高三数学理科月考1
高三第一次月考试卷数学

考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4$,则$f(1)$的值为()A. 1B. 2C. 3D. 42. 若$a > 0$,$b > 0$,则下列不等式中恒成立的是()A. $a^2 + b^2 \geq 2ab$B. $a^3 + b^3 \geq 2ab(a + b)$C. $\frac{a}{b} + \frac{b}{a} \geq 2$D. $a^2 + b^2 + c^2 \geq ab + bc + ca$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 50$,$S_8 = 80$,则$a_6 + a_7$的值为()A. 15B. 20C. 25D. 304. 函数$y = \log_2(x + 1)$的图像与直线$y = x - 1$的交点个数是()A. 0B. 1C. 2D. 35. 在直角坐标系中,点$A(1, 2)$关于直线$x + y = 1$的对称点$B$的坐标是()A. $(-2, -1)$B. $(-1, -2)$C. $(2, -1)$D. $(1, -2)$6. 已知复数$z = 3 + 4i$,则$|z|$的值为()A. 5B. 7C. 9D. 127. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,且$a_1 + a_2 + a_3 = 21$,$a_2 \cdot a_3 = 27$,则$q$的值为()A. 3B. $\frac{3}{2}$C. $\frac{2}{3}$D. 18. 在$\triangle ABC$中,$a = 3$,$b = 4$,$c = 5$,则$\sin A$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D.$\frac{5}{4}$9. 已知函数$f(x) = x^2 - 2x + 1$,则$f(x)$的对称轴方程是()A. $x = 1$B. $x = -1$C. $y = 1$D. $y = -1$10. 若平面直角坐标系中,点$P(2, 3)$在直线$l$上,且直线$l$的方程为$y = kx + b$,则$k$的值为()A. 2B. 3C. -2D. -3二、填空题(本大题共10小题,每小题5分,共50分。
江苏省扬州中学2024届高三上学期1月月考数学

