课题绝对值三角不等式

合集下载

课题:绝对值三角不等式

课题:绝对值三角不等式

课题:绝对值三角不等式红岭中学 隗双和教学目标:知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简单的应用。

过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。

情感、态度与价值观:体验不等式的美感,提高推理能力,增强学习兴趣。

能运用所学的知识,正确地解决的实际问题.教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。

教学难点:绝对值三角不等式的发现和推导、取等条件。

授课类型:新授课 课时安排:1课时教 具:多媒体辅助。

教学过程:一、复习引入:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

本节课探讨不等式证明这类问题。

1.请同学们回忆一下绝对值的意义。

⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。

几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

即2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。

(2)2a a =, (3)b a b a ⋅=⋅, (4))0(≠=b baba 那么?b a b a +=+?b a b a +=-二、讲解新课:结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.)探究: ,,a b a b +, 之间的什么关系?b a -aba b+方法一:证明:10 .当ab ≥0时, 20. 当ab <0时,综合10,20知定理成立.方法二:分析法,两边平方(略)定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.) (1)若把,a b 换为向量,a b 情形又怎样呢?(2)若把,a b 换为复数12,z z ,结论:1212z z z z ++≤成立吗?根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。

第一讲(二)(1):绝对值三角不等式

第一讲(二)(1):绝对值三角不等式

定理2: 如果a,b,c是实数,则
|a-c||a-b|+|b-c|
当且仅当(a-b)(b-c)0时,等号成立. 证明:根据定理1,有: |a-c|=|(a-b)+(b-c)| |a-b|+|b-c| 当且仅当(a-b)(b-c)0时,等号成立.
9
知识应用
例1 已知 0, | x a | ,| y b | . 求证:| 2 x 3 y 2a 3b | 5 .
例:解不等式 | 5x-6 | < 6 – x
(0,2)
解不等式 | 5x-6 | < 6 – x
有更一般的结论:
|f(x)|<g(x) |f(x)|>g(x) -g(x)<f(x)<g(x) f(x)>g(x) 或f(x)<-g(x)
-2 0 2 -a a 类比:|x|<3的解 |x|>3 的解 -a<x<a 归纳:|x|<a(a>0)
ቤተ መጻሕፍቲ ባይዱ
|x|<-2的解
|x|>a (a>0) |x|>-2的解 X>a 或 x<-a
引伸:
如果把|x|<2中的x换成“x-1”,也就是 | x-1 | <2如何解?
如果把|x|>2中的x换成“3x-1”,也就 是
巩固练习:
求下列不等式的解集
① |2x+1|<5
② 3|1-4x|>9 ③ |4x|<-1
(-3,2) (-∞,-1/2)∪(1,+ ∞)

R
④ |x2-5x|>-6
⑤ 3<| 2x+1 | <5

绝对值三角不等式 课件

绝对值三角不等式 课件

证明:∵m 等于|a|,|b|和 1 中最大的一个,|x|>m,
|| > ≥ ||
|| > ||,




||
||
>


||


∴ + 2 ≤
+ 2 = +
2




||
|| > |b|.
|| > ≥ 1
||
2
|| ||
<
+ 2 =2.故原不等式成立.
2
||
||
∴-4≤y≤4.
∴yma x=4,y min =-4.
迁移与应用
如果关于 x 的不等式|x-3|+|x-4|<a 的解集为空集,求参数 a
的取值范围.
解:只要 a 不大于|x-3|+|x-4|的最小值,则|x-3|+|x-4|<a 的解集
为空集,而|x-3|+|x-4|=|x-3|+|4-x|≥|x-3+4-x|=1,
=|(x-a)(x+a-1)|
=|x-a||x+a-1|
<|x+a-1|
=|Байду номын сангаас-a+2a-1|
≤|x-a|+|2a-1|
<1+|2a|+1
=2(|a|+1),
∴|f(x)-f(a)|<2(|a|+1).
迁移与应用
已知 f(x)=x2 -2x+7,且|x-m|<3,求证:|f(x)-f(m)|<6|m|+15.

