有机课件 3 第三章__环烷烃2
合集下载
有机化学-环烷烃

得到的构型与原来的构型一样。 椅式C-H键的分类: 6个直立键:3个朝上,3个朝下。
23
都叫a键。平行于C3轴。
6个平伏键:3个朝上,3个朝下。
都叫e键,与直立键成109°28/。
结论:
C3
①. 椅式是环己烷的最稳定的构象,在各种构象的
平衡混合物中,椅式占99.9%。 因为在椅式构象中,相邻两个碳原子上C-H键都
1. 物理性质(自学) 2. 化学反应 1). 取代反应
+ Br2
hν
Br
+ HBr
机理:自由基机理 取代反应一般在五、六元环上易发生。
12
2). 加成反应 小环易发生加成反应。
①. 加 H2
+ H2
Ni
+ H2 + H2
② . 加 X2
40℃ Ni CH CH CH CH 3 2 2 3 100℃
16
三. 环烷烃的稳定性 (Stability of Cycloalkanes)
为什么三元环不稳定易发生加成?
为什么五元环、六元环较稳定不易发生开环加成,而易
发生取代? 1. 拜尔(Baeyer )张力学说要点
①. 形成环的碳原子都在同一平面上,并排成正多边形。 ②. 正常C-C键之间夹角为109.5°,环中C-C键之间夹
第三章 环烷烃
主讲:徐华
一. 环烷烃的分类、命名和异构 二. 环烷烃的物理性质和化学反应 三. 环烷烃的稳定性 四. 环烷烃的构象
2
一. 环烷烃的分类、命名和异构 概述:单环环烷烃通式:CnH2n 1. 分类
,
与烯烃互为异构体。
环烷烃的性质与烷烃相似。
小环:3~4个碳原子。 普通环:5~7个碳原子。 单环体系 中环:8~11个碳原子。 大环:12个以上碳原子。 螺环:两个环公用一个碳原子,公用的碳叫螺碳。 多环体系 桥环:两个环公用两个或两个以上碳原子。
环烷烃

CH3 CH3C CHCH 3 Br CH3
+ HBr
(主)
2013-11-18 30
四、氧化反应
环丙烷与烯烃既类似又有区别,环丙烷
有抗氧化能力,不使KMnO4水溶液褪色。
应用:环丙烷和不饱和烃
2013-11-18
31
空气 钴盐 OH
+
O
O
O2
O
+
O
2013-11-18
32
3.5 环烷烃的稳定性
椅式
2013-11-18
50
1 3 4 5 2 6
半椅式
2013-11-18 51
4
5
6
1
3
2
船式
2013-11-18 52
扭船式
2013-11-18 53
1. 椅式
5 4 3
6 2
1
2013-11-18
54
4
5
6
3
2
C3
1
碳1、2、4、5在同一平面上,是椅座。 碳1、5、6在同一平面上,是椅背。 碳2、3、4在同一平面上,是椅腿。
转角,并且环越大,偏转角越大,张力越大。
这一推论不正确。这是由于张力学说前提
不合理,即环中碳原子在同一平面内不合理。 拜尔张力学说存在于小环中。
2013-11-18 38
二、分子中的张力
现代理论认为:分子能量的升高,都是分
子中存在张力的结果。有机分子中可能存在 的张力主要有4种。 (1)Van der Waals张力——非键作用力。Enb (2)键张力——键长偏离正常值引起的张力。El
CH3 CH3
1,1-Dimethylcyclohexane
+ HBr
(主)
2013-11-18 30
四、氧化反应
环丙烷与烯烃既类似又有区别,环丙烷
有抗氧化能力,不使KMnO4水溶液褪色。
应用:环丙烷和不饱和烃
2013-11-18
31
空气 钴盐 OH
+
O
O
O2
O
+
O
2013-11-18
32
3.5 环烷烃的稳定性
椅式
2013-11-18
50
1 3 4 5 2 6
半椅式
2013-11-18 51
4
5
6
1
3
2
船式
2013-11-18 52
扭船式
2013-11-18 53
1. 椅式
5 4 3
6 2
1
2013-11-18
54
4
5
6
3
2
C3
1
碳1、2、4、5在同一平面上,是椅座。 碳1、5、6在同一平面上,是椅背。 碳2、3、4在同一平面上,是椅腿。
转角,并且环越大,偏转角越大,张力越大。
这一推论不正确。这是由于张力学说前提
