第3章 烷烃和环烷烃的性质与制备.ppt

合集下载

环烷烃1ppt课件

环烷烃1ppt课件

环辛烷 环壬烷 环癸烷
663.8 664.6 663.6
环十四烷 658.6 环十五烷 659.0
对比:开链烷烃每个CH2的燃烧热:658.6 KJ/mol
稳定性: 普通环 > 中环:> 小环
环的张力越小,相应的环烷烃越稳定。
环丙烷的结构: CH3
H
H
C
C H 2 1 0 9 .5 ° CH3
HC H
➢ 相同环连结时,可 用词头“联”开头。
顺反异构体:
由于环状结构,环烷烃有两个侧面:“上”方和“下” 方。因此,取代环烷烃可能存在同分异构现象。例如,有两 个1,3-二甲基环戊烷同分异构体:一个异构体的两个甲基在 环的同侧,另一个异构体的两个甲基在环的两侧。两个异构 体都是稳定的化合物。
CH3 CH3
➢ 了解三元和四元环化合物的活性,掌握相应的特殊化学性质。 ➢ 掌握环丙烷和环丁烷的结构特点(有角张力)和构象。 ➢ 了解并掌握环戊烷的构象。
➢ 掌握几种类型环烷烃(普通环烷烃、桥环烃和螺环烃)的命名
方法。
课后练习:p61 (一)、(十)
3 CH3CHCH2CH3
1
主要产物
H2 / Pt, 120oC or Ni, 200oC
CH3CH2CH2CH3
支链多 较稳定
➢ 小环化合物与卤素的反应
Br2 / r.t. Cl2 / FeCl3
Br2 / r.t.
Br Br CH2CH2CH2CH2
(离子型) 加成反应
不反应(难开环)
C H 4 + 2 O 2 C O 2 + 2 H 2 O + 燃 烧 热
环烷烃的燃烧热数据
小 C3 环 C4
普 C5 通 环 C7

有机化学课件第-二-章烷烃和环烷烃_图文

有机化学课件第-二-章烷烃和环烷烃_图文
熔点高低取决于分子间的作用力 和晶格堆积的密集度。
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较

烷烃ppt课件

烷烃ppt课件
变化规律
烷烃在光照、高温或催化剂作用下可发生裂解、异构化、烷基化等反应;与卤 素、氧气等发生取代、氧化等反应。
02 烷烃的化学性质
自由基取代反应
01
02
03
自由基的产生
光照、加热等条件下,烷 烃分子中的C-H键均裂产 生氢自由基。
自由基的链式反应
氢自由基与烷烃分子发生 碰撞,引发新的C-H键均 裂,产生新的氢自由基和 烷基自由基。
的离子型异构化反应。
03 烷烃的来源与制 备
天然气及石油中的烷烃成分
天然气主要成分
天然气和石油的成因
甲烷(CH4),少量乙烷、丙烷等低 碳烷烃。
生物成因和化学成因,经过长期地质 作用形成。
石油中的烷烃
从C5到C20+的各种烷烃,以直链和 支链形式存在。
实验室合成方法简介
1 2
格氏试剂法 卤代烃与镁在无水乙醚中反应,生成格氏试剂, 再与羰基化合物反应得到烷烃。
05 环境影响与安全 防护措施
大气中烷烃的污染问题
温室效应
烷烃在大气中的存在会加剧温室效应,导致全球气候变暖。
光化学烟雾
在阳光照射下,烷烃与氮氧化物等污染物发生光化学反应,生成光 化学烟雾,对人类健康和生态环境造成危害。
大气污染
烷烃作为挥发性有机物(VOCs)的主要成分,对大气环境造成污染, 影响空气质量。
武兹反应 卤代烃与钠在无水乙醇中反应,生成烷烃和卤化 钠。
3
科尔贝-施密特反应 烯烃在高压下与氢气和催化剂反应,得到烷烃。
工业生产途径概述
石油裂化
在高温高压下,重质石油馏分裂 化为轻质烷烃和烯烃。
天然气液化分离
将天然气冷却至低温,使不同碳数 的烷烃依次液化分离。