绝对值三角不等式PPT课件

绝对值三角不等式PPT课件

误区警示
例 求证:1+|a+|a+b|b|≤1+|a||a|+1+|b||b|.
【 错 证 】 ∵ |a + b|≤|a| + |b|,1 + |a + b|>0,

|a+b| 1+|a+b|

|a|+|b| 1+|a+b|

|a| 1+|a+b|

1+||ba+| b|≤1+|a||a|+1+|b||b|.
y x a a y b M a . 2M 2 a
典例讲评
例4.已知 | a | 1, | b | 1, 求证 a b 1
证明:a b
1
(a b)2
1 ab
1
1 ab
(1 ab)2
a2 2ab b2 1 2ab a2b2
变式训练 2 设 a,b∈R,ε>0,|a|<4ε, 2
|b|<3ε. 求证:|4a+3b|<3ε. 证明:∵|a|<4ε,|b|<23ε. ∴|4a+3b|≤|4a|+|3b|
=4|a|+3|b|<4·4ε+3·23ε=3ε.
例3 已知a,b,c是实数,函数f(x)=ax2+ bx + c , g(x) = ax + b , 当 - 1≤x≤1 时 , |f(x)|≤1. (1)证明:|c|≤1; (2)证明:当-1≤x≤1时,|g(x)|≤2. 【思路点拨】 对于(1)用一般到特殊的思想, 即c=f(0). 对于(2)分a>0,a=0,a<0根据函数的单调 性讨论.
【解析】 (1)法一:特殊值法:取x=1,y =-2,则满足xy=-2<0, 这样有|x+y|=|1-2|=1, |x-y|=|1-(-2)|=3, |x|+|y|=3,||x|-|y||=1, ∴选项C成立,A,B,D不成立. 法二:由xy<0得x,y异号, 易知|x+y|<|x-y|,|x-y|=|x|+|y|, |x-y|>||x|-|y||, ∴选项C成立,A、B、D不成立.

5.2绝对值三角不等式A 课件(人教A版选修4-5)

5.2绝对值三角不等式A 课件(人教A版选修4-5)

探究 你能比较 a b 与 a b
a b a b a b a b a b a b
之间的大小关
当ab>0时,
当ab<0时, 当ab=0时,
你能将上述情况综合起来吗?
定理1
如果a,b是实数,则 当且仅当
a b a b
ab 0 时,等号成立。
如果把定理1中的实数a,b分别换为向量
例2
两个施工队分别被安排在公路沿线的两个地点施工, 这两个地点分别位于公路路牌的第10km和第20km 处。现要在公路沿线建两个施工队的共同临时生活区, 每个施工队每天在生活区和施工地点之间往返一次。 要使两个施工队每天往返的路程之和最小,生活区应 该建于何处?
分析:如果生活区建于公路路牌的第xkm处,两个施工队每天往返的路程 之和为S(x)km,那么 S x 2 x 10 x 20 于是,上面的问题就化 归为数学问题:当x取何值时,函数 S x 2 x 10 x 20 取得最小
10 x 20
所以,生活区建于两个施工地点之间的任何一个位置时, 都能使两个施工队每天往返的路程之和最小。
70
60
s x = 2 x-10 + x-20
50
40
30
20
10
-60
-40
-20
10
20
40
60
80
100
-10
-20
-30




值。这个问题可以应用绝对值不等式的性质来解。
解:设生活区应该建于公路路牌的第xkm处,两个施工队 每天往返的路程之和为S(x)km,则 因为
S x 2 x 10 x 20

绝对值三角不等式

绝对值三角不等式
绝对值三角不等式
单击添加副标题
汇报人:
目录
01
单击添加目录项标题
02
03
绝对值三角不等式的证明
04
05绝Biblioteka 值三角不等式的推广绝对值三角不等式的定义 绝对值三角不等式的应用
01
添加章节标题
02
绝对值三角不等式的定义
绝对值三角不等式的表述
绝对值三角不等 式是描述两个实 数和b之间关系的 不等式
绝对值三角不等 式的形式为|b|≤||+|b|
在解析几何中的应用
确定平面上的点:通过 绝对值三角不等式可以 确定平面上的点与原点 的距离和角度。
确定直线的位置:通 过绝对值三角不等式 可以确定直线与原点 的距离和角度从而确 定直线的位置。
确定平面的位置:通 过绝对值三角不等式 可以确定平面与原点 的距离和角度从而确 定平面的位置。
确定曲面的位置:通 过绝对值三角不等式 可以确定曲面与原点 的距离和角度从而确 定曲面的位置。
在不等式证明中的应用
绝对值三角不等 式是证明不等式 的重要工具
可以用于证明一 些常见的不等式 如均值不等式、 柯西不等式等
在解决一些数学 问题中如求最值、 证明不等式等也 可以使用绝对值 三角不等式
在解决一些实际 问题中如物理、 工程等也可以使 用绝对值三角不 等式进行计算和 证明
05
绝对值三角不等式的推广
绝对值三角不等式的形式:||+|b|≥|+b|
利用绝对值的性质证明绝对值三角不等式:通过比较||+|b|和|+b|的大小得出绝对值三角不等 式的结论
利用三角形的性质证明
三角形两边之和大于第三边 三角形两边之差小于第三边 三角形两边之积大于第三边 三角形两边之积小于第三边 三角形两边之积等于第三边 三角形两边之积等于第三边