江苏省扬州中学2024届高三年级阶段性检测数学 2024.1.15一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}52A x x =-<<,{}33B x x =+<,则A B ⋃=( )A. ()5,0- B. ()6,2- C.()6,0- D. ()5,2-2. (2+3i)(2-3i)=A.5B. -1C. 1D.73. 已知向量()()1,2,3,1a b == ,则a 在a b +上的投影向量为()A.B. C.24,55⎛⎫⎪⎝⎭ D. 86,55⎛⎫ ⎪⎝⎭4. 已知函数()1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则“()()sgn ln sgn 11x x ⨯+=”是“1x >”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 已知()()6221x x a x ++-展开式中各项系数之和为3,则展开式中x 的系数为()A. 10- B. 11- C. 13- D. 15-6. 刍薨是《九章算术》中出现的一种几何体,如图所示,其底面ABCD 为矩形,顶棱PQ 和底面平行,书中描述了刍薨的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()126V AB PQ BC h =+⋅(其中h 是刍薨的高,即顶棱PQ 到底面ABCD 的距离),已知24,AB BC PAD ==△和QBC △均为等边三角形,若二面角P AD B --和Q BC A --的大小均为150︒,则该刍薨的体积为( )A.B.C.D. 7.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当PFPA的值最小时,PF =( )A. 1B. 2C. D. 48. 已知函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在区间π,π2⎛⎫ ⎪⎝⎭内不存在最值,且在区间ππ,43⎡⎤⎢⎥⎣⎦上,满足()f x ≥恒成立,则ω的取值范围是( )A. 1250,,336⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ B. 120,,133⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦C.1150,,636⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ D. 110,,163⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于下列概率统计相关知识,说法正确的是( )A. 数据1,2,3,4,5,6,8,9,11第75百分位数是7B. 若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且M ,N 相互独立,则()()1P N M P N +=C. 由两个分类变量X ,Y 的成对样本数据计算得到28.612χ=,依据0.001α=的独立性检验()0.00110.828x =,可判断X ,Y 独立D. 若一组样本数据()(),1,2,,i i x y i n = 的对应样本点都在直线47y x =-+上,则这组样本数据的相关系数为1-10. 已知圆O :224x y +=,过直线l :60x y +-=上一点P 作圆O 的两条切线,切点分别为A ,B ,则( )A. 若点P 的坐标为(1,5),则PA = B. PAO面积的最小值为C. 直线AB 过定点22,33⎛⎫⎪⎝⎭D. 4AB ⎫∈⎪⎪⎭11. 已知()()2log ,2xf x x xg x x =+=+,若()()2f a g b ==,则( )A. 2b a = B. 2a b += C. 1a b ->D.324ab <<-12. 如图,在棱长为1的正方体1111ABCD A B C D -中,点P 在侧面11AA D D 内运动(包括边界),Q 为棱DC 中点,则下列说法正确的有( )A. 存在点P 满足平面//PBD 平面11B D CB. 当P 为线段1DA 中点时,三棱锥111P A B D -的外接球体积为C. 若()101DP DA λλ=≤≤ ,则PQ PB -最小值为32D. 若QPD BPA ∠∠=,则点P 的轨迹长为2π9三、填空题:本题共4小题,每小题5分,共20分.13. 已知1sin cos 5αα+=-,()0,πα∈,则tan α=__________.14.数列{}n a 满足11a =,且()22*113202,n n n n a a a a n n ---+=≥∈N ,则该数列前5项和可能是___________(填一个值即可)15. 请写出一个同时满足下列两个条件的函数:()f x =__________.①()()2f x f x x ⋅-=-;②函数()f x y x=在()0,∞+上单调递增.16.已知双曲线C :2213y x -=的左、右焦点分别为1F ,2F ,右顶点为E ,过2F 的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为12AF F △,12BF F △的内心,则当1F A AB ⊥时,1AF =____________;1ABF 内切圆的半径为____________.的四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 前n 项和为n S ,且满足__________.①*n ∀∈N ,均有0n a >且()214n n a S +=,②首项11a =,*,m n ∀∈N 均有22m n n S S mn m +=++;从条件①和②中选一个填到题目条件下划线上(若两个都填,以第一个为准),并回答下面问题:(1)求数列{}n a 的通项公式;(2)求数列{}2na na⋅前n 项和n T 的表达式.18. 如图,在四棱锥P ABCD -中,,,22AB CD AB BC AB BC CD PD PC ⊥====∥,设,,E F M 分列为棱,,AB PC CD 的中点.(1)证明://EF 平面PAM ;(2)若PA PM =,求EF 与平面PCD 所成角的正弦值.19. 如图,在ABC 中,BAC ∠,点P 在边BC 上,且,2AP AB AP ⊥=.(1)若PC =,求PB ﹔(2)求ABC 面积的最小值.20.已知椭圆2222:1(0)x y C a b a b +=>>,斜率为2的直线l 与x 轴交于点M ,l 与C 交于A ,B 两点,D 是A 关于y 轴的对称点.当M 与原点O 重合时,ABD △面积为169.(1)求C 的方程;(2)当M 异于O 点时,记直线BD 与y 轴交于点N ,求OMN 周长的最小值.21. 杭州亚运会的三个吉祥物是琮琮、宸宸和莲莲,他们分别代表了世界遗产良渚古城遗址、京杭大运河和西湖,分别展现了不屈不挠、坚强刚毅的拼搏精神,海纳百川的时代精神和精致和谐的人文精神。
2023高三数学第一次月考试题