不合理,即环中碳原子在同一平面内不合理。 拜尔张力学说存在于小环中。
2013-11-18 38
二、分子中的张力
现代理论认为:分子能量的升高,都是分
子中存在张力的结果。有机分子中可能存在 的张力主要有4种。 (1)Van der Waals张力——非键作用力。Enb (2)键张力——键长偏离正常值引起的张力。El
CH3 CH3
1,1-Dimethylcyclohexane
有机课件 3 第三章__环烷烃2概要

螺环烃
要点复习
1、链状化合物系统命名的两个要点——选主链、编号
选主链:①靠近主官能团;②最先碰面;③先小后大。
编号:①含主官能团最长C链;②含尽量多的母体官 能团;③含尽量多的取代基。 举例练习: C2H5 1 2 3 4 CH3–CH–CH–CH–CH2–CH3 ? CH3 CH(CH3)2 5 6 2,5-二甲基-3,4-二乙基己烷
化学反应
小环化合物的特殊性质 —— 易开环加成
小环化合物的催化加氢
H2 / Pt, 50oC or Ni, 80oC
2
CH3CH2CH3
2
H2 / Pt, 50oC
3 1
CH3
3
CH2CH3
or Ni, 80oC
CH3CHCH2CH3
1
H2 / Pt, 120oC or Ni, 200 C
o
三、环己烷的构象
1. 两种典型构象式: conformation
5
0.250nm 6 4 1 3 2
{boat form
chair form
(1)椅式构象的特点: ①6C2平面(3C,3C),距离0.05nm. ②12个C-H键分为两种类型:6个直立键(axial bond)即a键, 6个平伏键(equatorial bond)即e键。 ③所有键角都为109°28´而无角张力。 ④任何相邻的两个碳原子之间都为交叉式构象而无扭转张力。 ⑤任何两个C-H键的距离都大于范德化半径而无范德化张力。
桥环烃(Bridged hydrocarbon)的命名
桥头碳原子
10 9 8 7 1 2 3 4 5
桥头间的碳原子数
(用"."隔开)
有机化学第三章环烷烃

※ 在不同的环烃中键角大于或小于 109o28’,而正常的 SP3 杂化轨道之间的夹角为 109°28′ 即 C - C 之间的电子云 没有达到最大程度的重叠。
1 (109° 28′-60° )= 24° 64′ 2 1 (109° 28′-90° )= 9° 44′ 2 1 (109° 28′-108° )= 0° 44′ 2 1 (109° 28′-120° )= -5° 16′ 2
两个环共用两个或两个以上碳原子的化合物称桥环化合物。
3、环戊烷的结构
C:sp3杂化,轨道夹角109.5o,五边形内角为108o角张力: 109.5-108=1.5o 可见,环戊烷分子中几乎没有什么角张力,故五元 比较稳定,不易开环,环戊烷的性质与开链烷烃相似。
事实上,环戊烷分子中的五个碳原子亦不共 平面,而主要是以“信封式”构象存在,使 五元环的环张力可进一步得到缓解。
二、化学性质
结构分析:C-C, C-H σ键牢固,化性稳定,似烷烃;
但C3—C4环易破,环可以加成,似烯烃。
1、取代反应
+ Cl2 光照 + HCl Cl Cl + HCl
+ Cl2
加热 300oC
反应条件加强, 反应程度减弱。
2、加成反应
小环烷烃,特别是环丙烷,和一些试剂作用时易发生开环。 A: 加氢(随碳原子数增加,环的稳定性增加;加氢反应条 件也愈苛刻)
7 6 5 4 3
9 1 2 8
10
1 2 5
7
6
5 4
3 2 1 CH3
7 CH3
6
4
3
8
9
螺[2, 4]庚烷
7-甲基螺[4, 5]癸烷
1-甲基螺[3,5]-5-壬烯
第三章环烷烃

H (1 2 0 p m ) H CH3 CH3
(2 0 0 p m )
CH3
取代基的体积越大,e键的比例越高
C(CH
3)3
~100%
2) 二取代环己烷的构象
CH3 E=10.4 kJ/mol CH3 CH3 CH3
试比较顺式和反式 1,4-二甲基环己烷的稳定性。
H3 C CH3
CH3 a CH3 a
1-甲基螺[3.4]辛烷
2.编号从连接螺碳的小环的碳开始; 3.将编号和取代基名称写在螺字前.