绝对值三角形不等式公式推导

绝对值三角形不等式公式推导

绝对值三角形不等式公式推导绝对值三角形不等式公式推导一、引言绝对值三角形不等式是解决绝对值不等式问题的基本工具之一,在数学中有着广泛的应用。

它主要用于解决包括代数和几何问题在内的多种数学问题。

在本文中,我将深入探讨绝对值三角形不等式的导出过程,并结合具体例子进行解释,以帮助读者更好地理解和掌握这一重要的数学概念。

二、绝对值三角形不等式公式的基本定义为了全面了解绝对值三角形不等式的公式推导过程,我们需要先了解其基本定义。

假设a和b是实数,那么绝对值三角形不等式可以表达为:|a + b| ≤ |a| + |b|这一不等式是指,两个数的绝对值之和不大于其各自绝对值的和。

这一概念对于处理绝对值的复杂运算问题起到了重要的作用。

接下来,我将详细介绍绝对值三角形不等式的推导过程,帮助读者全面理解这一概念。

三、绝对值三角形不等式公式的推导过程为了推导绝对值三角形不等式的公式,我们可以利用数轴的性质和绝对值的定义进行推导。

我们假设a和b是实数且a≥0,b≥0。

现在,我们来看一下具体的推导过程:1. 我们假设a≥0,b≥0。

根据数轴的性质,a和b对应的点分别为A 和B,那么|a|和|b|分别表示点A和B到原点的距离。

2. 现在,我们考虑点C,它表示a+b对应的实数。

根据数轴的性质,我们可以知道|a+b|表示点C到原点的距离。

3. 根据三角形两边之和大于第三边的性质,我们可以得出结论:|a + b| ≤ |a| + |b|通过以上推导过程,我们可以得出绝对值三角形不等式的公式。

这一推导过程清晰地展现了绝对值三角形不等式的基本原理和应用。

四、绝对值三角形不等式公式的应用举例为了更好地理解绝对值三角形不等式的应用,我们可以通过具体的例子来说明。

例1:求解|2x + 1| ≤ 5的解集。

解:根据绝对值三角形不等式的公式,我们可以得出:|2x + 1| ≤ 5-5 ≤ 2x + 1 ≤ 5-6 ≤ 2x ≤ 4-3 ≤ x ≤ 2|2x + 1| ≤ 5的解集为-3 ≤ x ≤ 2。

高二数学人选修课件绝对值三角不等式

高二数学人选修课件绝对值三角不等式

03
一元二次绝对值三
角不等式
一元二次绝对值不等式解法
零点分段法
通过找出不等式中绝对值符号内表达式的零点,将数轴分为若干个区间,然后在每个区间内去掉绝对 值符号进行讨论,最后综合各个区间的解得到原不等式的解集。
平方去绝对值法
对于形如$|f(x)|>g(x)$或$|f(x)|<g(x)$的不等式,可以通过平方去掉绝对值符号,转化为一般的不等 式进行求解。但需要注意,平方时可能会扩大或缩小原不等式的解集,因此需要对解集进行检验。
排序不等式
对于两组实数序列{ai}和{bi},若a1 ≤ a2 ≤ ... ≤ an,b1 ≤ b2 ≤ ... ≤ bn, 则有∑ai*bi ≥ ∑aj*bk(其中j, k为任 意排列),当且仅当ai与bi一一对应 时取等号。排序不等式可用于解决一 些与顺序有关的问题。
均值不等式
对于任意正实数a, b,有√(ab) ≤ (a + b)/2 ≤ √[(a^2 + b^2)/2]。均值 不等式可用于解决一些与平均值有关 的问题。
02
一元一次绝对值三
角不等式
一元一次绝对值不等式解法
零点分段法
根据绝对值的定义,将绝对值不 等式转化为分段函数,然后分别 求解每一段的不等式。
几何意义法
利用绝对值的几何意义,将绝对 值不等式转化为数轴上的距离问 题,从而进行求解。
一元一次三角不等式解法
三角函数性质法
利用三角函数的性质,如周期性、奇 偶性、单调性等,将三角不等式转化 为普通的不等式进行求解。
三角函数的单调性
利用三角函数的单调性,可以求解一些简单的三角不等式。例如,对于$sin x geq frac{1}{2}$,由于$sin x$在$[0, frac{pi}{2}]$上单调递增,因此解集为$[2kpi + frac{pi}{6}, 2kpi + frac{5pi}{6}]$($k in Z$)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:绝对值三角不等式
红岭中学 隗双和
教学目标:
知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会
进行简单的应用。

