y =x ln|x ||x |的定义域为(-∞,0)∪(0,+∞),定义域关于原点对称.当x >0时,y =x ln|x ||x |=x ln xx =lnx ;当x <0时,y =x ln|x ||x |=x ln (-x )-x=-ln(-x ),此时函数图像与当x >0时函数y =ln x 的图像关于原点对称.故选B.]9.A [由f (x )=f (x +2)得到周期为2,当x ∈[3,4]时,f (x )=x -2为增函数,且是定义在R 上的偶函数,则f (x )在[0,1]上为减函数,由于sin 1>cos 1,所以 f (sin 1)<f (cos 1).故选A.]10.C [当x ≥0时,f (x -1)=f (x ),此时函数f (x )是周期为1的周期函数;当x <0时,f (x )=-x 2-2x +a =-(x +1)2+1+a ,对称轴为x =-1,顶点为(-1,1+a ),若a ≥0,则y =f (x )-x 在(-∞,0)上有1个零点,在[0,+∞)上有2个零点,满足题意;若-1<a <0,则y =f (x )-x 在(-∞,-1],(-1,0),[0,+∞)上各有1个零点,满足题意;若a =-1,则y =f (x )-x 在(-∞,-1],(-1,0)上各有1个零点,x =0也是零点,在(0,+∞)上无零点,满足题意;若a <-1,则至多有2个零点,不满足题意.所以实数a 的取值范围是[-1,+∞).]11.D [g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).]12.D [本题可以接受排解法.若b =0,则f (x )=ln(x 2-x ),x ∈(0,2),当x =12∈(0,2)时,f (x )无意义,故b ≠0,所以排解A ,C ;若b =14,则f (x )=ln ⎝⎛⎭⎫x 2-x +14,x ∈(0,2),当x =12∈(0,2)时,f (x )无意义,故b ≠14,所以排解B ,所以选D.] 13.-1解析 由于f (x )是奇函数,且周期为2,所以f (-2 015)+f (2 016)=-f (2 015)+f (2 016)=-f (1)+f (0),又当x ∈[0,2)时,f (x )=log 2(x +1),所以f (-2 015)+f (2 016)=-1+0=-1. 14.(-∞,-5]解析 由于当x ≥0时,f (x )=x 2,所以f (x )是[0,+∞)上的增函数,又f (x )是定义在R 上的奇函数,所以f (x )是R 上的增函数,所以若对任意x ∈[a ,a +2],不等式f (x +a )≥f (3x +1)恒成立,即对任意x ∈[a ,a +2],x +a ≥3x +1⇒a ≥2x +1.由于函数2x +1是[a ,a +2]上的增函数,所以2x +1有最大值2a +5,所以a ≥2a +5⇒a ≤-5.15.(1)y =7 020x +136x ,x ∈[50,100] (2)1810解析 (1)由题意知行车所用时间t =130x 小时,则这次行车总费用y 关于x 的表达式为y =130x ×6×(2+x 2360)+42×130x ,x ∈[50,100],即y =7 020x +136x ,x ∈[50,100]. (2)y =7 020x +136x ≥7810,当且仅当7 020x =136x ,即x =1810时等号成立,故当x =1810时,这次行车总费用最低. 16.①②④解析 ①∵对任意的x ∈R 恒有f (x +1)=f (x -1),∴f (x +2)=f [(x +1)-1]=f (x ),即2是f (x )的周期,①正确;②∵当x ∈[0,1]时,f (x )=(12)1-x =2x -1为增函数,又f (x )是定义在R 上的偶函数,∴f (x )在区间[-1,0]上单调递减,又其周期T =2,∴f (x )在(1,2)上单调递减,在(2,3)上单调递增,②正确;③由②可知,f (x )max =f (1)=21-1=20=1,f (x )min =f (0)=20-1=12,③错误;④当x ∈(3,4)时,4-x ∈(0,1),∴f (4-x )=(12)1-(4-x )=(12)x -3,又f (x )是周期为2的偶函数,∴f (4-x )=f (x )=(12)x -3,④正确.综上所述,正确结论的序号是①②④.17.解 (1)当x <0时,-x >0,f (-x )=2-x -3·2x , 又f (x )是奇函数, ∴f (-x )=-f (x ), ∴-f (x )=2-x -3·2x ,即当x <0时,f (x )=-2-x +3·2x .(2)当x <0时,由-2-x +3·2x =12,得6·22x -2x -2=0, 解得2x =23或2x =-12(舍去),∴x =1-log 23;当x >0时,由2x -3·2-x =12,得2·22x -2x -6=0,解得2x =2或2x =-32(舍去),∴x =1.