2.桥环烃
两个环共用两个或两个以上碳原子的多环烃。两 个碳原子之间的距离叫桥,桥的交点为桥头碳。
二环[1.1.0]丁烷 bicyclo[1.1.0]butane
CH
3
二环[2.2.1]庚烷 bicyclo[2.2.1]heptane
四元环
60°
9 °44′
0 ° 44′ -5 °16 ′
五元环 六元环
109° 8′ 2
解释了小环化合物的性质,大环化合物的出现否 定了该学说。因六元环以上的环烷烃的碳原子能以正 常的键角成键,因此稳定性很高。
2.张力因素
引起分子不稳定的因素
范德华张力 非键原子之间的距离较近时引起的排斥作用。 角张力 键张力 扭转张力
信封式
4.环己烷及其衍生物的构象 (1) 环己烷的构象 极端构象: A)椅式构象 透视式
H 2 H H 1 H H 250pm H 3 H H 5 H H 4 H H
椅式
船式 纽曼投影式
H
H
H
H H
6 1
H H H
2 5
H H
4
H
6
交叉型
3
(2 0 0 p m )
CH3
取代基的体积越大,e键的比例越高
C(CH
3)3
~100%
2) 二取代环己烷的构象
CH3 E=10.4 kJ/mol CH3 CH3 CH3
试比较顺式和反式 1,4-二甲基环己烷的稳定性。
H3 C CH3
CH3 a CH3 a
1-甲基螺[3.4]辛烷
2.编号从连接螺碳的小环的碳开始; 3.将编号和取代基名称写在螺字前.
2.桥环烃
两个环共用两个或两个以上碳原子的多环烃。两 个碳原子之间的距离叫桥,桥的交点为桥头碳。
二环[1.1.0]丁烷 bicyclo[1.1.0]butane
CH
3
二环[2.2.1]庚烷 bicyclo[2.2.1]heptane
四元环
60°
9 °44′
0 ° 44′ -5 °16 ′
五元环 六元环
109° 8′ 2
解释了小环化合物的性质,大环化合物的出现否 定了该学说。因六元环以上的环烷烃的碳原子能以正 常的键角成键,因此稳定性很高。
2.张力因素
引起分子不稳定的因素
范德华张力 非键原子之间的距离较近时引起的排斥作用。 角张力 键张力 扭转张力
信封式
4.环己烷及其衍生物的构象 (1) 环己烷的构象 极端构象: A)椅式构象 透视式
H 2 H H 1 H H 250pm H 3 H H 5 H H 4 H H
椅式
船式 纽曼投影式
H
H
H
H H
6 1
H H H
2 5
H H
4
H
6
交叉型
3
胡宏纹第四版有机化学-第三章 环烷烃(上下)(完整版)

1,5-二甲基螺 [3,5]壬烷
7
6
12
2
54
3
2,7,7-三甲基二环[2,2,1]庚烷
CH3
1
56
4
3
9
7 8
2,8-二甲基-1-乙基二环[3,2,1]辛烷
1,8-二甲基-2-乙基-6-氯-双环[3,2,1]辛烷
8
1
7
2
8
71
6
2
1 8
2 10
97
3
Cl 6 5 4
3
5
43
65 4
三环[3,3,11,5 ,13,7 ]癸烷
Br
Br + HBr
CH2CH2Br
+ Br2
rt
Br
FeBr3
C: 与卤化氢加成
+ HBr
CH3CH2CH2Br
+ HBr
CH3CHCH2CH3
Br
规律:环丙烷衍生物与HX加成时,环的破裂处发生在
连接烷基最多的和最少的碳原子间,加成时产
物符合马氏规则,卤素加在含H较少的C上,H
加
在含H较多的C上。
7
6
1
5
32
4
9 10 1
2 8
5
3
7
64
CH3
螺[2, 4]庚烷
7-甲基螺[4, 5]癸烷
9 10 1
5 8
母体为:螺[3,4]辛烷
65 3
5-甲基螺[3,4]辛烷
7 8
4 2
1 9