有机课件 3 第三章__环烷烃2概要

有机课件 3 第三章__环烷烃2概要

螺环烃
要点复习
1、链状化合物系统命名的两个要点——选主链、编号
选主链:①靠近主官能团;②最先碰面;③先小后大。
编号:①含主官能团最长C链;②含尽量多的母体官 能团;③含尽量多的取代基。 举例练习: C2H5 1 2 3 4 CH3–CH–CH–CH–CH2–CH3 ? CH3 CH(CH3)2 5 6 2,5-二甲基-3,4-二乙基己烷
化学反应

小环化合物的特殊性质 —— 易开环加成
小环化合物的催化加氢
H2 / Pt, 50oC or Ni, 80oC
2
CH3CH2CH3
2
H2 / Pt, 50oC
3 1
CH3
3
CH2CH3
or Ni, 80oC
CH3CHCH2CH3
1
H2 / Pt, 120oC or Ni, 200 C
o
三、环己烷的构象
1. 两种典型构象式: conformation
5
0.250nm 6 4 1 3 2
{boat form
chair form
(1)椅式构象的特点: ①6C2平面(3C,3C),距离0.05nm. ②12个C-H键分为两种类型:6个直立键(axial bond)即a键, 6个平伏键(equatorial bond)即e键。 ③所有键角都为109°28´而无角张力。 ④任何相邻的两个碳原子之间都为交叉式构象而无扭转张力。 ⑤任何两个C-H键的距离都大于范德化半径而无范德化张力。

桥环烃(Bridged hydrocarbon)的命名
桥头碳原子
10 9 8 7 1 2 3 4 5
桥头间的碳原子数
(用"."隔开)

有机化学第三章环烷烃

有机化学第三章环烷烃

※ 在不同的环烃中键角大于或小于 109o28’,而正常的 SP3 杂化轨道之间的夹角为 109°28′ 即 C - C 之间的电子云 没有达到最大程度的重叠。
1 (109° 28′-60° )= 24° 64′ 2 1 (109° 28′-90° )= 9° 44′ 2 1 (109° 28′-108° )= 0° 44′ 2 1 (109° 28′-120° )= -5° 16′ 2
两个环共用两个或两个以上碳原子的化合物称桥环化合物。
3、环戊烷的结构
C:sp3杂化,轨道夹角109.5o,五边形内角为108o角张力: 109.5-108=1.5o 可见,环戊烷分子中几乎没有什么角张力,故五元 比较稳定,不易开环,环戊烷的性质与开链烷烃相似。
事实上,环戊烷分子中的五个碳原子亦不共 平面,而主要是以“信封式”构象存在,使 五元环的环张力可进一步得到缓解。
二、化学性质
结构分析:C-C, C-H σ键牢固,化性稳定,似烷烃;
但C3—C4环易破,环可以加成,似烯烃。
1、取代反应
+ Cl2 光照 + HCl Cl Cl + HCl
+ Cl2
加热 300oC
反应条件加强, 反应程度减弱。
2、加成反应
小环烷烃,特别是环丙烷,和一些试剂作用时易发生开环。 A: 加氢(随碳原子数增加,环的稳定性增加;加氢反应条 件也愈苛刻)
7 6 5 4 3
9 1 2 8
10
1 2 5
7
6
5 4
3 2 1 CH3
7 CH3
6
4
3
8
9
螺[2, 4]庚烷
7-甲基螺[4, 5]癸烷
1-甲基螺[3,5]-5-壬烯

烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备一、烷烃的主要化学性质总体:稳定,自由基型反应居多。

(一)燃烧和氧化一般条件下不与普通氧化剂反应,剧烈可燃烧,C →CO 2,H →H 2O ,(杂→氧化物)有机化学中:氧化=加氧or 去氢,还原=加氢or 去氧(二)卤代反应(实质:取代反应)取代反应(substitution reaction )是指有机化合物受到某类试剂的进攻,致使分子中一个原子(或基团)被这个试剂所取代的反应。