综上,x =1-log 23或x =1.18.解 (1)由于f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3,函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减. 又y =log 4x 在(0,+∞)上递增, 所以f (x )的单调递增区间是(-1,1), 递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,即⎩⎨⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.19.解 (1)g (x )=a (x -1)2+1+b -a ,由于a >0,所以g (x )在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧ g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2)由已知可得f (x )=x +1x-2,所以f (2x )-k ·2x ≥0可化为2x +12x -2≥k ·2x ,化为1+(12x )2-2·12x ≥k ,令t =12x ,则k ≤t 2-2t +1,由于x ∈[-1,1],故t ∈[12,2],记h (t )=t 2-2t +1,由于t ∈[12,2],故h (t )max =1,所以k 的取值范围是(-∞,1]. 20.解 (1)当0<x <80,x ∈N +时, L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N +时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x),∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80,x ∈N +),1 200-(x +10 000x)(x ≥80,x ∈N +).(2)当0<x <80,x ∈N +时, L (x )=-13(x -60)2+950,∴当x =60时,L (x )取得最大值L (60)=950.当x ≥80,x ∈N +时,L (x )=1 200-(x +10 000x )≤1 200-2x ·10 000x=1 200-200=1 000, ∴当x =10 000x ,即x =100时,L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大.21.解 (1)当a =2时,f (x )=x 2+2|x -1|=⎩⎪⎨⎪⎧ x 2+2x -2,x ≥1,x 2-2x +2,x ≤1=⎩⎪⎨⎪⎧(x +1)2-3,x ≥1,(x -1)2+1,x <1,所以当x ∈[1,2]时,[f (x )]max =6,[f (x )]min =1, 当x ∈[0,1]时,[f (x )]max =2,[f (x )]min =1, 所以f (x )在[0,2]上的最大值为6,最小值为1.(2)由于f (x )=⎩⎪⎨⎪⎧x 2+ax -a ,x ≥1,x 2-ax +a ,x <1,=⎩⎨⎧(x +a 2)2-a 24-a ,x ≥1,(x -a 2)2-a24+a ,x <1,而f (x )在[0,+∞)上单调递增,所以当x ≥1时,f (x )必单调递增,得-a2≤1即a ≥-2,当0≤x <1时,f (x )亦必单调递增,得a2≤0即a ≤0,且12+a -a ≥12-a +a 恒成立. 即a 的取值范围是{a |-2≤a ≤0}. 22.解 (1)取x =y =0,则f (0+0)=2f (0), ∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立, ∴函数f (x )为奇函数.(2)任取x 1,x 2∈(-∞,+∞)且x 1<x 2, 则x 2-x 1>0.∴f (x 2)+f (-x 1)=f (x 2-x 1)<0, ∴f (x 2)<-f (-x 1).又∵f (x )为奇函数,∴f (x 1)>f (x 2). ∴f (x )在(-∞,+∞)上是减函数.∴对任意x ∈[-3,3],恒有f (x )≤f (-3). ∵f (3)=f (2+1)=f (2)+f (1)=3f (1) =-2×3=-6, ∴f (-3)=-f (3)=6, ∴f (x )在[-3,3]上的最大值为6. (3)∵f (x )为奇函数,∴整理原不等式得f (ax 2)+f (-2x )<f (ax )+f (-2), 进一步可得f (ax 2-2x )<f (ax -2).∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >ax -2, 即(ax -2)(x -1)>0.