CH3
2
1-甲基螺[3,5]-5-壬烯
螺[4,5]-1,6-癸二烯
3
76 4
有机化学-环烷烃

➢ 环外基团作为环上的取 代基
1
1
2
2 3
➢ 取代基位置数字取最小
3 4
1, 3-二甲基环己烷
1, 3-dimethylcyclohexane
1-甲基-4-异丙基环己烷
4-isopropyl-1methylcyclohexane
CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷 (cis-1, 3-dimethylcyclopentane)
桥头碳原子
10 2
9
1
3
8
6
4
7
5
十氢萘
环的数目
桥头间的碳原子数
(用"."隔开)
二环[4. 4. 0]癸烷
bicyclo[4. 4. 0]decane
组成桥环的 碳原子总数
✓桥 头 碳:几个环共用的碳原子, ✓环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C
键可成链状烷烃为三环 ✓桥头间碳原子数:不包括桥头C,由多到少列出 ✓环的编号方法:从桥头开始,先长链后短链
椅式构象
H
H
3
H
H
2
1
H H4
56
H H
H
H
H
H
H H3
4
H H
H
5
1H
6
2H
H
C4-C3
C6-C1
交叉式
2.50nm
H
H
HH
H~H之间距离均大于
HH H
H H
H
2.49nm
H
H的Van der Waal’s半
1
1
2
2 3
➢ 取代基位置数字取最小
3 4
1, 3-二甲基环己烷
1, 3-dimethylcyclohexane
1-甲基-4-异丙基环己烷
4-isopropyl-1methylcyclohexane
CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷 (cis-1, 3-dimethylcyclopentane)
桥头碳原子
10 2
9
1
3
8
6
4
7
5
十氢萘
环的数目
桥头间的碳原子数
(用"."隔开)
二环[4. 4. 0]癸烷
bicyclo[4. 4. 0]decane
组成桥环的 碳原子总数
✓桥 头 碳:几个环共用的碳原子, ✓环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C
键可成链状烷烃为三环 ✓桥头间碳原子数:不包括桥头C,由多到少列出 ✓环的编号方法:从桥头开始,先长链后短链
椅式构象
H
H
3
H
H
2
1
H H4
56
H H
H
H
H
H
H H3
4
H H
H
5
1H
6
2H
H
C4-C3
C6-C1
交叉式
2.50nm
H
H
HH
H~H之间距离均大于
HH H
H H
H
2.49nm
H
H的Van der Waal’s半
第三章。环烷烃

翻转后: 翻转后:
21
在室温下环已烷的一种椅式构象通过σ 在室温下环已烷的一种椅式构象通过σ键旋转迅速转变成另 一种椅式构象: 一种椅式构象:
22
2. 船式构象
◇船式构象的基本形态
四个C 1,2,4,5四个C在同一平面 C-3,C-6均在该平面上方
船式构象中张力能每一项都不等于零: ◇船式构象中张力能每一项都不等于零: 范德华半径240pm 240pm, ≠0, 如:lH3-H6=183pm < 范德华半径240pm,故Enb≠0,同时非键作用使 H3键长和键角有变, ≠0, 键长和键角有变,使El≠0,Eφ≠0
第三章 环烷烃
(Cycloalkane )
1