分为亲电取代、亲核取代、自由基取代三类。

探讨一类有机反应主要从以下四个方面展开:反应产物、反应类型、反应历程、反应活性(反应活性又可从试剂和底物两个方面讨论)。

烷烃的取代属于自由基取代反应。

反应产物:一~多卤代烷反应类型:自由基型(反应条件:光照 or 高温) 反应历程:链引发、增长、终止 反应活性:试剂角度考虑:氟 〉〉氯 〉溴 〉〉碘底物角度考虑:叔氢 〉仲氢 〉伯氢二、烷烃的来源和制备1、烷烃是其他有机物的母体,一般不经人工合成,而是从天然气和石油中获得。

2、天然来源烷烃是相当复杂的混合物,难以分离。

若需纯粹烷烃,可人工合成来制备。

3、工业生产采用柯尔伯电解羧酸盐来制取4、实验室通过武兹、科瑞-郝思合成法以及还原反应来获得。

(1)武慈反应(制备对称烷烃)2RX (乙醚) + Na → R-R + 2NaX ( X = Br 、I )(2)科瑞-郝思反应R 2CuLi (二烷基铜锂) + R ’X → R-R ’ + RCu (烷基铜) + LiX(3)还原卤代烃、醇、醛、酮、酸等还原制得(见以后章节)三、环烷烃的主要化学性质总体:大环像烷,小环像烯。

(一)取代反应(卤代,自由基型)+ Br + HBrBr日光环己烷溴代环己烷(二)氧化反应1、可燃 → CO 2 + H 2O2、特殊条件 → 开链二元羧酸+ O2Co HOOC(CH 2 )4 COOH 己二酸(合成尼龙66之主要原料)3、常温、常压、普通氧化剂 → 不反应应用:环烷烃常温下不能使酸性高锰酸钾褪色(开链烷烃也不能),可用于鉴别(见以后章节)。

烃的概述与烷烃的化学性质PPT课件

烃的概述与烷烃的化学性质PPT课件
11
【练习】以C5H8为例写出其炔烃类的同 分异构体,并用系统命名法命名。
CH2≡CHCH2CH2CH3 1-戊炔
CH3CH≡CHCH2CH3 2-戊炔
CH2≡CHCHCH3 CH3
3-甲基-1-丁炔
12
2.苯及其同系物 (1)苯的分子式:C6H6
(2)苯的结构:
(3)苯的物理性质:无色、有特殊气味、有
【思考】推导环烷烃、二烯烃的组成通式? 并指出它们与哪些链烃互为同分异构体?
环烷烃通式为:CnH2n(n≥3), (单)烯烃互为同分异构体。
二烯烃通式为:CnH2n-2(n≥4) 与(单)炔烃互为同分异构体,
8
(2)烃的物理性质
①烷烃、烯烃、炔烃有相似的物理性质。
a.都难溶于水 b.室温下状态:n≤4 气态
【练习】以C5H10为例写出其烯烃类的同 分异构体,并用系统命名法命名.
10
CH2=CHCH2CH2CH3 CH3CH=CHCH2CH3
1-戊烯
2-戊烯
CH2=C—CH2CH3
CH3 2-甲基-1-丁烯
CH2=CHCHCH3
CH3 3-甲基-1-丁烯
CH3CH=CCH3 2-甲基-2-丁烯 CH3
n=5~16 液态(新戊烷为气体) n>17 固态 c.碳原子数↑,熔沸点↑,密度↑ d.同碳原子数的烷烃,支链越多熔沸点越低
②烃在自然界中的存在。
课本P28第2自然段
9
(3)烯烃和炔烃的命名
①选含碳碳双键或碳碳叁键的最长的链为主链。 ②从靠近双键或叁键的一端开始编号。
③需注明双键或叁键碳原子的位置,并写在主 链名称之前
ΔV= V后- V前=-(1+ y/4) 注:① 气态烃完全燃烧以后,气体体积的变化只于烃中的H