∴当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R }; 当a <0时,x ∈{x |2a <x <1};当0<a <2时,x ∈{x |x >2a 或x <1};当a >2时,x ∈{x |x <2a 或x >1}.综上所述,当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R };当a<0时,x∈{x|2a<x<1};或x<1};当0<a<2时,x∈{x|x>2a当a>2时,x∈{x|x<2或x>1}.a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届高三数学(理科)一轮复习通关检测卷全国卷(二)【满分:150分】一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,a ∈R ,若复数3i z a =-+的共轭复数在复平面内对应的点位于第三象限,且5z z ⋅=,则z =( ) A.34i --B.34i -+C.32i -+D.32i --2.已知集合{}{}*2|4,,|40M x x x N x x x =≤∈=-<N ,则M N ⋂=( )A.{}0,1,2,3,4B.{}1,2,3,4C.{}1,2,3D.{}0,1,2,33.从分别标有1,2,,9⋅⋅⋅的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( ) A.518B.49 C.59D.794.已知,αβ是两个不同的平面,,m n 是两条不同的直线,则下列说法中正确的是( ) A.若,,m n m n αβ⊥⊥⊥,则αβ⊥ B.若,m ααβ⊥⊥,则m βC.若,m ααβ⊥,则m β⊥D.若,,m n αβαβ,则mn5.已知0.50.50.70.5,0.3,log 0.2a b c ===,则,,a b c 的大小关系是( ) A.c a b <<B.b a c <<C.c b a <<D.a b c <<6.设函数()ln |21|ln |21|f x x x =+--,则()f x ( ) A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减7.已知52()()x a x x+-的展开式中所有项的系数和为-2,则展开式中的常数项为( )A.80B.-80C.40D.-408.已知等比数列{}n a 的前n 项和2n n S a =+,且2log n n b a a =-,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =( )A.321nn + B.21nn + C.21nn + D.1n n + 9.已知函数π()sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象的相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向右平移π6个单位长度后,得到的图象关于原点对称,那么函数()y f x =的图象( ) A.关于点π,06⎛⎫- ⎪⎝⎭对称B.关于点π,06⎛⎫⎪⎝⎭对称C.关于直线π12x =-对称 D.关于直线π6x =对称 10.椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12, F F ,过点1F 的直线交椭圆于,A B 两点,交y 轴于点C ,若1F ,C 是线段AB 的三等分点,2F AB △的周长为E 的标准方程为( )A. 22154x y +=B. 22153x y +=C. 22152x y +=D. 2215x y +=11.已知在三棱锥P ABC -中,2ππ,36PA PB APB ACB ==∠=∠=, 则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的体积为( )12.已知函数()f x 的导函数为'()f x ,对任意的实数x 都有'()2()e ()x f x x a f x =-+,且(0)1f =,若()f x 在(1,1)-上有极值点,则实数a 的取值范围是( )A.3(,]4-∞B.3(,)4-∞C.(0,1)D.(0,1]二、填空题:本题共4小题,每小题5分,共20分.13.已知空间向量,,|||5,,,,135λ===+=+〈︒〉=a b a b m a b n a b a b ,若⊥m n ,则λ的值为_____________.14.在ABC 中,角,,A B C 所对的边分别为,,a b c ,满足2230,ABCa cb S -+==,且60A =︒,则ABC 的周长为______________.15.在直三棱柱111ABC A B C -中,1π,1,2BAC AB AC AA ∠====,则异面直线AB 与1CB 所成的角为____________.16.