学校__________________班级__________________姓名__________________座位号__________________第 1 页 共 4 页第 2 页 共 4 页XX 中学2022-2023学年度第一学期高三数学月考试题考试范围:集合与常用逻辑用语;时间:120分钟;命题人:说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答卷前,考生务必将自己的姓名和座位号填写答题卡上;2.回答选择题时,选出给每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷无效;3.考试结束后,将本试卷和带卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.若集合A={x ∈N|x ≤√2 023},a=π,则下列结论正确的是( )A.{a}⊆AB.a ⊆AC.{a}∈AD.a ∉A2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( ) A.不拥有的人们会幸福 B.幸福的人们不都拥有 C.拥有的人们不幸福 D.不拥有的人们不幸福3.已知集合A={1,2,3},B={x|-1<x+1≤3,且x ∈Z},则A ∪B 等于( ) A.{1,2,3} B.{0,1,2,3} C.{-1,0,1,2,3} D.{-1,0,1,2}4.已知A={(x,y)|4x-y=0},B={(x,y)|y=x 2+4},则A ∩B 等于( ) A.{(8,2)} B.{(2,4)} C.{(2,8)} D.{(4,2)}5.已知集合A={x ∈N|x 2≤1},集合B={x ∈Z|-1≤x ≤3},则图中阴影部分表示的集合是( )A.[1,3]B.(1,3]C.{-1,2,3}D.{-1,0,2,3}6.命题“∀x ∈R,x 2-x+2 023>0”的否定是( )A.∃x 0∈R,x 02-x 0+2 023<0B.∃x 0∈R,x 02-x 0+2 023≤0C.∀x ∈R,x 2-x+2 023<0D.∀x ∈R,x 2-x+2 023≤07.已知集合A={1,2,3},B={-1,0,1,2},若M ⊆A,且M ⊆B,则M 的个数为( ) A.1 B.3 C.4 D.68.已知命题p:函数f(x)=2x -2-x 在R 上单调递增,命题q:函数g(x)= sin[2(x+π4)]为奇函数,则下列命题中真命题为( )A.p ∧qB.p ∧﹁qC.﹁p ∧﹁qD.﹁p ∨q 9.下列结论错误的是( )A.“x=1”是“x 2-x=0”的充分不必要条件B.已知命题p:∀x ∈R,x 2+1>0,则﹁p:∃x 0∈R,x 02+1≤0 C.若复合命题p ∧q 是假命题,则p,q 都是假命题D.命题“若x 2-x=0,则x=1”的逆否命题为“若x ≠1,则x 2-x ≠0”10.设全集U={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A,B,我们定义集合运算A-B={x|x ∈A,且x ∉B},A*B=(A-B)∪(B-A).若A={2,3,4,5},B={3,5,6},则A*B 表示的6位字符串是( ) A.101010 B.011001 C.010101 D.00011111.设m,n 为非零向量,则“m ·n>0”是“存在整数λ,使得m=λ n ”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.记不等式组{x +y ≥6,2x -y ≥0表示的平面区域为D,命题p:∃(x,y)∈D,2x+y ≥9;命题q:∀(x,y)∈D,2x+y ≤12.给出了四个命题:①p ∨q;②﹁p ∨q;③p ∧﹁q;④﹁p ∧﹁q,这四个命题中,所有真命题的编号是( )A.①③B.①②C.②③D.③④第Ⅱ卷(非选择题共90分)二.填空题(本大题共4小题,每小题5分,共20分)13.若“∃x 0∈[-1,2],x 02-m>1”为假命题,则实数m 的最小值为 . 14.若集合A={x|8≤2-x2+2x+a≤12}中恰有唯一的元素,则实数a 的值为 .15.已知函数f(x)=ln(x 2+1),g(x)=(12)x -m,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是 .16.下列命题真命题的序号是 . ①∃x 0∈R,sin x 0+cos x 0=√3; ②若p:xx -1<0,则﹁p:xx -1≥0; ③lg x>lg y 是√x >√y 的充要条件;④在△ABC 中,边a>b 是sin A>sin B 的充要条件;⑤“a=2”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的充要条件.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求B及∁U(A∩B);(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值集合.18.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10- x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;(3)由(1)(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论?(要求至少写出两个结论)19.(本小题满分12分)设p:2≤x<4,q:实数x满足x2-2ax-3a2<0(a>0).(1)若a=1,且p,q都为真命题,求x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.20.(本小题满分12分) 已知a≥12,y=-a2x2+ax+c,其中a,c均为实数.证明:对于任意的x∈{x|0≤x≤1},均有y≤1成立的充要条件是c≤34.21.(本小题满分12分)设t∈R,已知命题p:函数f(x)=x2-2tx+1有零点;命题q:∀x∈[1,+∞),1x-x≤4t2-1.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.22.(本小题满分12分)已知不等式5x-3≥-1的解集为A,集合B={x|2ax2+(2-ab)x-b<0}.(1)求集合A;(2)当a>0,b=1时,求集合B;(3)是否存在实数a,b使得x∈A是x∈B的充分条件,若存在,求出实数a,b满足的条件;若不存在,请说明理由.第3 页共4 页第 4 页共4 页。
高三数学第一次月考试卷及解答试题

卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
陕西省宝鸡市重点高中2023届高三上学期第一次月考 数学(理)试题

2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
高三第一次月考数学试卷

高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。
2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]
![2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]](https://img.taocdn.com/s3/m/4ca444db8662caaedd3383c4bb4cf7ec4afeb6db.png)
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
高三第一次月考数学知识点