分子中C原子以单键互相连接成闭合环。 ◇环烷烃 — 分子中C原子以单键互相连接成闭合环。 链成环需增加一个C 单键,同时减少两个H ◇通 式 — CnH2n,链成环需增加一个C-C单键,同时减少两个H,与烯 烃为同分异构体。 烃为同分异构体。
一、环烷烃的异构和命名
环稳定性: 环稳定性:
>
环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。 环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。
6
(2) 加溴 例:
开环加成
环丁烷、环戊烷等与溴的反应与烷烃相似: 环丁烷、环戊烷等与溴的反应与烷烃相似:
hv Br
+
Br2
7
(3) 加HBr 例:
在含H最少C与含H最多C间断裂,Br 加到含H最少C 在含H最少C与含H最多C间断裂,Br-加到含H最少C上
4
◇例子: 例子: 例1: 1-甲基-3-乙基环戊烷 甲基-
例2:
1
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH3CH2CH2CH3
(2)加X2
(3)加HX
+ Br2 (褪色)
+ HBr
CCl4
Br Br CH2CH2CH2 Br CH3CH2CH2
用于 鉴别
室温下只有环丙烷能反应
Br H CH3C-CHCH2 CH3 CH3
+ HBr
断裂连接取代基最多和最少的键,H加在含H多的C上。
桥环烃(Bridged hydrocarbon)的命名
桥头碳原子
10 9 8 7 1 2 3 4 5
桥头间的碳原子数
(用"."隔开)
环的数目 二环[4. 4. 0]癸烷 bicyclo[4. 4. 0]decane 组成桥环的 碳原子总数
6
十氢萘
桥 头 碳:几个环共用的碳原子, 环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根 C—C键可成链状烷烃为三环 桥头碳原子数:不包括桥头C,由多到少列出 环的编号方法:从桥头开始,先长链后短链
8 7 6
用","隔开
8-甲基二环[4. 3. 0]壬烷 8-methylbicyclo[4. 3. 0]nonane
三环[2. 2. 1. 02, 6]庚烷 tricyclo[2. 2. 1. 02, 6]heptane
螺环烃(spiro hydrocarbon)的命名
1 6 5 3 4 10 9 7 8
2
螺[4. 5]癸烷 spiro[4. 5]decane
除螺C外的碳原子数 (用"."隔开)
1 4 5 3 2 7 6
组成桥环的 碳原子总数
4-甲基螺[2. 4]庚烷
4-methylspiro[2. 4]heptane
编号从小环开始
取代基数目取最小
环烷烃的其它命名方法 :
按形象命名
立方烷 cubane 金刚烷 adamantane
化学反应
小环化合物的特殊性质 —— 易开环加成
小环化合物的催化加氢
H2 / Pt, 50oC or Ni, 80oC
2
CH3CH2CH3
2
H2 / Pt, 50oC
3 1
CH3
3
CH2CH3
or Ni, 80oC
CH3CHCH2CH3
1
H2 / Pt, 120oC or Ni, 200 C
o
练习3:写出下列化合物的顺反异构体 ⑴3,4-二甲基-3-己烯 H3C CH3 顺 C=C H5C2 C2H5
⑵1-甲基-3-乙基环丁烷 CH3 C2H5 顺 ⑶1-氯-4-溴环己烷 顺 Cl Br 反
H3C C2H5 反 C=C H5C2 CH3
反 CH3 Cl
C2H5
Br
4、含C=N键化合物的顺反异构
3.环烷烃与烷烃一样,难溶于水,易溶于有机溶剂。
环的大小与稳定性
稳定性
普通环 > 中环