已知抛物线()220y px p =>的顶点在原点上,焦点()1,0F ,准线与x 轴的交点为K ,点P为抛物线上一点,PK =,KPF 的内切圆为圆C ,则圆C 的半径为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17. (12分)已知等差数列{}n a 的前n 项和为n S ,且1536225,16S a a =+=.(1)证明:是等差数列;(2)设2n n n b a =⋅,求数列{}n b 的前n 项和n T .18. (12分)笔、墨、纸、砚是中国独有的文书工具,即文房四宝笔、墨、纸、砚之名,起源于南北朝时期,其中“纸”指的是宣纸,“始于唐代、产于泾县”,因唐代泾县隶属宣州管辖,故因地得名宣纸,宣纸按质量等级分类可分为正牌和副牌(优等品和合格品).某公司生产的宣纸为纯手工制作,年产宣纸10000刀,该公司按照某种质量指标x 给宣纸确定质量等级,如下表所示:公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到的频率分布直方图如图所示.已知每张正牌宣纸的利润为10元,副牌宣纸的利润为5元,废品宣纸的利润为10-元.(1)试估计该公司生产宣纸的年利润;(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器使用寿命为一年,不影响产量,这种机器生产的宣纸的质量指标x 服从正态分布2(50)2N ,,改进工艺后正牌和副牌宣纸的利润都将受到不同程度的影响,观测的数据如下表所示:将频率视为概率,请判断该公司是否应该购买这种机器,并说明理由.附:若2()Z N μσ~,,则0().6826P Z μσμσ-<≤+=,220.95()44P Z σμσμ-<≤+=,330.99()74p Z σμσμ-<≤+=.19. (12分)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD ,设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC .(2)已知1PD AD ==,Q 为l 上的点,QB =求PB 与平面QCD 所成角的正弦值.20. (12分)双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A ,B 两点. (1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设b l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率. 21. (12分)已知函数()()()ln 1f x x ax a =+-∈R . (1)讨论函数()f x 的单调性;(2)若()()2112g x x x a f x =--+-,设()1122,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-. (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分)在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28sin 150ρρθ-+=.(1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程;(2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值. 23. [选修4 – 5:不等式选讲](10分) 已知函数()1(2)f x ax a x =---.(1)当3a =时,求不等式()0f x >的解集;(2)若函数()f x 的图象与x 轴没有交点,求实数a 的取值范围.答案以及解析一、单项选择题 1.答案:B解析:由5z z ⋅=可得22(3)25a -+=,解得4a =或4a =-.34i z ∴=-+或34i z =--.z 的共轭复数在复平面内对应的点位于第三象限,z ∴在复平面内对应的点位于第二象限,34i z ∴=-+.故选B.2.答案:C 解析:因为{}{}{}(){}{}2|41,2,3,4,|4040|0|4M x x x N x x x x x x x x =≤∈==-<=-<=<<*N ,,所以{}1,2,3M N ⋂=.故选C. 3.答案:C解析:∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取, ∴P (第一次抽到奇数,第二次抽到偶数)5459818=⨯=,P (第一次抽到偶数,第二次抽到奇数)4559818=⨯=.∴P (抽到的2张卡片上的数奇偶性不同)55518189=+=.故选C. 4.答案:A解析:B 选项中,可能有m β⊂,故B 错误;C 选项中,m 与β不一定垂直,可能相交,也可能平行,还可能m β⊂,故C 错误;若,,m αβαβ,则,m n 可能相交,也可能异面,故D 错误.