高三第一次月考数学知识点高三的学生们即将迎来人生中的重要一年,这一年的成绩将直接关系到他们的升学和未来的发展。
而第一次月考就是高三学生们检验自己学业水平的重要时刻。
其中,数学作为理科必修科目之一,占据了相当重要的地位。
下面,我将从几个关键的数学知识点入手,为大家简要介绍一下高三第一次月考中可能涉及到的内容。
第一个知识点是函数。
在高三数学课程中,函数是一种重要的数学概念。
它是一个变量之间的关系,通常用f(x)或y来表示。
在月考中,常见的函数类型有线性函数、二次函数、指数函数、对数函数等。
我们需要熟悉它们的性质,掌握它们的图像特征和变换规律,并能够根据函数的特性进行运算和解题。
第二个知识点是三角函数。
三角函数是数学中的重要内容,它们在几何、物理、工程等领域中有广泛的应用。
在月考中,我们需要掌握正弦、余弦、正切等三角函数的基本性质,熟悉它们在单位圆上的定义和图像特征。
同时,还需要能够应用三角函数解决实际问题,如求解角度、边长等。
第三个知识点是导数与微分。
导数是微积分的重要内容,它描述了函数在某一点处的变化率。
在月考中,我们需要了解导数的定义、性质和运算法则,能够求函数的导数,并应用导数解决相关问题。
此外,还需要掌握微分的概念和运算法则,了解微分在几何和物理中的应用。
第四个知识点是数列与数学归纳法。
数列是一种由一系列数字组成的序列,它在数学中有广泛的应用。
我们需要掌握数列的定义、性质和通项公式,并能够求解数列的前n项和等。
同时,数学归纳法是解决数列问题的重要工具,我们需要了解归纳法的思想和基本步骤,并能够运用归纳法证明数学命题。
第五个知识点是概率与统计。
概率与统计是数学中的一门重要学科,它们描述了随机事件的发生规律。
在月考中,我们需要掌握概率的基本概念和性质,包括样本空间、事件、概率计算等。
同时,还需要了解统计学的基本概念和方法,包括数据的收集和整理、统计量的计算和解释等。
以上仅仅是高三第一次月考中可能涉及到的数学知识点的一个简要介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.若函数 的定义域为 ,则实数 的值等于()
A. 1 B.-1 C.-2 D.
二、填空题(每题5分,共20分)
13.设向量 ,向量 ,且 ,则 =
14.观察式子 , , ,则可以归纳出 ___.
15.若 ,则 的值为.
16.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为
(1)求 的分布列和数学期望;
(2)求“ ”的概率。
19.(本题12分)已知二项式 的展开式中前三项的系数成等差数列.
(1)求 的值;
(2)设 .求 的值;
20.(本题12分)一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
2.已知全集 集合 , ,则 为
(A){2,3,4,6} (B){2,4,5,6} (C){2,3,4,6} (D){1,2,3,4}
3.已知等差数列 的通项公式为 ,则 的展开式中含 项的系数是该数列的()
A.第20项B.第19项C.第17项D.第16项
4.箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第四次取球之后停止的概率为()
2013—2014学年度第一学期
高三理科数学第一次阶段考试题
一.选择题(每题5分,共60分)
1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()
A.假设三内角都大于60度;B.假设三内角都不大于60度;
C于60度。
三.解答题(共70分):
17.(本题10分)已知f(x)是二次函数,且满足f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)解不等式f(x)>2x+5
18.(本题12分)学校举行“珍爱生命”校园安全教育演讲赛,某班从4名男同学和2名女同学中任选3人参加比赛。如果设随机变量 表示所选3人中女同学的人数.
21.(普通班做,本题12分)分两个人射击,甲射击一次中靶概率是 ,乙射击一次中靶概率是 ,
(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
(3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
22.(本题满分12分)已知a为实数, 。
(1)求导数 ;
(2)若 ,求 在[-2,2]上的最大值和最小值;
(3)若 在 和 上都是递增的,求a的取值范围.
A.2-8B.3·2-10C.2-4D.3·2-2
9.已知 是等差数列, ,其前10项和 ,则其公差 ()
A. B. C. D.
10.在复平面内,复数z= + i对应的向量为 ,复数 对应的向量为 .那么向量 对应 的复数是()
A.1B. C. D.
11.已知函数 有极大值和极小值,则实数 的取值范围是()
种。(用数字作答)
2013—2014学年度第一学期高三理科数学第一次阶段考试题
(答题卷)
一.选择题(每题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、填空题(每题5分,共20分)
13._______________; 14._____________ 15._____________; 16.______________.
A. B. × C. ( )3×( ) D.C ( )3×( )
5.阅读右图所示的程序框图,运行相应的程序,输出的n的结果是()
A. B. C. D.
6.函数 的定义域为()
A. B.
C. D.
7.已知点 ( ),则“ ≥2且 ≥2”是“点 在圆 ”外的()
8.若X~B(n,p)且EX=6,DX=3,则P(X=1)的值为()