过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合
的数学思想,并能运用绝对值三角不等式公式进行推理和证明。

情感、态度与价值观:体验不等式的美感,提高推理能力,增强学习兴趣。

能运用所学的知
识,正确地解决的实际问题.
教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。

教学难点:绝对值三角不等式的发现和推导、取等条件。

授课类型:新授课 课时安排:1课时
教 具:多媒体辅助。

教学过程:
一、复习引入:
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

本节课探讨不等式证明这类问题。

1.请同学们回忆一下绝对值的意义。

⎪⎩

⎨⎧<-=
>=0000x x x x x x ,如果,如果,如果。

几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。


2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。

(2)2
a a =, (3)
b a b a ⋅=⋅, (4)
)0(≠=
b b
a
b
a 那么?
b a b a +=+?b a b a +=-
二、讲解新课:
结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)
已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.)
探究: ,,a b a b +, 之间的什么关系?
b a -
a
r b
r a b
+r r 方法一:证明:10 .当ab ≥0时, 20
. 当ab <0时,
综合10,20知定理成立.
方法二:分析法,两边平方(略)
定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.)
(1)若把,a b 换为向量,a b r r
情形又怎样呢?
(2)若把,a b 换为复数12,z z ,结论:1212z z z z ++≤成立吗?
根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。

所以,b a b a -≥+。

定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤ 注:当a b 、为复数或向量时结论也成立. 推论1
1212n n a a a a a a ++++++L L ≤
推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.
思考:如何利用数轴给出推论2的几何解释?
(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

这就是上面的例3。

特别的,取c =0(即C 为原点),就得到例2的后半部分。

) 三、典型例题:
a r b
r ||,
||||||=+=====+ab ab a b a
b ||,||||||
=-+===<==+ab ab a b a b a b
+r r
例1、已知 2
,2c
b y
c a x <-<
-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)
2
,2c b y c a x <-<
-Θ, ∴c c
c b y a x =+<-+-2
2 (2)
由(1),(2)得:c b a y x <+-+)()(
例2、已知.6,4a
y a x <<
求证:a y x <-32。

证明 6,4a y a x <<Θ,∴2
3,22a
y a x <<,
由例1及上式,a a
a y x y x =+<+≤-2
23232。

注意: 在推理比较简单时,我们常常将几个不等式连在一起写。

但这种写法,只能用于不等号方向相同的不等式。

例3 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10公里和第20公里处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处?
解:如果生活区建于公路路碑的第 x km 处,两施工队每天往返的路程之和为S(x)km 那么 S(x)=2(|x-10|+|x-20|)
四、课堂练习:
1.(课本20P 习题1.2第1题)求证:
⑴2a b a b a ++-≥;⑵2a b a b b +--≤ 2. (课本20P 习题1.2第3题)求证:
⑴x a x b a b -+--≥;⑵x a x b a b ----≤ 3.(1)、已知.2,2c
b B
c a A <-<
-求证:c b a B A <---)()(。

(2)、已知.6
,4c
b y
c a x <-<-求证:c b a y x <+--3232。

五、课堂小结:
1.实数a 的绝对值的意义:
·10
x
··20
⑴(0)0(0)(0)a a a a a a >⎧⎪
==⎨⎪-<⎩
;(定义)
⑵a 的几何意义:
2.定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤注意取等的条件。

六、课外作业:1。

必做:课本19第2,4,5。

2.选作:(1).求证
.111b
b a
a b
a b a ++
+≤
+++
(2).已知 .1,1<<b a 求证:
.11<++ab
b
a
七.教学反思:
绝对值三角不等式结构优美,构思巧妙,他的发现、证明、应用能够培养学生的探索、发现、推理能力,有着良好的培养学生能力的机会,因此本节课之前应该给学生安排课外预习、自学绝对值三角不等式的含义、意义、证明等重要内容,以让学生对绝对值三角不等式有初步的了解,本节课上可以放手让学生探索绝对值三角不等式的发现、意义和特点、证明的方法、 应用的结构特点等问题,使课堂内容更加丰富,学生思维活动更加主动、激烈,另外在探究过程中,学生个体的差异比较明显,对于部分反应较慢的学生,要加强及时课堂的个别指导,从而更加体现新课程的要求,全面锻炼学生的能力。

相关文档
最新文档