综上所述,故选A. 5.答案:B解析:因为0.5y x =在(0,)+∞上是增函数,且0.50.3>,所以0.50.50.50.3>,即a b >,0.70.7log 0.2log 0.71c =>=,而00.510.50.5=>,所以b a c <<.故选B.6.答案:D解析:由210210x x +≠⎧⎨-≠⎩得函数()f x 的定义域为11112222⎛⎫⎛⎫⎛⎫-∞-⋃-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,其关于原点对称,因为()ln |2()1|ln |2()1|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,所以函数()f x 为奇函数,排除A ,C.当1122x ⎛⎫∈- ⎪⎝⎭,时,()ln(21)ln(12)f x x x =+--,易知函数()f x 单调递增,排除B.当12x ⎛⎫∈-∞- ⎪⎝⎭,时,212()ln(21)ln(12)ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,易知函数()f x 单调递减,故选D. 7.答案:B解析:由已知,令1x =,则所有项的系数和为52(1)(1)(1)21a a +-=-+=-,则1a =,52()x x -展开式的通项5521552()(2)r r r r rr r T C x C x x --+=⋅-=⋅-,因而,当521r -=-,即3r =时,52(1)()x x x+-展开式中的常数项为335(2)80C ⨯-=-,故选B.8.答案:D解析:由等比数列{}n a 的前n 项和2n n S a =+,得112213322,2,4S a a a S S a S S ==+=-==-=,2213,4(2)4a a a a =⋅∴=+⨯,解得11,1a a =-∴=,21,2n n S n =-∴时,11121212n n n n n n a S S ---=-=--+=(11a =满足上式),121log 21,1n n n b n b n -+∴=+==+,则11111(1)1n n b b n n n n +==-++,11111111223111n nT n n n n ∴=-+-++-=-=+++,故选D. 9.答案:A解析:两条相邻对称轴之间的距离为ππ,,π,2222T T ω∴=∴=∴=.π()sin(2)||2f x x ϕϕ⎛⎫∴=+< ⎪⎝⎭.将()y f x =的图像向右平移π6个单位长度后,得到ππ()sin 2sin 263y g x x x ϕϕ⎡⎤⎛⎫⎛⎫==-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图像.函数()y g x =的图像关于原点对称,π(0)sin 03g ϕ⎛⎫∴=-+= ⎪⎝⎭,ππ()3k k ϕ∴=+∈Z .又πππ||,,()sin 2233f x x ϕϕ⎛⎫<∴=∴=+ ⎪⎝⎭.令ππ2π()32x k k +=+∈Z ,得ππ()122k x k =+∈Z ,∴因此C ,D 项错误.令π2π()3x k k +=∈Z ,得ππ()62k x k =-+∈Z ,∴函数()y f x =的图像的对称中心为ππ,0()62k k ⎛⎫-+∈ ⎪⎝⎭Z .∴A 项正确,B 项错误.故选A. 10.答案:A解析:由椭圆的定义,得12122AF AF BF BF a +=+=,所以2F AB △的周长为12124AF AF BF BF a +++==a =,所以椭圆222:15x y E b+=.不妨令点C 是1F A 的中点,点A 在第一象限,因为()1, 0F c -,所以点A 的横坐标为c ,所以22215c y b +=,得2A c ⎛ ⎝,所以22,2,C B c ⎛⎛- ⎝⎝.把点B 的坐标代入椭圆E 的方程,得42242015b c b +=,即2241520c b +=,化简得222016b c =-.又225b c =-,所以2220165c c -=-,得21c =,所以24b =,所以椭圆E 的标准方程为22154x y +=.故选A. 11.答案:B解析:当平面CAB ⊥平面PAB 时,点C 到平面PAB 的距离最大,记点,D E 分别为,PAB ACB 的外心,过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 为三棱锥P ABC -外接球的球心,AO 即为球的半径.因为2π,3APB PA PB ∠==,所以由余弦定理得222412cos 243324AB PA PB PA PB APB ⎛⎫=+-⋅∠=+--= ⎪⎝⎭, 解得2AB =. 在ACB 中,π6ACB ∠=,则π3AEB ∠=, 由正弦定理可得221sin 2AB AE ACB ==∠,解得2AE EB EC ===.