烷烃完整版课件

烷烃完整版课件
合成路线
化学合成法主要是通过有机化学 反应来合成烷烃,如卤代烃的还
原、烯烃的加氢等。
反应条件
不同的合成路线需要不同的反应条 件,如温度、压力、催化剂等。
产物纯化
通过精馏、结晶等方法将合成产物 中的杂质去除,得到纯净的烷烃产 品。
03
烷烃的反应与转化
燃烧反应
烷烃燃烧反应的定义
烷烃与氧气在点燃条件下发生氧化反 应,生成二氧化碳和水。
工艺流程
天然气经过压缩、冷却、 精馏等步骤,得到不同沸 点的烷烃产品。
石油裂解法
原料选择
石油裂解的原料主要是重 质石油馏分,如重油、渣 油等。
裂解反应
在高温和催化剂的作用下, 重质石油馏分发生裂解反 应,生成小分子的烷烃和 烯烃。
产品分离
通过精馏、萃取等方法将 裂解产物中的烷烃和烯烃 分离。
化学合成法
汽油和柴油
由不同碳链长度的烷烃混合而成,是交通运输领 域的主要燃料。
3
液化石油气(LPG) 丙烷和丁烷的混合物,用作燃料和烹饪用途。
有机合成原料
乙烯和丙烯
通过石油裂解得到,是合成塑料、橡胶和纤维等高分子材料的基 础原料。
丁二烯和苯乙烯
用于合成橡胶、树脂和合成纤维等。
高级烷烃
用作表面活性剂、增塑剂和润滑剂等化学品的合成原料。
生物降解困难
烷烃在土壤中的生物降解速度较慢,长期积累可对土壤生态系统产 生负面影响。
农作物污染
被烷烃污染的土壤种植出的农作物可能含有有害物质,影响食品安 全和人类健康。
治理措施与政策建议
01
02
03
04
源头控制
加强烷烃生产、储存、运输等 环节的监管,减少泄漏和排放。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲烷的氯代反应是一个由氯自由基引发的取代反应,是一个典型的自由基取代
反应。自由基反应通常包括链引发,链传递(或链增长)和链终止三个阶段。
3.3.2 活化能和过渡态 过渡态理论认为:在反应物相互接近的反应过程中,出现一个能量比反应物
正戊烷 CH3CH2CH2CH2CH3 36.1
CH3
异戊烷
CH3 CHCH2CH3 CH3
27.9
新戊烷
H3C C CH3 CH3
9.5
3. 熔点 C4以上的正烷烃的熔点是随碳原子数目的增加而升高。偶数碳烷烃的熔点随着 碳数增加升高的幅度比奇数碳的大,见下图。 支链烷烃熔点比直链烷烃低。
50
0
正戊烷 CH3CH2CH2CH2CH3 129.7
3.3 烷烃卤代反应的反应机理 3.3.1 甲烷氯代反应的机理 3.3.2 活化能和过渡态 3.3.3 卤素对甲烷的相对反应活性 3.3.4 卤代反应的相对活性与烷基自由基的稳定性
3.1 烷烃和环烷烃的物理性质
3.1.1 烷烃的物理性质
有机化合物的物理性质,通常指的是在常温、常压下的状态、熔点、沸点、
光 250℃
CH3CH2CH2Cl + 43%
Cl CH3 CH CH3
57%
仲氢
57/2(仲氢数)
4
伯氢
43/6(伯氢数) 1
异丁烷的一卤代
CH3
H3C C H + Cl2
CH3
光 250℃
CH3 ClCH2 CH +
CH3
CH3
CH3 C Cl CH3
2-甲基-1-氯丙烷
2-甲基-2-氯丙烷
64%

CHCl3 + HCl
三氯甲烷(氯仿)
CHCl3 + Cl2

CCl4 + HCl
四化碳
上述反应的产物为四种取代物的混合物。 如果控制反应条件或原料用量比,可使其中某一取代物成为主要产物。
2. 其他烷烃的卤代 乙烷的一卤代
丙烷的一卤代
CH3CH3 + Cl2

CH3CH2Cl + HCl
CH3CH2CH3 + Cl2
物。例如,石蜡(C20~C30烷烃)氧化成高级脂肪酸。
R CH2 CH2 R' + O2 (空气)
锰盐 120 -150℃
RCOOH + R'COOH
石蜡
3.2.2 热裂反应
高温时,烷烃的蒸气在无氧条件下,分子中的C—C键和C—H发生断裂,形成 较小的分子,这个反应称为热裂反应。
烷烃分子中所含的碳原子数越多,裂化产物越复杂。
-50
熔点(℃)
-100
-150
-200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
碳原子数
异戊烷 新戊烷
CH3 CHCH2CH3 CH3 CH3
H3C C CH3 CH3
159.9 16.6
4. 相对密度 随着碳原子数目的增加而逐渐增大,但均小于1。
5. 溶解度 不溶于水,而易溶于非极性或弱极性的有机溶剂。
被氯取代称为氯代反应,被溴取代称为溴代反应。
C H + X2
C X + HX X= F, Cl, Br, I
1. 甲烷的氯代
CH4 + 2Cl2
漫射光
CH3Cl + HCl 一氯甲烷
反应生成的一氯甲烷可以继续发生氯代反应。
CH3Cl + Cl2