> 小环
环烷烃的燃烧热数据
每个CH2的燃烧热 (KJ/mol)
小 环
普 通
C3 C4 C5
C7
环丙烷 环丁烷
环戊烷 环己烷
697.1 686.1
664.0 658.6
中 环 大 环
C8 C11
环辛烷 环壬烷 环癸烷
7 1 6 4 3 2 5 6
7 1 2 4 3
5
二环[2. 2. 1]庚烷 bicyclo[2. 2. 1]heptane
9 2 1 3 4 5
2, 7, 7-三甲基二环[2. 2. 1]庚烷 2, 7, 7-trimethylbicyclo [2. 2. 1]heptane
7 4 5 1 6 2 3
2、分清常见的几种“基” CH3–CH2–CH- CH3–CH=CH- 丙烯基 CH3 仲丁基 CH3–CH–CH2- CH2=CH–CH2- 烯丙基 CH3 异丁基 CH3 CH3–C- CH3 CH3 CH3–C–CH2- CH3 叔丁基 CH3 CH3–C–Br CH3 叔丁基溴
新戊基
CH3 CH3–C–CH2–OH 新戊醇 CH3
Cl
2
3 Cl
r- 1,反- 2, 顺- 3-三氯环戊烷
Cl H
CH3 2 3
OH 1
反- 5-氯-r- 1,顺- 3-环己烷二甲酸 COOH 3 2 COOHClFra bibliotekC2H5
Cl
1
顺-3-甲基-1-乙基-3-氯-r- 环戊醇
反-2,顺-5-二甲基-顺-3-氯-r-环戊醇 CH3 OH CH3 次序规则④—— 1 顺式比反式优先 2 2 2 Z 比 E 优先 2 1 OH R比S优先 Cl CH3 OH CH3 顺- 2, 反- 4-二甲基 -r- 1,反- 3-环丁二醇
663.8 664.6 663.6
环
环庚烷
662.4
C12
环十四烷 环十五烷
658.6 659.0
对比:开链烷烃每个CH2的燃烧热:658.6 KJ/mol
环的大小与化学性质
五元以上 环烷烃 性质相似
链状烷烃
Cl2 / hv
Cl
自由基取代反应
H2 / Pt 催化加氢
HI
不反应
不反应
!!!
小环环烷烃 活泼,易开环
按衍生物命名
O
十氢萘 Decahydronaphthalene
萘 naphthalene
莰烷 camphane
2-莰酮(樟脑) camphor
3、环烷烃的顺反异构和命名 ①C环是限制旋转的因素。
②环中至少有两个C分别连不同的基团。 CH3 CH3 CH3 顺-1,2-二甲 反-1,2-二 基环丙烷 甲基环丙烷 CH3 ③若多于两个基团,选择位次最小者作为标准(r) Cl 1 r- 1-环戊烷甲酸 1, 顺- 2-二氯COOH Cl
C=N键是限制旋转的因素, 孤对电子在次序规则中排最后
Ph C=N H OH
Ph
一般了解
Z
E
C=N H OH
5、含N=N化合物的顺反异构
一般了解
N=N
Z
E
N=N
3.2 环烷烃的物理性质和化学反应
物理性质
1.常温常压下,环丙烷和环丁烷为气体,C5~C11的环 烷烃为液体,高级同系物为固体。
2.环烷烃比相应的链状烷烃具有较高的熔点、沸点和 密度,这是因为环烷烃的结构对称,分子排列紧密 ,分子间的力大。
3.1 环烷烃(cycloalkane)的命名
环烷烃的类型
(单)环烷烃
桥环烃(稠环)
桥环烃
螺环烃
要点复习
1、链状化合物系统命名的两个要点——选主链、编号
选主链:①靠近主官能团;②最先碰面;③先小后大。
编号:①含主官能团最长C链;②含尽量多的母体官 能团;③含尽量多的取代基。 举例练习: C2H5 1 2 3 4 CH3–CH–CH–CH–CH2–CH3 ? CH3 CH(CH3)2 5 6 2,5-二甲基-3,4-二乙基己烷