记AB 的中点为F,则13OE DF PF AB ====,故R OA ===故三棱锥P ABC -外接球的体积3413395239πππ3334V R ==⨯⨯=,故选B.12.答案:C解析:由'()2()e ()x f x x a f x =-+得()[]'2()e x f x x a =-,所以2()2exf x x ax c =-+(c 为常数),2()(2)e x f x x ax c =-+又(0)1f =,所以1c =,所以2()(2)e x f x x ax c =-+,2'()[2(1)12]e x f x x a x a =-+-,设2()2(1)12g x x a x a =--+-,因为()f x 在(1,1)-上有极值点,所以'()f x 在(1,1)-上变号零点,即()g x 在(1,1)-上有变号零点,因为(1)0g -=,所以0111(1)440a g a ∆>⎧⎪-<-<⎨⎪=->⎩,解得01a <<,故选C. 二、填空题 13.答案:310-解析:由题意,知||||cos,515⎛⋅=〈〉=⨯=-⎝⎭a b a b a b.由⊥m n,得()()0λ+⋅+=a b a b,即221815(1)250λλλλ+⋅+⋅+=-++=a ab a b b,解得310λ=-. 14.答案:7+解析:60,A=︒∴由余弦定理得222a b c bc=+-.又22230,30,3a cb b b b b c-+=∴-+=∴=-(b为边长,故0b≠).11sin22ABCS bc A bc==210,3100bc c c∴=∴--=,解得5c=或2c=-(舍去).2,b a ABC∴==的周长为7+15.答案:π3解析:将直三棱柱111ABC A B C-补成长方体1111ABDC A B D C-,连接1B D.1,CD AB DCB∴∠即为异面直线AB与1CB所成的角,CD ⊥平面11BDD B,1DB⊂平面11BDD B,1CD B D∴⊥.11DD AA==111B D BD AC===,1B D∴=12B C∴=.∴在1Rt B CD中,111cos2CDDCBB C∠==.又1π0,2DCB⎛⎫∠∈ ⎪⎝⎭,1π3DCB∴∠=.16.答案:2解析:如图,过点P 作准线的垂线交准线于点M .焦点()1,0F ,∴准线方程为1x =-,抛物线方程为24y x =.由抛物线的定义可知,PF PM =.又PK =,.PK ∴=∴在Rt PMK 中,PM MK =.设(),P x y ,则1y MK PM x ===+,(),1P x x ∴+.点P 在抛物线上,()214x x ∴+=,解得1x =.()1,2P ∴,KPF ∴为直角三角形,2PF KF ==,PK =设圆C 的半径为r ,则()22r -=2r =三、解答题17.答案:(1)设数列{}n a 的公差为d ,则15815225S a ==,解得815a =.所以3682730716a a a d d +=-=-=,解得2d =,所以1871a a d =-=.所以2(1)22n n n S n n -=+⋅=.n =.因为当1n =1=,当2n ≥(1)1n n =--=,故是首项为1,公差为1的等差数列.(2)由(1)可知21n a n =-,故2(21)2n n n n b a n =⋅=-⋅.故123123252(21)2n n T n =⋅+⋅+⋅++-⋅,23412123252(21)2n n T n +=⋅+⋅+⋅++-⋅,两式相减可得()123122222(21)2n n n T n +-=+⋅+++--⋅=()11141222(21)2(32)2612n n n n n -++-+⋅--⋅=-⋅--,故1(23)26n n T n +=-⋅+.18.答案:(1)由频率分布直方图可知,一刀(10张)宣纸中有正牌宣纸1000.1440⨯⨯=(张),副牌宣纸1000.054240⨯⨯⨯=(张),废品宣纸1000.0254220⨯⨯⨯=(张), 所以估计该公司生产一刀宣纸的利润为40104052010400⨯+⨯-⨯=元, 又400100004000000⨯=,所以估计该公司生产宣纸的年利润为400万元.(2)因为x 服从正态分布2(50)2N ,, 所以4852()0.6826P x <≤=,4456()0.9974P x <≤=, ()()444852560.9740.68260.3148P x P x <≤<≤=-=⋃.设一张宣纸的利润为X 元,则X 的取值为12,8,3,10-, 所以()120.30.68260.20478P X ==⨯=,()80.70.68260.20.3148P X ==⨯+⨯0.477820.062960.54078=+= ()30.80.31480.25184P X ==⨯=,()()()()10112830.0026P X P X P x P X =-=-=-=-==, 所以X 的分布列为所以120.2047880.5407830.25184100.00267.51312EX =⨯+⨯+⨯-⨯=,所以改进生产工艺后,该公司生产一刀宣纸的利润为7.51312100100651.312⨯-=(万元), 因为651.312400>,所以该公司应该购买这种机器. 