CH2Cl2 + HCl
二氯甲烷
CH2Cl2 + Cl2
相对密度、溶解度、折光率等。
正烷烃的物理性质随着碳数的增加呈现规律性的变化。
1. 物质状态 常温常压(25℃,0.1MPa)下,C1~C4直链烷烃是气体,C5~C17直链烷烃是液 体,C18以上直链烷烃是固体,如蜡等。 2. 沸点
正烷烃的沸点随着碳数增加而有规律地缓慢升高。
同数碳原子的支链烷烃的沸点比相应直链烷烃的低。
沸点/℃ 32.9 12.0 49.3 72.0 80.8 100.8 118.0
熔点/℃ 127.6 80.0 94.0 142.4 6.5 126.5 12.0
相对密度( d420 )
0.720 0.703 0.745 0.779 0.799 0.769 0.800
3.2 烷烃的化学性质
3.2.1 氧化反应
例如,正丁烷的热裂反应。
CH3CH2CH=CH2 + H2
400℃ 以上 CH3CH2CH2CH3
CH3CH=CH2 + CH4 CH2=CH2 + CH3CH3
CH2=CH—CH=CH2 + 2H2
CH4 1200℃ HC CH + 3H2
3.2.3 卤代反应
烷烃分子中的氢原子被卤素取代的反应称为卤代反应。
第3章 烷烃和环烷烃的性质与制备
3.1 烷烃和环烷烃的物理性质 3.1.1 烷烃的物理性质 3.1.2 环烷烃的物理性质
3.4 环烷烃的化学性质
3.2 烷烃的化学性质 3.2.1 氧化反应 3.2.2 热裂反应 3.2.3 卤代反应
3.5 烷烃和环烷烃的制备 3.5.1 烷烃的制备 3.5.2 环烷烃的制备
1. 链引发 Cl Cl hν 或 △ 2Cl (1)
2. 链传递 Cl + H CH3
HCl + CH3 (2)
CH3 + Cl2
CH3 Cl + Cl (3)
(2)和(3)是自由基引发的链反应。
3. 链终止 Cl + Cl
CH3 + Cl CH3 + CH3
Cl2 (4) CH3Cl (5) CH3CH3 (6)
36%
实验结果表明,烷烃氯代反应的相对活性为:叔氢:仲氢:伯氢 = 5:4:1,
溴代反应的相对活性为:叔氢:仲氢:伯氢 = 1600:82:1。
卤素对烷烃的相对反应活性为:F2 > Cl2 > Br2 > I2
3.3 烷烃卤代反应的反应机理
3.3.1 甲烷氯代反应的机理
反应机理是指化学反应所经历的途径或过程,也称为反应历程。
3.1.2 环烷烃的物理性质
环烷烃的物理性质及其递变规律与烷烃相似,随着成环碳原子数目的增加, 沸点和熔点逐渐升高,见下表。
环烷烃的沸点、熔点和相对密度均比同碳数的烷烃高。
名称 环丙烷 环丁烷 环戊烷 甲基环戊烷 环己烷 甲基环己烷 环庚烷
分子式 C3H6 C4H8 C5H10 C6H12 C6H12 C7H14 C7H14
通常将引入氧、失去氢或者伴随碳碳键断裂的反应称为氧化反应, 将引入氢、失去氧的反应称为还原反应。
烷烃在空气(氧气)的燃烧反应
CH4 + 2O2 点燃 CO2 + 2H2O + 890 KJ mol-1
3n+1 CnH2n+2 + 2 O2
nCO2 + (n+1)H2O + Q
烷烃在催化剂作用下被空气或氧气氧化,可得醇、醛、酮、羧酸等含氧衍生
相关文档
最新文档