19.答案:(1) 平面PAD平面PBC l =,BC平面APD ,BCl ∴,PD ⊥平面ABCD ,∴PD BC ⊥,正方形ABCD ,∴BC DC ⊥,又PD DC D =,∴BC ⊥平面PDC ,∴l ⊥平面PDC .(2)建立如图所示的空间直角坐标系.因为1PD AD ==,则有()()()()()0,0,0,0,1,0,0,0,1,1,0,0,1,1,0D C P A B .设(),0,1Q m ,则有()0,1,0DC =,()(),,0,11,1,1DQ m PB ==-,因为QB =,1m =,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎪⎨⋅=⎪⎩,即00y x z =⎧⎨+=⎩,令1x =,得1z =-,所以平面QCD 的一个法向量为()1,0,1n =-,则cos ||||n PB n PB n PB ⋅⋅===. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦20.答案:(1)设(),A AA x y .由题意,2(0)F c ,,c =,()22241A y b cb =-=,因为1F AB ∆是等边三角形,所以2A c y =,即()24413bb +=,解得22b =.故双曲线的渐近线方程为y =.(2)由已知,()12,0F -,()22,0F .设()11,A x y ,()22,B x y ,直线():2l y k x =-.显然0k ≠.由()22132y x y k x -==-⎧⎪⎨⎪⎩,得()222234430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()23610k∆=+>.设AB 的中点为(),M M M x y .由11()0F A F B AB +⋅=,知1F M AB ⊥, 故11F M k k ⋅=-.而2122223M x x k x k +==-,()2623M M k y k x k =-=-,12323F M k k k =-, 所以23123k k k ⋅=--,得235k =,故l的斜率为5±. 21.答案:(1)由题意得,函数()f x 的定义域为()1-+∞,,()11f x a x '=-+. 当0a ≤时,()101f x a x '=->+, ∴函数()f x 在()1-+∞,上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在()1-+∞,上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,121x x a ∴+=+,121x x =,211x x ∴=.32a ≥,111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x ⎛⎫=-- ⎪⎝⎭. 设()221112ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210xh x x x x x-'=--=-<,∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭. 32a ∴≥时,()()12152ln 28x g x g -≥-成立.22.答案:(1)曲线1C 的参数方程为3cos ,sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).2C 的直角坐标方程为228150x y y +-+=,即22(4)1x y +-=.(2)由(1)知,曲线2C 是以2(0,4)C 为圆心,1为半径的圆. 设(3cos ,sin )P ϕϕ,则2PC==当1sin 2ϕ=-时,2PC因为21PQ PC ≤+,当且仅当2,,P Q C 三点共线,且2C 在线段PQ 上时,等号成立.所以max 1PQ =.23.答案:(1)当3a =时,不等式可化为310x x -->,即31x x ->,31x x ∴-<-或31x x ->,解得14x <或12x >. (2)当0a >时,121,,()12(1)1,.x x af x a x x a ⎧-≥⎪⎪=⎨⎪-+<⎪⎩要使函数()f x 的图像与 x 轴没有交点,只需210,2(1)0,a a ⎧->⎪⎨⎪-≤⎩即12a ≤<;当0a =时,()21f x x =+,函数()f x 的图像与x 轴有交点; 当0a <时,121,,()12(1)1,.x x af x a x x a ⎧-≤⎪⎪=⎨⎪-+>⎪⎩要使函数()f x 的图像与 x 轴没有交点,只需210,2(1)0,a a ⎧-<⎪⎨⎪-≤⎩此时a 无解.综上所述,函数()f x 的图像与x 轴没有交点时,实数a 的取值范围为12a ≤<.。

相关文档
最新文档